Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 884
Filter
1.
J Hazard Mater ; 476: 135009, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38964037

ABSTRACT

The development of nanozymes (NZ) for the simultaneous detection of multiple target chemicals is gaining paramount attention in the field of food and health sciences, and waste management industries. Nanozymes (NZ) effectively compensate for the environmental vulnerability of natural enzymes. Considering the development gap of NZ with diverse applications, we synthesized versatile Schiff's base ligands following a facile route and readily available starting reagents (glutaraldehyde, aminopyridines). DPDI, one of the synthesized ligands, readily reacted with transition metal ions (Cu+2, Ag+1, Zn+2 in specific) under ambient conditions, yielding the corresponding nanoparticles/MOF. The structures of ligands and their products were confirmed using various analytical techniques. The enzymatic efficacy of DPDI-Cu (km 0.25 mM=, Vmax = 10.75 µM/sec) surpassed Tremetese versicolor laccase efficacy (km 0. 5 mM=, Vmax = 2.15 µM/sec). Additionally, DPDI-Cu proved resilient to changing pH, temperature, ionic strength, organic solvent, and storage time compared to laccase and provided reusability. DPDI-Cu proved promising for colorimetric detection of dopamine, epinephrine, catechol, tetracycline, and quercetin. The mechanism of oxidative detection of TC was studied through LC/MS analysis. DPDI-Cu-bentonite composite efficiently adsorbed tetracycline with maximum Langmuir adsorption of 208 mg/g. Moreover, DPDI/Cu and DPDI-Ag nanoparticles possessed antifungal activity exhibiting a minimum inhibitory concentration of 400 µg/mL and 3.12 µg/mL against Aspergillus flavus. Florescent dye tracking and SEM/TEM analysis confirmed that DPDI-Ag caused disruption of the plasma membrane and triggered ROS generation and apoptosis-like death in fungal cells. The DPDI-Ag coating treatment of wheat seeds confirmed the non-phytotoxicity of Ag-NPs.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Catecholamines , Schiff Bases , Tetracycline , Schiff Bases/chemistry , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Catecholamines/chemistry , Tetracycline/chemistry , Tetracycline/pharmacology , Tetracycline/analysis , Ligands , Nanostructures/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal Nanoparticles/chemistry
2.
Future Med Chem ; 16(12): 1185-1203, 2024.
Article in English | MEDLINE | ID: mdl-38989989

ABSTRACT

Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.


[Box: see text].


Subject(s)
Acetophenones , Cyclic Nucleotide Phosphodiesterases, Type 1 , Molecular Docking Simulation , Phosphodiesterase Inhibitors , Acetophenones/chemistry , Acetophenones/pharmacology , Acetophenones/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Humans , Cyclic Nucleotide Phosphodiesterases, Type 1/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Structure-Activity Relationship , Molecular Structure , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Catalytic Domain
3.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063120

ABSTRACT

In this work, we describe the synthesis of novel Ruthenium (II) complex-based salen Schiff bases. The obtained Ruthenium (II) complexes are characterized using usual spectroscopic and spectrometric techniques, viz., IR, UV-Vis, NMR (1H and 13C), powder X-ray diffraction, and HRMS. Further techniques, such as DTA-TGA and elemental analysis, are used to well establish the structure of the obtained complexes. Octahedral geometries are tentatively proposed for the new Ru(II) complexes. The measured molar conductance for the Ruthenium (II) complexes shows their electrolytic nature (4.24-4.44 S/m). The new Ru(II) complexes are evaluated for their antioxidant and antibacterial activities. The DPPH radical scavenging, FRAP, and total antioxidant capacity (TAC) assays show that the obtained complexes are more potent than the used positive control. They also exhibit promising antibacterial responses against pathogen bacteria: [RuH2L3Cl2] exhibits an important inhibition against Bacillus subtilis DSM 6633, with an inhibition zone of 21 ± 1.41 mm with an MIC value of 0.39 mg/mL, and Proteus mirabilis INH, with 16.50 ± 0.70 mm and an MIC value of 0.78 mg/mL, while [RuH2L2Cl2] exerts interesting antibacterial effects versus Bacillus subtilis DSM 6633 (21 ± 1.41 mm) and Proteus mirabilis INH (25.5 ± 0.70 mm) with equal MIC values of 0.97 mg/mL.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Coordination Complexes , Microbial Sensitivity Tests , Ruthenium , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Bacillus subtilis/drug effects
4.
Dalton Trans ; 53(27): 11295-11309, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38898716

