Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.097
Filter
1.
Environ Microbiol Rep ; 16(4): e13287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38978351

ABSTRACT

Salmonellosis associated with reptiles is a well-researched topic, particularly in China and the United States, but it occurs less frequently in Europe. The growth of the human population and changes in the environment could potentially increase the interaction between humans and free-living reptiles, which are an unidentified source of Salmonella species. In this study, we sought to explore this issue by comparing the microbiota of free-living European grass snakes, scientifically known as Natrix natrix, with that of captive banded water snakes, or Nerodia fasciata. We were able to isolate 27 strains of Salmonella species from cloacal swabs of 59 N. natrix and 3 strains from 10 N. fasciata. Our findings revealed that free-living snakes can carry strains of Salmonella species that are resistant to normal human serum (NHS). In contrast, all the Salmonella species strains isolated from N. fasciata were sensitive to the action of the NHS, further supporting our findings. We identified two serovars from N. natrix: Salmonella enterica subspecies diarizonae and S. enterica subspecies houtenae. Additionally, we identified three different virulotypes (VT) with invA, sipB, prgH, orgA, tolC, iroN, sitC, sifA, sopB, spiA, cdtB and msgA genes, and ß-galactosidase synthesised by 23 serovars. The identification of Salmonella species in terms of their VT is a relatively unknown aspect of their pathology. This can be specific to the serovar and pathovar and could be a result of adaptation to a new host or environment.


Subject(s)
Salmonella , Virulence Factors , Animals , Virulence Factors/genetics , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Humans , Salmonella Infections, Animal/microbiology , Colubridae/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/growth & development , Salmonella enterica/pathogenicity , Snakes/microbiology , Cloaca/microbiology
2.
BMC Genomics ; 25(1): 604, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886668

ABSTRACT

BACKGROUND: Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS: The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION: This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.


Subject(s)
Diarrhea , Microbial Sensitivity Tests , Phylogeny , Salmonella enterica , Serogroup , Humans , China , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Male , Child, Preschool , Diarrhea/microbiology , Salmonella Infections/microbiology , Genome, Bacterial , Genomics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics
3.
Food Microbiol ; 122: 104568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839227

ABSTRACT

The plasmid of emerging S. Infantis (pESI) or pESI-like plasmid in Salmonella enterica Infantis are consistently reported in poultry and humans worldwide. However, there has been limited research on these plasmids of S. Infantis isolated from eggs. Therefore, this study aimed to analyze the prevalence and characteristics of S. Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants. In this study, the pESI-like plasmid was only detected in 18 (78.3%) of 23 S. Infantis isolates, and it was absent in the other 9 Salmonella serovars. In particular, S. Infantis isolates carrying the pESI-like plasmid showed the significantly higher resistance to ß-lactams, phenicols, cephams, aminoglycosides, quinolones, sulfonamides, and tetracyclines than Salmonella isolates without the pESI-like plasmid (p < 0.05). Moreover, all S. Infantis isolates carrying the pESI-like plasmid were identified as extended-spectrum ß-lactamase (ESBL) producer, harboring the blaCTX-M-65 and blaTEM-1 genes, and carried non-ß-lactamase resistance genes (ant(3'')-Ia, aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, sul1, tetA, dfrA14, and floR) against five antimicrobial classes. However, all isolates without the pESI-like plasmid only carried the blaTEM-1 gene among the ß-lactamase genes, and either had no non-ß-lactamase resistance genes or harbored non-ß-lactamase resistance genes against one or two antimicrobial classes. Furthermore, all S. Infantis isolates carrying the pESI-like plasmid carried class 1 and 2 integrons and the aadA1 gene cassette, but none of the other isolates without the pESI-like plasmid harbored integrons. In particular, D87Y substitution in the gyrA gene and IncP replicon type were observed in all the S. Infantis isolates carrying the pESI-like plasmid but not in the S. Infantis isolates without the pESI-like plasmid. The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis isolates was clearly distinguished, but all S. Infantis isolates were classified as sequence type 32, regardless of whether they carried the pESI-like plasmid. This study is the first to report the characteristics of S. Infantis carrying the pESI-like plasmid isolated from eggs and can provide valuable information for formulating strategies to control the spread of Salmonella in the egg industry worldwide.


Subject(s)
Anti-Bacterial Agents , Eggs , Plasmids , beta-Lactamases , Plasmids/genetics , Republic of Korea , Anti-Bacterial Agents/pharmacology , Eggs/microbiology , Animals , beta-Lactamases/genetics , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Chickens/microbiology , Humans , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification
4.
Mol Genet Genomics ; 299(1): 61, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806731

ABSTRACT

Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial , Salmonella enterica , Brazil , Salmonella enterica/genetics , Salmonella enterica/classification , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial/genetics , Humans , Phylogeny , Multilocus Sequence Typing , Animals , CRISPR-Cas Systems/genetics , Serogroup
5.
Int J Food Microbiol ; 420: 110767, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38820989

ABSTRACT

Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.


Subject(s)
Arachis , Genome, Bacterial , Multilocus Sequence Typing , Phylogeny , Salmonella enterica , Arachis/microbiology , Brazil , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Food Microbiology , Genomic Islands , Desiccation , Genomics
6.
Braz J Microbiol ; 55(2): 1773-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702536

ABSTRACT

The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Salmonella Infections, Animal , Salmonella enterica , Virulence Factors , Animals , Cattle , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Brazil , Anti-Bacterial Agents/pharmacology , Salmonella Infections, Animal/microbiology , Virulence/genetics , Virulence Factors/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Cattle Diseases/microbiology , Abattoirs
7.
Sci Rep ; 14(1): 12260, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806511

ABSTRACT

Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.


Subject(s)
Bacterial Proteins , Genome, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Protein Domains
8.
Microbiol Spectr ; 12(5): e0421623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563788

ABSTRACT

Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Virulence Factors , Whole Genome Sequencing , Thailand/epidemiology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Water Microbiology , Plasmids/genetics , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/pathogenicity , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Genomics , Humans , Phylogeny , Salmonella Infections/microbiology , Serogroup
9.
Microbiol Spectr ; 12(6): e0011724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687063

ABSTRACT

Oxford Nanopore sequencing is one of the high-throughput sequencing technologies that facilitates the reconstruction of metagenome-assembled genomes (MAGs). This study aimed to assess the potential of long-read assembly algorithms in Oxford Nanopore sequencing to enhance the MAG-based identification of bacterial pathogens using both simulated and mock communities. Simulated communities were generated to mimic those on fresh spinach and in surface water. Long reads were produced using R9.4.1+SQK-LSK109 and R10.4 + SQK-LSK112, with 0.5, 1, and 2 million reads. The simulated bacterial communities included multidrug-resistant Salmonella enterica serotypes Heidelberg, Montevideo, and Typhimurium in the fresh spinach community individually or in combination, as well as multidrug-resistant Pseudomonas aeruginosa in the surface water community. Real data sets of the ZymoBIOMICS HMW DNA Standard were also studied. A bioinformatic pipeline (MAGenie, freely available at https://github.com/jackchen129/MAGenie) that combines metagenome assembly, taxonomic classification, and sequence extraction was developed to reconstruct draft MAGs from metagenome assemblies. Five assemblers were evaluated based on a series of genomic analyses. Overall, Flye outperformed the other assemblers, followed by Shasta, Raven, and Unicycler, while Canu performed least effectively. In some instances, the extracted sequences resulted in draft MAGs and provided the locations and structures of antimicrobial resistance genes and mobile genetic elements. Our study showcases the viability of utilizing the extracted sequences for precise phylogenetic inference, as demonstrated by the consistent alignment of phylogenetic topology between the reference genome and the extracted sequences. R9.4.1+SQK-LSK109 was more effective in most cases than R10.4+SQK-LSK112, and greater sequencing depths generally led to more accurate results.IMPORTANCEBy examining diverse bacterial communities, particularly those housing multiple Salmonella enterica serotypes, this study holds significance in uncovering the potential of long-read assembly algorithms to improve metagenome-assembled genome (MAG)-based pathogen identification through Oxford Nanopore sequencing. Our research demonstrates that long-read assembly stands out as a promising avenue for boosting precision in MAG-based pathogen identification, thus advancing the development of more robust surveillance measures. The findings also support ongoing endeavors to fine-tune a bioinformatic pipeline for accurate pathogen identification within complex metagenomic samples.


Subject(s)
Algorithms , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Metagenome , Nanopore Sequencing , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Computational Biology/methods , Salmonella enterica/genetics , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Metagenomics/methods , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/classification
10.
Microbiol Spectr ; 12(6): e0399423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687075

ABSTRACT

Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum ß-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genomic Islands , Salmonella enterica , Genomic Islands/genetics , Drug Resistance, Multiple, Bacterial/genetics , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Animals , Serogroup , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Thailand , Poultry/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Bacterial Proteins/genetics , Genome, Bacterial
11.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546218

ABSTRACT

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Subject(s)
Drug Resistance, Multiple, Bacterial , Phylogeny , Salmonella enterica , Salmonella typhimurium , Serogroup , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/drug effects , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Mexico , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/drug effects , Salmonella typhimurium/classification , Integrons/genetics , Genome, Bacterial , Chile , Genomics , Anti-Bacterial Agents/pharmacology , Latin America , Water Microbiology , Polymorphism, Single Nucleotide , Plasmids/genetics , Microbial Sensitivity Tests
12.
Indian J Med Microbiol ; 48: 100526, 2024.
Article in English | MEDLINE | ID: mdl-38176586

ABSTRACT

Non-typhoidal Salmonellosis are an important cause of gastroenteritis and invasive disease in developing countries, with increase resistance and mortality in paediatric age group. We report here, a rare case of bacteremia and brain abscess in a 3year old female child with Salmonella enterica serovar Give as a causative organism.


Subject(s)
Bacteremia , Brain Abscess , Salmonella Infections , Salmonella enterica , Humans , Female , Bacteremia/microbiology , Bacteremia/diagnosis , Salmonella Infections/microbiology , Salmonella Infections/diagnosis , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Brain Abscess/microbiology , Brain Abscess/diagnosis , Child, Preschool , Serogroup , Anti-Bacterial Agents/therapeutic use
13.
Vet Ital ; 59(4)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38828857

ABSTRACT

The present study evaluated the presence of Salmonella enterica in Pakistani backyard poultry. A total 48 chickens from 4 backyard poultry breeds with the clinical presentation of S. enterica infection were randomly selected from villages in the Punjab Province. Cloacal swabs from live poultry and liver samples from the dead birds were collected for bacterial culture and biochemical identification. Liver and spleen samples from dead birds were evaluated for gross and histopathological changes. Bacterial isolates were subjected to PCR and sequencing of ratA gene. Biochemical identification revealed 5/48 (10.42%) chickens positive for S. enterica. Gross pathology included enlarged, discoloured and congested liver and congested spleen. Histopathology demonstrated congestion of sinusoidal capillaries, cellular swelling and cellular/ballooning degeneration, congestion of central hepatic vein, granular hepatocytic cytoplasm and the presence of variable-sized vacuoles in hepatocytes. The PCR yielded a S. enterica specific amplicon (1047 bp). All liver samples that were positive for S. enterica by biochemical tests, were also positive by PCR. The ratA gene sequencing revealed a close resemblance with S. enteritidis isolates from humans. The present study highlights zoonotic risk from backyard poultry and suggests that PCR can be used as an alternate method for rapid detection of Salmonella serovars.


Subject(s)
Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Salmonella enterica/classification , Pakistan , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/diagnosis , Poultry Diseases/microbiology , Chickens/microbiology
14.
Commun Biol ; 5(1): 111, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121793

ABSTRACT

Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.


Subject(s)
Cellular Reprogramming/physiology , Dendritic Cells/metabolism , Salmonella enterica/classification , Dendritic Cells/immunology , Gene Expression Regulation/drug effects , Humans , Mutation
15.
Microb Genom ; 7(10)2021 10.
Article in English | MEDLINE | ID: mdl-34693903

ABSTRACT

Non-typhoidal Salmonella enterica is an important gastrointestinal pathogen causing a considerable burden of disease. Resistance to third generation cephalosporins poses a serious threat for treatment of severe infections. In this study occurrence, phylogenetic relationship, and mechanisms of third generation cephalosporin resistance were investigated for clinical non-typhoidal S. enterica isolates in Germany. From 2017 to 2019, we detected 168 unique clinical S. enterica isolates with phenotypic resistance to third generation cephalosporins in a nation-wide surveillance. Compared to previous years, we observed a significant (P=0.0002) and consistent increase in resistant isolates from 0.41 % in 2005 to 1.71 % in 2019. In total, 34 different serovars were identified, most often S. Infantis (n=41; 24.4 %), S. Typhimurium (n=27; 16.1 %), S. Kentucky (n=21; 12.5 %), and S. Derby (n=17; 10.1 %). Whole genome analyses revealed extended-spectrum ß-lactamase (ESBL) genes as main cause for third generation cephalosporin resistance, and most prevalent were blaCTX-M-1 (n=55), blaCTX-M-14 (n=25), and blaCTX-M-65 (n=23). There was no strict correlation between serovar, phylogenetic lineage, and ESBL type but some serovar/ESBL gene combinations were detected frequently, such as blaCTX-M-1 and blaCTX-M-65 in S. Infantis or blaCTX-M-14b in S. Kentucky. The ESBL genes were mainly located on plasmids, including IncI, IncA/C variants, emerging pESI variants, and a novel blaCTX-M-1harbouring plasmid. We conclude that third generation cephalosporin resistance is on the rise among clinical S. enterica isolates in Germany, and occurrence in various S. enterica serovars is most probably due to multiple acquisition events of plasmids.


Subject(s)
Cephalosporin Resistance/genetics , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Salmonella enterica/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Cephalosporins , Germany , Humans , Microbial Sensitivity Tests , Phylogeny , Salmonella enterica/classification , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Serogroup
17.
PLoS Genet ; 17(9): e1009820, 2021 09.
Article in English | MEDLINE | ID: mdl-34570761

ABSTRACT

Salmonella enterica serovar Typhimurium strain ATCC14028s is commercially available from multiple national type culture collections, and has been widely used since 1960 for quality control of growth media and experiments on fitness ("laboratory evolution"). ATCC14028s has been implicated in multiple cross-contaminations in the laboratory, and has also caused multiple laboratory infections and one known attempt at bioterrorism. According to hierarchical clustering of 3002 core gene sequences, ATCC14028s belongs to HierCC cluster HC20_373 in which most internal branch lengths are only one to three SNPs long. Many natural Typhimurium isolates from humans, domesticated animals and the environment also belong to HC20_373, and their core genomes are almost indistinguishable from those of laboratory strains. These natural isolates have infected humans in Ireland and Taiwan for decades, and are common in the British Isles as well as the Americas. The isolation history of some of the natural isolates confirms the conclusion that they do not represent recent contamination by the laboratory strain, and 10% carry plasmids or bacteriophages which have been acquired in nature by HGT from unrelated bacteria. We propose that ATCC14028s has repeatedly escaped from the laboratory environment into nature via laboratory accidents or infections, but the escaped micro-lineages have only a limited life span. As a result, there is a genetic gap separating HC20_373 from its closest natural relatives due to a divergence between them in the late 19th century followed by repeated extinction events of escaped HC20_373.


Subject(s)
Genome, Bacterial , Laboratories , Salmonella enterica/genetics , Bayes Theorem , Bioterrorism , Databases, Genetic , Evolution, Molecular , Likelihood Functions , Phylogeny , Salmonella enterica/classification
18.
mSphere ; 6(5): e0048521, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34550008

ABSTRACT

Salmonella enterica serovar Mississippi is the 2nd and 14th leading cause of human clinical salmonellosis in the Australian island state of Tasmania and the United States, respectively. Despite its public health relevance, relatively little is known about this serovar. Comparison of whole-genome sequence (WGS) data of S. Mississippi isolates with WGS data for 317 additional S. enterica serovars placed one clade of S. Mississippi within S. enterica clade B ("clade B Mississippi") and the other within section Typhi in S. enterica clade A ("clade A Mississippi"), suggesting that these clades evolved from different ancestors. Phylogenetic analysis of 364 S. Mississippi isolates from Australia, the United Kingdom, and the United States suggested that the isolates cluster geographically, with U.S. and Australian isolates representing different subclades (Ai and Aii, respectively) within clade A Mississippi and clade B isolates representing the predominant S. Mississippi isolates in the United Kingdom. Intraclade comparisons suggested that different mobile elements, some of which encode virulence factors, are responsible for the observed differences in gene content among isolates within these clades. Specifically, genetic differences among clade A isolates reflect differences in prophage contents, while differences among clade B isolates are due to the acquisition of a 47.1-kb integrative conjugative element (ICE). Phylogenies inferred from antigenic components (fliC, fljB, and O-antigen-processing genes) support that clade A and B Mississippi isolates acquired these loci from different ancestral serovars. Overall, these data support that different S. Mississippi phylogenetic clades are endemic in Australia, the United Kingdom, and the United States. IMPORTANCE The number of known so-called "polyphyletic" serovars (i.e., phylogenetically distinct clades with the same O and H antigenic formulas) continues to increase as additional Salmonella isolates are sequenced. While serotyping remains a valuable tool for reporting and monitoring Salmonella, more discriminatory analyses for classifying polyphyletic serovars may improve surveillance efforts for these serovars, as we found that for S. Mississippi, distinct genotypes predominate at different geographic locations. Our results suggest that the acquisition of genes encoding O and H antigens from different ancestors led to the emergence of two Mississippi clades. Furthermore, our results suggest that different mobile elements contribute to the microevolution and diversification of isolates within these two clades, which has implications for the acquisition of novel adaptations, such as virulence factors.


Subject(s)
Genome, Bacterial , Phylogeny , Salmonella enterica/classification , Salmonella enterica/genetics , Australia , Cluster Analysis , Phylogeography , Prophages/genetics , United Kingdom , United States , Virulence Factors/genetics , Whole Genome Sequencing
19.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502290

ABSTRACT

BACKGROUND: Salmonella Kentucky belongs to zoonotic serotypes that demonstrate that the high antimicrobial resistance and multidrug resistance (including fluoroquinolones) is an emerging problem. To the best of our knowledge, clinical S. Kentucky strains isolated in Poland remain undescribed. METHODS: Eighteen clinical S. Kentucky strains collected in the years 2018-2019 in Poland were investigated. All the strains were tested for susceptibility to 11 antimicrobials using the disc diffusion and E-test methods. Whole genome sequences were analysed for antimicrobial resistance genes, mutations, the presence and structure of SGI1-K (Salmonella Genomic Island and the genetic relationship of the isolates. RESULTS: Sixteen of 18 isolates (88.9%) were assigned as ST198 and were found to be high-level resistant to ampicillin (>256 mg/L) and quinolones (nalidixic acid MIC ≥ 1024 mg/L, ciprofloxacin MIC range 6-16 mg/L). All the 16 strains revealed three mutations in QRDR of GyrA and ParC. The substitutions of Ser83 → Phe and Asp87 → Tyr of the GyrA subunit and Ser80→Ile of the ParC subunit were the most common. One S. Kentucky isolate had qnrS1 in addition to the QRDR mutations. Five of the ST198 strains, grouped in cluster A, had multiple resistant determinants like blaTEM1-B, aac(6')-Iaa, sul1 or tetA, mostly in SGI1 K. Seven strains, grouped in cluster B, had shorter SGI1-K with deletions of many regions and with few resistance genes detected. CONCLUSION: The results of this study demonstrated that a significant part of S. Kentucky isolates from humans in Poland belonged to ST198 and were high-level resistant to ampicillin and quinolones.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial/genetics , Salmonella enterica/drug effects , Salmonella enterica/genetics , Bacterial Proteins/genetics , Bacterial Typing Techniques , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/drug effects , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Phylogeny , Poland , Polymorphism, Single Nucleotide , Salmonella Infections/microbiology , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Whole Genome Sequencing
20.
Microbiol Spectr ; 9(1): e0024821, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34346743

ABSTRACT

Nontyphoidal Salmonella (NTS) gastroenteritis in children remains a significant burden on health care and constitutes a majority of all admissions for Salmonella infections in public hospitals in Hong Kong. In this prospective study, 41% of 241 children hospitalized with gastroenteritis from three public hospitals during 2019 were culture confirmed to have NTS infection. These Salmonella isolates were whole-genome sequenced and in silico predicted for their serovars/serotypes using the Salmonella In Silico Typing Resource (SISTR) and SeqSero1, and the antimicrobial resistance (AMR) genes were determined. Phylogenetic analysis revealed three major clades belonging to Salmonella enterica serovar Enteritidis sequence type 11 (ST11) (43%), multidrug-resistant (MDR) S. Typhimurium ST19 (12%) and its monophasic variant ST34 (25%), and mostly singletons of 15 other serovars. MDR S. Typhimurium and its variant were more common in infants <24 months of age and possessed genotypic resistance to five antimicrobial agents, including ampicillin (A), chloramphenicol (C), aminoglycosides (Am), sulfonamides (Su), and tetracyclines (T). Older children were more often infected with S. Enteritidis, which possessed distinct genotypic resistance to AAmSu and fluoroquinolones. In addition, 3% of the isolates possessed extended-spectrum beta-lactamase (ESBL) CTX-M genes, while one isolate (1%) harboring the carbapenemase gene blaNDM-1 was identified. Our findings provide a more complete genomic epidemiological insight into NTS causing gastroenteritis and identify a wider spectrum of determinants of resistance to third-generation beta-lactams and carbapenems, which are often not readily recognized. With high rates of multidrug-resistant NTS from studies in the Asia-Pacific region, the rapid and reliable determination of serovars and resistance determinants using whole-genome sequencing (WGS) is invaluable for enhancing public health interventions for infection prevention and control. IMPORTANCE Nontyphoidal Salmonella (NTS) gastroenteritis is a foodborne disease with a large global burden. Antimicrobial resistance (AMR) among foodborne pathogens is an important public health concern, and multidrug-resistant (MDR) Salmonella is prevalent in Southeast Asia and China. Using whole-genome sequencing, this study highlights the relationship of the MDR Salmonella serotypes and the diverse range of Salmonella genotypes that contaminate our food sources and contribute to disease in this locality. The findings update our understanding of Salmonella epidemiology and associated MDR determinants to enhance the tracking of foodborne pathogens for public health and food safety.


Subject(s)
Gastroenteritis/microbiology , Salmonella Infections/microbiology , Salmonella enterica/genetics , Adult , Anti-Bacterial Agents/pharmacology , Child, Preschool , Drug Resistance, Multiple, Bacterial , Female , Gastroenteritis/therapy , Genome, Bacterial , Genomics , Hospitalization , Humans , Infant , Microbial Sensitivity Tests , Phylogeny , Prospective Studies , Salmonella Infections/therapy , Salmonella enterica/classification , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL