Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.337
Filter
1.
Commun Biol ; 7(1): 814, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965424

ABSTRACT

In human pathogenic fungi, receiver domains from hybrid histidine kinases (hHK) have to recognize one HPt. To understand the recognition mechanism, we have assessed phosphorelay from receiver domains of five hHKs of group III, IV, V, VI, and XI to HPt from Chaetomium thermophilum and obtained the structures of Ct_HPt alone and in complex with the receiver domain of hHK group VI. Our data indicate that receiver domains phosphotransfer to Ct_HPt, show a low affinity for complex formation, and prevent a Leu-Thr switch to stabilize phosphoryl groups, also derived from the structures of the receiver domains of hHK group III and Candida albicans Sln1. Moreover, we have elucidated the envelope structure of C. albicans Ypd1 using small-angle X-ray scattering which reveals an extended flexible conformation of the long loop αD-αE which is not involved in phosphotransfer. Finally, we have analyzed the role of salt bridges in the structure of Ct_HPt alone.


Subject(s)
Chaetomium , Fungal Proteins , Histidine Kinase , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Chaetomium/metabolism , Chaetomium/genetics , Chaetomium/enzymology , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Candida albicans/metabolism , Candida albicans/enzymology , Phosphorylation , Models, Molecular , Scattering, Small Angle , Protein Conformation
2.
Eur J Pharm Biopharm ; 201: 114380, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960290

ABSTRACT

We have used pulsed field gradient (PFG)-NMR diffusion experiments, also known as DOSY, in combination with small angle X-ray scattering measurements to investigate structure and molecular exchange dynamics between pharmaceutical lipid nanoparticles and the bulk phase. Using liposomes and lipoplexes formed after complexation of the liposomes with messenger mRNA as test systems, information on dynamics of encapsulated water molecules, lipids and excipients was obtained. The encapsulated fraction, having a diffusivity similar to that of the liposomes, could be clearly identified and quantified by the NMR diffusion measurements. The unilamellar liposome membranes allowed a fast exchange of water molecules, while sucrose, used as an osmolyte and model solute, showed very slow exchange. Upon interactions with mRNA a topological transition from a vesicular to a lamellar organization took place, where the mRNA was inserted in repeating lipid bilayer stacks. In the lipoplexes, a small fraction of tightly bound water molecules was present, with a diffusivity that was influenced by the additional presence of sucrose. This extended information on dynamic coherencies inside pharmaceutical nanoparticle products, provided by the combined application of SAXS and PFG-NMR diffusion measurements, can be valuable for evaluation of quality and comparability of nanoscaled pharmaceuticals.


Subject(s)
Liposomes , Magnetic Resonance Spectroscopy , Nanoparticles , RNA, Messenger , Scattering, Small Angle , X-Ray Diffraction , Nanoparticles/chemistry , Magnetic Resonance Spectroscopy/methods , Diffusion , Kinetics , X-Ray Diffraction/methods , Sucrose/chemistry , Lipids/chemistry , Water/chemistry , Excipients/chemistry , Lipid Bilayers/chemistry
3.
Methods Enzymol ; 700: 295-328, 2024.
Article in English | MEDLINE | ID: mdl-38971604

ABSTRACT

The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.


Subject(s)
Lipid Bilayers , Liposomes , Neutron Diffraction , Scattering, Small Angle , Liposomes/chemistry , Lipid Bilayers/chemistry , Neutron Diffraction/methods , Proton Magnetic Resonance Spectroscopy/methods
4.
Methods Enzymol ; 700: 349-383, 2024.
Article in English | MEDLINE | ID: mdl-38971607

ABSTRACT

Small-angle X-ray and neutron scattering (SAXS/SANS) techniques excel in unveiling intricate details of the internal structure of lipid membranes under physiologically relevant temperature and buffer conditions, all without the need to resort to bulky labels. By concurrently conducting and analyzing neutron and X-ray data, these methods harness the complete spectrum of contrast and resolution from various components constituting lipid membranes. Despite this, the literature exhibits only a sparse presence of applications compared to other techniques in membrane biophysics. This chapter serves as a primer for conducting joint SAXS/SANS analyses on symmetric and asymmetric large unilamellar vesicles, elucidating fundamental elements of the analysis process. Specifically, we introduce the basics of interactions of X-rays and neutrons with matter that lead to the scattering contrast and a description of membrane structure in terms of scattering length density profiles. These profiles allow fitting of the experimentally observed scattering intensity. We further integrate practical insights, unveiling strategies for successful data acquisition and providing a comprehensive assessment of the technique's advantages and drawbacks. By amalgamating theoretical underpinnings with practical considerations, this chapter aims to dismantle barriers hindering the adoption of joint SAXS/SANS approaches, thereby encouraging an influx of studies in this domain.


Subject(s)
Neutron Diffraction , Scattering, Small Angle , X-Ray Diffraction , Neutron Diffraction/methods , X-Ray Diffraction/methods , Membrane Lipids/chemistry , Unilamellar Liposomes/chemistry , Lipid Bilayers/chemistry
5.
Methods Enzymol ; 700: 49-76, 2024.
Article in English | MEDLINE | ID: mdl-38971612

ABSTRACT

High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.


Subject(s)
Hydrostatic Pressure , Lipid Bilayers , X-Ray Diffraction , X-Ray Diffraction/methods , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Scattering, Small Angle , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Thermodynamics
6.
ACS Nano ; 18(24): 15545-15556, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838261

ABSTRACT

Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.


Subject(s)
Cell Membrane , Cell Membrane/metabolism , Cell Membrane/chemistry , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/chemistry , Dynamins/metabolism , Dynamins/chemistry , Influenza A virus/metabolism , Scattering, Small Angle , Viroporin Proteins
7.
J Colloid Interface Sci ; 672: 256-265, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838633

ABSTRACT

HYPOTHESIS: Understanding the digestion of lipid-based pharmaceutical formulations and food systems is necessary for optimising drug and nutrient delivery and has been extensively studied in bulk emulsion systems using the pH-stat method [1]. However, this approach is not suitable for investigation of individual lipid droplets, in particular the interface where the lipase acts. Microfluidic approaches to study digestion at lipid-water interfaces using droplet trapping have been proposed, however the aqueous phase in that case washes over the interface presenting uncertainty over the stoichiometry of interactions [2]. The internal interface of a Janus-like droplet, containing distinct aqueous and lipid compartments, mimics the interface of a lipid droplet in aqueous solution with controlled stoichiometry [3]. Hence, it was hypothesised that the internal interface of Janus droplets can offer a precise way to study the enzymatic digestion of lipids formulations. EXPERIMENTS: Using microfluidic methods, Janus-like droplets were formed by coalescing emulsion droplets containing lipid formulation and pancreatic lipase. Polarised light microscopy (PLM) and in-situ small-angle X-ray scattering (SAXS) were used to investigate the droplets. FINDINGS: PLM revealed the growth of an aligned inverse hexagonal phase (H2), and with SAXS showed that this phase transformation and alignment resulted from enzymatic digestion. A subsequent partial transformation from H2 to inverse bicontinuous cubic phase occurred when simulated intestinal fluid was used instead of Tris buffer. Suggesting that phospholipids and bile salts could diffuse across the internal interface to locally affect their surroundings.


Subject(s)
Lipase , Lipase/chemistry , Lipase/metabolism , Phase Transition , Emulsions/chemistry , Particle Size , Scattering, Small Angle , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Lipids/chemistry , X-Ray Diffraction , Surface Properties
8.
Biophys J ; 123(13): 1846-1856, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38824390

ABSTRACT

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.


Subject(s)
Aspartic Acid Proteases , Haloferax volcanii , Neutron Diffraction , Protein Multimerization , Scattering, Small Angle , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/chemistry , Haloferax volcanii/enzymology , Cell Membrane/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Molecular Dynamics Simulation , Protein Structure, Quaternary
9.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 493-505, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38935344

ABSTRACT

The determination of the atomic resolution structure of biomacromolecules is essential for understanding details of their function. Traditionally, such a structure determination has been performed with crystallographic or nuclear resonance methods, but during the last decade, cryogenic transmission electron microscopy (cryo-TEM) has become an equally important tool. As the blotting and flash-freezing of the samples can induce conformational changes, external validation tools are required to ensure that the vitrified samples are representative of the solution. Although many validation tools have already been developed, most of them rely on fully resolved atomic models, which prevents early screening of the cryo-TEM maps. Here, a novel and automated method for performing such a validation utilizing small-angle X-ray scattering measurements, publicly available through the new software package AUSAXS, is introduced and implemented. The method has been tested on both simulated and experimental data, where it was shown to work remarkably well as a validation tool. The method provides a dummy atomic model derived from the EM map which best represents the solution structure.


Subject(s)
Cryoelectron Microscopy , Models, Molecular , Scattering, Small Angle , Software , Cryoelectron Microscopy/methods , X-Ray Diffraction/methods , Microscopy, Electron, Transmission/methods
10.
J Phys Chem B ; 128(27): 6622-6637, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38937939

ABSTRACT

Extensive research has been carried out to investigate the stability and function of human serum albumin (HSA) when exposed to surface-active ionic liquids (SAILs) with different head groups (imidazolium, morpholinium, and pyridinium) and alkyl chain lengths (ranging from decyl to tetradecyl). Analysis of the protein fluorescence spectra indicates noticeable changes in the secondary structure of HSA with varying concentrations of all SAILs tested. Helicity calculations based on the Fourier transform infrared (FTIR) data show that HSA becomes more organized at the micellar concentration of SAILs, leading to an increased protein activity at this level. Small-angle neutron scattering (SANS) data confirm the formation of a bead-necklace structure between the SAILs and HSA. Atomistic molecular dynamics (MD) simulation results identify several hotspots on the protein surface for interaction with SAIL, which results in the modulation of protein conformational fluctuation and stability. Furthermore, fluorescence resonance energy transfer (FRET) experiments with the intramolecular charge transfer (ICT) probe trans-ethyl p-(dimethylamino) cinnamate (EDAC) demonstrate that higher alkyl chain lengths and SAIL concentrations result in a significantly increased energy transfer efficiency. The findings of this study provide a detailed molecular-level understanding of how the protein structure and function are affected by the presence of SAILs, with potential implications for a wide range of applications involving protein-SAIL composite systems.


Subject(s)
Ionic Liquids , Molecular Dynamics Simulation , Serum Albumin, Human , Ionic Liquids/chemistry , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Fluorescence Resonance Energy Transfer , Protein Binding , Protein Conformation , Scattering, Small Angle , Surface-Active Agents/chemistry
11.
Eur Phys J E Soft Matter ; 47(6): 39, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831117

ABSTRACT

Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample's chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method's capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology.


Subject(s)
Machine Learning , Scattering, Small Angle , Macromolecular Substances/chemistry , Neutron Diffraction , X-Ray Diffraction , Monte Carlo Method
12.
J Colloid Interface Sci ; 669: 844-855, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749223

ABSTRACT

Lamellarity and shape are important factors in the formation of vesicles and determine their role in biological systems and pharmaceutical applications. Cardiolipin (CL) is a major lipid in many biological membranes and exerts a great influence on their structural organization due to its particular structure and physico-chemical properties. Here, we used small-angle X-ray and neutron scattering to study the effects of CL with different acyl chain lengths and saturations (CL14:0, CL18:1, CL18:2) on vesicle morphology and lamellarity in membrane models containing mixtures of phosphatidylcholine and phosphatidylethanolamine with different acyl chain lengths and saturations (C14:0 and C 18:1). Measurements were performed in the presence of Phosphate Buffer Saline (PBS), at 37°C, to better reflect physiological conditions, which resulted in strong effects on vesicle morphology, depending on the type and amount of CL used. The presence of small quantities of CL (from 2.5%) reduced inter-membrane correlations and increased perturbation of the membrane, an effect which is enhanced in the presence of matched shorter saturated acyl chains, and mainly unilamellar vesicles (ULV) are formed. In extruded vesicles, employed for SANS experiments, flattened vesicles are observed partly due to the hypertonic effect of PBS, but also influenced by the type of CL added. Our experimental data from SAXS and SANS revealed a strong dependence on CL content in shaping the membrane microstructure, with an apparent optimum in the PC:CL mixture in terms of promoting reduced correlations, preferred curvature and elongation. However, the use of PBS caused distinct differences from previously published studies in water in terms of vesicle shape, and highlights the need to investigate vesicle formation under physiological conditions in order to be able to draw conclusions about membrane formation in biological systems.


Subject(s)
Cardiolipins , Liposomes , Scattering, Small Angle , Cardiolipins/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , X-Ray Diffraction , Particle Size , Neutron Diffraction
13.
J Colloid Interface Sci ; 669: 975-983, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759596

ABSTRACT

HYPOTHESIS: Hydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. EXPERIMENTS: We investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) between pH 2 and 6 at 37 °C, i.e. above the upper critical solution transition temperature of gelatin, using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FINDINGS: Agglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension ranging from 1.5 to 2.7, comprising primary particles with a radius of gyration ranging from 70 to 140 Å. Blending with gelatin influenced the fractal structure of HPMCP and the primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.


Subject(s)
Gelatin , Methylcellulose , Particle Size , Scattering, Small Angle , Gelatin/chemistry , Hydrogen-Ion Concentration , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives , Hydrogels/chemistry , Molecular Structure
14.
Int J Biol Macromol ; 269(Pt 2): 131890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692534

ABSTRACT

The rheological and morphological characteristics of Ca-crosslinked alginate hydrogels with two different M/G ratios, α-L-guluronate (G)-rich and ß-D-mannuronate (M)-rich, each with one alginic acid concentration, were investigated. It was found that the stiffness and elasticity of alginate hydrogels are derived from the thickness and density of the fibril network structures. In aqueous alginate solution, ball-like aggregates of alginates are present. Time-resolved small-angle X-ray scattering and time-domain nuclear magnetic resonance measurements suggest that the disaggregation of alginate aggregates and loose fibrillation occur in the early stage of the sol-gel transition. After these induction stage, direct gelation is finally caused by the formation of the egg-box junction. G-rich alginate hydrogel has a higher stiffness and a thicker and denser fibril network structure than M-rich alginate hydrogel. The former also exhibits faster and more significant changes in physical properties during the sol-gel transition.


Subject(s)
Alginates , Hydrogels , Phase Transition , Rheology , Alginates/chemistry , Hydrogels/chemistry , Scattering, Small Angle , Hexuronic Acids
15.
Food Res Int ; 186: 114380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729734

ABSTRACT

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Subject(s)
Hot Temperature , Pea Proteins , Pisum sativum , Scattering, Small Angle , X-Ray Diffraction , Hydrogen-Ion Concentration , Pisum sativum/chemistry , Pea Proteins/chemistry , Albumins/chemistry , Chromatography, Gel
16.
Methods Mol Biol ; 2726: 377-399, 2024.
Article in English | MEDLINE | ID: mdl-38780739

ABSTRACT

Aside from the well-known role in protein synthesis, RNA can perform catalytic, regulatory, and other essential biological functions which are determined by its three-dimensional structure. In this regard, a great effort has been made during the past decade to develop computational tools for the prediction of the structure of RNAs from the knowledge of their sequence, incorporating experimental data to refine or guide the modeling process. Nevertheless, this task can become exceptionally challenging when dealing with long noncoding RNAs, constituted by more than 200 nucleotides, due to their large size and the specific interactions involved. In this chapter, we describe a multiscale approach to predict such structures, incorporating SAXS experimental data into a hierarchical procedure which couples two coarse-grained representations: Ernwin, a helix-based approach, which deals with the global arrangement of secondary structure elements, and SPQR, a nucleotide-centered coarse-grained model, which corrects and refines the structures predicted at the coarser level.We describe the methodology through its application on the Braveheart long noncoding RNA, starting from the SAXS and secondary structure data to propose a refined, all-atom structure.


Subject(s)
Nucleic Acid Conformation , RNA, Long Noncoding , Scattering, Small Angle , X-Ray Diffraction , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , X-Ray Diffraction/methods , Computational Biology/methods , Software , Models, Molecular , RNA/chemistry , RNA/genetics , Algorithms
17.
Nat Commun ; 15(1): 3888, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719828

ABSTRACT

PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.


Subject(s)
Proline , Protein Binding , WW Domains , Humans , Amino Acid Motifs , Models, Molecular , Proline/metabolism , Proline/chemistry , RNA Splicing , RNA Splicing Factors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , Scattering, Small Angle , Spliceosomes/metabolism , X-Ray Diffraction
18.
Soft Matter ; 20(19): 3897-3900, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700293

ABSTRACT

Two protein interaction peaks are observed in pharmaceutically-relevant protein (serum albumin) : disaccharide 1 : 1 and 1 : 3 (w/w) freeze-dried systems for the first time. In samples with a higher disaccharide content, the protein-protein distances are longer for both populations, while the fraction of the protein population with a shorter protein-protein distance is lower. Both factors would favor better stability against aggregation for disaccharide-rich protein formulations. This study provides direct experimental support for a "dilution" hypothesis as a potential stabilization mechanism for freeze-dried protein formulations.


Subject(s)
Disaccharides , Freeze Drying , Scattering, Small Angle , X-Ray Diffraction , Disaccharides/chemistry , Neutron Diffraction , Animals
19.
J Phys Chem B ; 128(24): 5814-5822, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38726956

ABSTRACT

Enzymatic activity is heavily influenced by pH, but the rationale for the dynamical mechanism of pH-dependent enzymatic activity has not been fully understood. In this work, combined neutron scattering techniques, including quasielastic neutron scattering (QENS) and small angle neutron scattering (SANS), are used to study the structural and dynamic changes of a model enzyme, xylanase, under different pH and temperature environments. The QENS results reveal that xylanase at optimal pH exhibits faster relaxational dynamics and a lower energy barrier between conformational substates. The SANS results demonstrate that pH affects both xylanase's stability and monodispersity. Our findings indicate that enzymes have optimized stability and function under their optimal pH conditions, with both structure and dynamics being affected. The current study offers valuable insights into enzymatic functionality mechanisms, allowing for broad industrial applications.


Subject(s)
Endo-1,4-beta Xylanases , Neutron Diffraction , Scattering, Small Angle , Temperature , Hydrogen-Ion Concentration , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Molecular Dynamics Simulation , Enzyme Stability
20.
J Inorg Biochem ; 257: 112579, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703512

ABSTRACT

Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.


Subject(s)
Aromatase , Scattering, Small Angle , Aromatase/metabolism , Aromatase/chemistry , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , X-Ray Diffraction , Nanostructures/chemistry , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...