ABSTRACT

A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 µM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Molecular Docking Simulation , Schiff Bases , Thiophenes , Urease , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Urease/antagonists & inhibitors , Urease/metabolism , Thiophenes/chemistry , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Morpholines/chemistry , Morpholines/pharmacology , Morpholines/chemical synthesis , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Leishmania/drug effects , Structure-Activity Relationship , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Drug Screening Assays, Antitumor
5.
Invest New Drugs ; 42(4): 405-417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880855

ABSTRACT

Radioresistance is an inevitable obstacle in the clinical treatment of inoperable patients with non-small cell lung cancer (NSCLC). Combining treatment with radiosensitizers may improve the efficacy of radiotherapy. Previously, the quinoline derivative 10E as new exporter of Nur77 has shown superior antitumor activity in hepatocellular carcinoma. Here, we aimed to investigate the radiosensitizing activity and acting mechanisms of 10E. In vitro, A549 and H460 cells were treated with control, ionizing radiation (IR), 10E, and 10E + IR. Cell viability, apoptosis, and cycle were examined using CCK-8 and flow cytometry assays. Protein expression and localization were examined using western blotting and immunofluorescence. Tumor xenograft models were established to evaluate the radiosensitizing effect of 10E in vivo. 10E significantly inhibited cell proliferation and increased their radiosensitivity while reducing level of p-BCRA1, p-DNA-PKs, and 53BP1 involved in the DNA damage repair pathway, indicating that its radiosensitizing activity is closely associated with repressing DNA damage repair. A549 cells showed low level of Nur77 and a low response to IR but 10E-treated A549 cells showed high level of Nur77 indicating that Nur77 is a core radiosensitivity factor and 10E restores the expression of Nur77. Nur77 and Ku80 extranuclear co-localization in the 10E-treated A549 cells suggested that 10E-modulated Nur77 nuclear exportation inhibits DNA damage repair pathways and increases IR-triggered apoptosis. The combination of 10E and IR significantly inhibits tumor growth in a tumor xenograft model. Our findings suggest that 10E acts as a radiosensitizer and that combining 10E with radiotherapy may be a potential strategy for NSCLC treatment.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Mice, Nude , Quinolines , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Humans , Animals , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Quinolines/pharmacology , Quinolines/therapeutic use , Apoptosis/drug effects , Mice , Cell Proliferation/drug effects , Mice, Inbred BALB C , Schiff Bases/pharmacology , Schiff Bases/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Radiation Tolerance/drug effects
6.
Int J Biol Macromol ; 274(Pt 2): 133499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944085

ABSTRACT

Two chitosan Schiff bases were synthesized by condensation of chitosan with 2-(4-formylphenoxy)-N-phenylacetamide and N-(4-bromophenyl)-2-(4-formylphenoxy) acetamide denoted as Cs-SBA and Cs-SBBr, respectively. The molecular structures of the resulting chitosan derivatives were characterized using FTIR and 1HNMR and their thermal properties were investigated by TGA. These derivatives were treated with sodium tripolyphosphate (TPP) to produce Cs Schiff base nanoparticles. The nanoparticles physicochemical properties were determined by FTIR, XRD, TEM, and zeta potential analysis. The antimicrobial action against Helicobacter pylori (H. pylori) was evaluated and the results indicated that the anti-H. pylori activity had minimal inhibitory concentration MIC values of 15.62 ± 0.05 and 3.9 ± 0.03 µg/mL for Cs-SBA and Cs-SBBr nanoparticles (Cs-SBA NPs and Cs-SBBr NPs), respectively. The better biologically active nanoparticles, Cs-SBBr NPs, were tested for their cyclooxygenases (COX-1 and COX-2) inhibitory potential. Cs-SBBr NPs demonstrated COX enzyme inhibition activity against COX-2 (IC50 4.5 ± 0.165 µg/mL) higher than the conventional Indomethacin (IC50 0.08 ± 0.003 µg/mL), and Celecoxib (IC50 0.79 ± 0.029 µg/mL). Additionally, the cytotoxicity test of Cs-SBBr NPs showed cytotoxic effect on Vero cells (CCL-81) with IC50 = 17.95 ± 0.12 µg/mL which is regarded as a safe compound. Therefore, Cs-SBBr NPs may become an alternative to cure H. pylori and prevent gastric cancer.


Subject(s)
Anti-Bacterial Agents , Chitosan , Helicobacter pylori , Nanoparticles , Schiff Bases , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/chemical synthesis , Helicobacter pylori/drug effects , Schiff Bases/chemistry , Schiff Bases/pharmacology , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Vero Cells , Chlorocebus aethiops , Chemistry Techniques, Synthetic , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase 2/metabolism
7.
ACS Chem Neurosci ; 15(13): 2470-2483, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38874606

ABSTRACT

In Alzheimer's disease (AD), reactive oxygen species (ROS) plays a crucial role, which is produced from molecular oxygen with extracellular deposited amyloid-ß (Aß) aggregates through the reduction of a Cu2+ ion. In the presence of a small amount of redox-active Cu2+ ion, ROS is produced by the Aß-Cu2+ complex as Aß peptide alone is unable to generate excess ROS. Therefore, Cu2+ ion chelators are considered promising therapeutics against AD. Here, we have designed and synthesized a series of Schiff base derivatives (SB) based on 2-hydroxy aromatic aldehyde derivatives and dopamine. These SB compounds contain one copper chelating core, which captures the Cu2+ ions from the Aß-Cu2+ complex. Thereby, it inhibits copper-induced amyloid aggregation as well as amyloid self-aggregation. It also inhibits copper-catalyzed ROS production through sequestering of Cu2+ ions. The uniqueness of our designed ligands has the dual property of dopamine, which not only acts as a ROS scavenger but also chelates the copper ion. The crystallographic analysis proves the power of the dopamine unit. Therefore, dual exploration of dopamine core can be considered as potential therapeutics for future AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Chelating Agents , Copper , Dopamine , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Dopamine/metabolism , Copper/metabolism , Copper/chemistry , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Chelating Agents/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry
8.
Dalton Trans ; 53(25): 10571-10591, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38855858

ABSTRACT

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Palladium , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Humans , Palladium/chemistry , Palladium/pharmacology , Cell Proliferation/drug effects , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Cell Line, Tumor , Halogenation , Molecular Structure , Drug Screening Assays, Antitumor , Models, Molecular
9.
Chem Biodivers ; 21(7): e202400569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38770783

ABSTRACT

A new series of isatin-Schiff base linked 1,2,3-triazole hybrids has been synthesized using CuAAC approach from (E)-3-(phenylimino)-1-(prop-2-yn-1-yl)indolin-2-one derivatives in high yield (73-91 %). These synthesized derivatives were characterized using FT-IR, 1H NMR, 13C NMR, 2D-NMR and HRMS spectral techniques. The in vitro antimicrobial activity assay demonstrated that most of the tested hybrids exhibited promising activity. Compound 5 j displayed significant antibacterial efficacy against P. aeruginosa and B. subtilis with MIC value of 0.0062 µmol/mL. While, 5 j also showed better antifungal potency against A. niger with MIC value of 0.0123 µmol/mL. The docking studies of most promising compounds were performed with the well-known antibacterial and antifungal targets i. e. 1KZ1, 5TZ1. Molecular modelling investigations demonstrated that hybrids 5 h and 5 l exhibited good interactions with 1KZN and 5TZ1, with binding energies of -9.6 and -11.0 kcal/mol, respectively. Further, molecular dynamics studies of the compounds showing promising binding interactions were also carried out to study the stability of complexes of these hybrids with both the targets.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Isatin , Microbial Sensitivity Tests , Schiff Bases , Triazoles , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Isatin/chemistry , Isatin/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Aspergillus niger/drug effects , Bacillus subtilis/drug effects , Molecular Docking Simulation , Molecular Structure , Pseudomonas aeruginosa/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug
10.
Chem Biodivers ; 21(8): e202400704, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38781003

ABSTRACT

Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (in vitro). In the series, six compounds 12 (IC50=10.19±0.16 µM), 11 (IC50=15.05±1.11 µM), 10 (IC50=17.01±1.23 µM), 9 (IC50=17.22±0.81 µM), 13 (IC50=19.31±0.18 µM), and 14 (IC50=19.62±0.21 µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24 µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.


Subject(s)
Drug Design , Enzyme Inhibitors , Hydrazones , Molecular Docking Simulation , Schiff Bases , Terfenadine , Urease , Urease/antagonists & inhibitors , Urease/metabolism , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Terfenadine/analogs & derivatives , Terfenadine/chemistry , Terfenadine/metabolism , Terfenadine/pharmacology , Terfenadine/chemical synthesis , Density Functional Theory , Molecular Structure , Structure-Activity Relationship , Canavalia/enzymology
11.
Sci Rep ; 14(1): 12588, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822113

ABSTRACT

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Schiff Bases , Spike Glycoprotein, Coronavirus , Urea , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Humans , COVID-19 Drug Treatment , COVID-19/virology
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124528, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38801789

ABSTRACT

The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , DNA , Ruthenium , Schiff Bases , Serum Albumin, Bovine , Schiff Bases/chemistry , Schiff Bases/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , DNA/metabolism , DNA/chemistry , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Hydrolysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Water/chemistry , Animals , Cell Line, Tumor , Microbial Sensitivity Tests , Solubility , Protein Binding , Molecular Docking Simulation , Bacteria/drug effects
13.
Dalton Trans ; 53(22): 9416-9432, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758025

ABSTRACT

Zinc(II)-complexes with the general formula [Zn(L)2] containing 8-hydroxyquinoline Schiff bases functionalized with 1-(3-aminopropyl)imidazole or 1-(3-aminopropyl)-2-methyl-1H-imidazole on 2-position and their respective ligands (HL1 or HL2) were synthesized and characterized by NMR, UV-Vis, FTIR and CD spectroscopies as well as ESI-MS spectrometry. Single crystals of HL2 and [Zn(L1)2]n were analysed by SC-XRD. [Zn(L1)2]n shows a 1D polymeric chain structure of alternating Zn(II) cations and bridging Schiff base ligands, in contrast to previously reported monomeric structures of analogous complexes. DFT calculations were performed to rationalize the polymeric X-ray structure of Zn(L1)2. Results showed that the ligands can bind as bi- or tridentate to Zn(II) and there is the possibility of a dynamic behavior for the complexes in solution. Both ligands and complexes present limited stability in aqueous media, however, in the presence of bovine serum albumin the complexes are stable. Molecular docking simulations and circular dichroism spectroscopic studies suggest binding to this protein in close proximity to the Trp213 residue. Biological studies on a panel of cancer cells revealed that the Zn(II)-complexes have a lower impact on cell viability than cisplatin, except for triple-negative breast cancer cells in which they were comparable. Notwithstanding, they display much higher selectivity towards cancer cells vs. normal cells, than cisplatin. They induce the generation of ROS and DNA double-strand breaks, primarily through apoptosis as the mode of cell death. Overall, the novel Zn(II)-complexes demonstrate improved induction of apoptosis and higher selectivity, particularly for melanoma cells, compared to previously reported analogues, making them promising candidates for clinical application.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Imidazoles , Schiff Bases , Zinc , Schiff Bases/chemistry , Schiff Bases/pharmacology , Zinc/chemistry , Zinc/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Melanoma/pathology , Melanoma/drug therapy , Density Functional Theory , Apoptosis/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Molecular Structure , Drug Screening Assays, Antitumor , Serum Albumin, Bovine/chemistry
14.
J Biol Inorg Chem ; 29(3): 303-314, 2024 04.
Article in English | MEDLINE | ID: mdl-38727821

ABSTRACT

This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.


Subject(s)
Cell Survival , Indoles , Organosilicon Compounds , Prostatic Neoplasms , Schiff Bases , Singlet Oxygen , Humans , Indoles/chemistry , Indoles/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Male , Singlet Oxygen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Cell Survival/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , PC-3 Cells , Photochemotherapy , Photochemical Processes , Cell Line, Tumor , Molecular Structure
15.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732229

ABSTRACT

Oxidovanadium(V) complexes, [(+)VOL1-5] and [(-)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, UV-Vis, and circular dichroism, as well as elemental analysis, have been used for their detailed characterization. Furthermore, the epoxidation of styrene, cyclohexene, and two monoterpenes, S(‒)-limonene and (‒)-α-pinene, using two oxidants, aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP) in decane, has been studied with catalytic amounts of all complexes. Finally, biological cytotoxicity studies have also been performed with these oxidovanadium(V) compounds for comparison with cis-dioxidomolybdenum(VI) Schiff base complexes with the same chiral ligands, as well as to determine the cytoprotection against the oxidative damage caused by 30% H2O2 in the HT-22 hippocampal neuronal cells in the range of their 10-100 µM concentration.


Subject(s)
Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Catalysis , Stereoisomerism , Animals , Vanadium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Oxidative Stress/drug effects , Mice , Humans
16.
Sci Rep ; 14(1): 11410, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762658

ABSTRACT

A series of novel Schiff base derivatives (1-28) of 3,4-dihydroxyphenylacetic acid were synthesized in a multi-step reaction. All the synthesized Schiff bases were obtained in high yields and their structures were determined by 1HNMR, 13CNMR, and HR-ESI-MS spectroscopy. Except for compounds 22, 26, 27, and 28, all derivatives show excellent to moderate α-glucosidase inhibition. Compounds 5 (IC50 = 12.84 ± 0.52 µM), 4 (IC50 = 13.64 ± 0.58 µM), 12 (IC50 = 15.73 ± 0.71 µM), 13 (IC50 = 16.62 ± 0.47 µM), 15 (IC50 = 17.40 ± 0.74 µM), 3 (IC50 = 18.45 ± 1.21 µM), 7 (IC50 = 19.68 ± 0.82 µM), and 2 (IC50 = 20.35 ± 1.27 µM) shows outstanding inhibition as compared to standard acarbose (IC50 = 873.34 ± 1.67 µM). Furthermore, a docking study was performed to find out the interaction between the enzyme and the most active compounds. With this research work, 3,4-dihydroxyphenylacetic acid Schiff base derivatives have been introduced as a potential class of α-glucosidase inhibitors that have remained elusive till now.


Subject(s)
3,4-Dihydroxyphenylacetic Acid , Drug Design , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Schiff Bases , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/chemistry , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Structure-Activity Relationship
17.
Carbohydr Polym ; 337: 122135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710549

ABSTRACT

The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.


Subject(s)
Chitosan , Hemostatics , Hydrogels , Polylysine , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Polylysine/chemistry , Polylysine/pharmacology , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Rats
18.
Arch Pharm (Weinheim) ; 357(7): e2300266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593306

ABSTRACT

This study reports a rapid and efficient synthesis of four novel aryl Schiff base derivatives. Biological activity and molecular modeling studies were conducted to evaluate the inhibitory effects of these compounds on human carbonic anhydrases (hCA) and cholinesterases. The results indicate that the triazole-ring-containing compounds have strong inhibitory effects on hCA I, hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) targets. Besides comparing the Schiff bases synthesized in our study to reference molecules, we conducted in silico investigations to examine how these compounds interact with their targets. Our studies revealed that these compounds can occupy binding sites and establish interactions with crucial residues, thus inhibiting the functions of the targets. These findings have significant implications as they can be utilized to develop more potent compounds for treating the diseases that these target proteins play crucial roles in or to obtain drug precursors with enhanced efficacy.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Carbonic Anhydrase II , Carbonic Anhydrase I , Carbonic Anhydrase Inhibitors , Cholinesterase Inhibitors , Schiff Bases , Schiff Bases/pharmacology , Schiff Bases/chemistry , Schiff Bases/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Humans , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Computer Simulation , Dose-Response Relationship, Drug , Models, Molecular
19.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593587

ABSTRACT

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
20.
Int J Biol Macromol ; 267(Pt 2): 131635, 2024 May.
Article in English | MEDLINE | ID: mdl-38641269

ABSTRACT

New quaternized salicylidene chitosan Schiff bases (QSCSBs) and their N-octyl derivatives (OQCs) have been synthesized and characterized, aiming to develop innovative antimicrobial and anti-biofilm agents. This research holds immense potential, as these compounds could be utilized as anti-biofouling additives in membrane technology in the future. The synthesis involved the modification of low molecular-weight-chitosan (LMC) through simultaneous Schiff base formation and quaternization processes to create QSCSBs. Subsequently, QSCSBs were catalytically reduced to form quaternized N-benzyl chitosan (QBCs) intermediates, which then underwent nucleophilic substitution reactions affording N-octyl quaternized chitosans (OQCs). Characterization techniques such as elemental, spectral, and microscopic analyses were used to confirm the successful synthesis of these materials. As membrane technology relies on surface charge, QSCSBs and OQCs with large zeta potentials could be used as positively charged additives. Moreover, SEM image revealed the regular distribution of pores and voids across the additives' surfaces raises intriguing questions about their implications for membrane performance. Meanwhile, the superior antibacterial and antibiofilm potential of these materials, particularly QSCSB2 and OQC2, indicate that the utilization of these compounds as anti-biofouling additives in membrane technology could significantly improve the performance and longevity of membranes used in various applications such as water treatment and desalination.


Subject(s)
Anti-Infective Agents , Biofilms , Chitosan , Membranes, Artificial , Schiff Bases , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Chitosan/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Biofilms/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL