Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.673
2.
JAMA Netw Open ; 7(5): e2410684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38722627

Importance: In vivo imaging studies of reactive astrocytes are crucial for understanding the pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and neuroinflammation. Objective: To investigate in vivo reactive astrocytes in patients with schizophrenia associated with positive symptoms using monoamine oxidase B (MAO-B)-binding fluorine 18 ([18F])-labeled THK5351 positron emission tomography (PET). Design, Setting, and Participants: In this case-control study, data were collected from October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched healthy control individuals. Main Outcomes and Measures: Standardized uptake value ratios (SUVrs) of [18F]THK5351 in the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and Negative Syndrome Scale (PANSS) positive symptom scores. Results: A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F = 5.767 [false discovery rate (FDR)-corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group differences between the groups in the SUVrs were found in the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia. Conclusions and Relevance: This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive symptoms.


Astrocytes , Fluorine Radioisotopes , Positron-Emission Tomography , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Male , Female , Adult , Astrocytes/metabolism , Case-Control Studies , Positron-Emission Tomography/methods , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging
3.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727298

The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.


Clozapine , Mitochondria , Humans , Clozapine/pharmacology , Clozapine/analogs & derivatives , Mitochondria/metabolism , Mitochondria/drug effects , HL-60 Cells , Antipsychotic Agents/pharmacology , Apoptosis/drug effects , Adenosine Triphosphate/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/pathology , Leukocytes/drug effects , Leukocytes/metabolism , Endoplasmic Reticulum Stress/drug effects , Cellular Reprogramming/drug effects , Metabolic Reprogramming
4.
BMC Res Notes ; 17(1): 143, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773625

OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8  ×  60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.


Cerebral Cortex , Disease Models, Animal , Hippocampus , Schizophrenia , Thalamus , Transcriptome , Animals , Schizophrenia/genetics , Schizophrenia/metabolism , Hippocampus/metabolism , Male , Female , Mice , Transcriptome/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Thalamus/metabolism , Mice, Transgenic , Gene Expression Profiling/methods , Sex Factors
5.
Nat Commun ; 15(1): 3980, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730231

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Caudate Nucleus , Dorsolateral Prefrontal Cortex , Hippocampus , Quantitative Trait Loci , Schizophrenia , Sex Characteristics , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Female , Male , Hippocampus/metabolism , Caudate Nucleus/metabolism , Dorsolateral Prefrontal Cortex/metabolism , Adult , Transcriptome , Gene Expression Profiling , Sex Factors , Chromosomes, Human, X/genetics , Prefrontal Cortex/metabolism
6.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781336

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Brain , Single-Cell Analysis , Transcriptome , Humans , Brain/metabolism , Single-Cell Analysis/methods , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Gene Expression Profiling/methods , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Genome-Wide Association Study/methods , Sequence Analysis, RNA/methods , Adult
7.
Biomed Pharmacother ; 175: 116747, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744217

Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.


Histones , Schizophrenia , Schizophrenia/metabolism , Schizophrenia/genetics , Humans , Histones/metabolism , Animals , Epigenesis, Genetic , Protein Processing, Post-Translational , Acetylation , Methylation , Phosphorylation , Chromatin Assembly and Disassembly
8.
Sci Transl Med ; 16(749): eadh9974, 2024 May 29.
Article En | MEDLINE | ID: mdl-38781321

Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.


Autopsy , Brain , Mental Disorders , Sex Characteristics , Transcriptome , Humans , Female , Male , Transcriptome/genetics , Brain/metabolism , Brain/pathology , Mental Disorders/genetics , Mental Disorders/pathology , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Gene Expression Profiling , Genome-Wide Association Study , Adult , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Gene Regulatory Networks , Middle Aged
9.
Nat Commun ; 15(1): 4307, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811567

G protein-coupled receptors (GPCRs) are sophisticated signaling machines able to simultaneously elicit multiple intracellular signaling pathways upon activation. Complete (in)activation of all pathways can be counterproductive for specific therapeutic applications. This is the case for the serotonin 2 A receptor (5-HT2AR), a prominent target for the treatment of schizophrenia. In this study, we elucidate the complex 5-HT2AR coupling signature in response to different signaling probes, and its physiological consequences by combining computational modeling, in vitro and in vivo experiments with human postmortem brain studies. We show how chemical modification of the endogenous agonist serotonin dramatically impacts the G protein coupling profile of the 5-HT2AR and the associated behavioral responses. Importantly, among these responses, we demonstrate that memory deficits are regulated by Gαq protein activation, whereas psychosis-related behavior is modulated through Gαi1 stimulation. These findings emphasize the complexity of GPCR pharmacology and physiology and open the path to designing improved therapeutics for the treatment of stchizophrenia.


Memory Disorders , Psychotic Disorders , Receptor, Serotonin, 5-HT2A , Serotonin , Animals , Female , Humans , Male , Mice , Brain/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , HEK293 Cells , Memory Disorders/metabolism , Psychotic Disorders/metabolism , Psychotic Disorders/drug therapy , Receptor, Serotonin, 5-HT2A/metabolism , Schizophrenia/metabolism , Serotonin/metabolism , Signal Transduction
10.
Elife ; 122024 Apr 22.
Article En | MEDLINE | ID: mdl-38648100

Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.


Antipsychotic Agents , Epigenesis, Genetic , Frontal Lobe , Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/drug therapy , Schizophrenia/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Frontal Lobe/metabolism , Frontal Lobe/drug effects , Male , Female , Middle Aged , Adult , Epigenomics , Aged , Histones/metabolism
11.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674040

Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.


Aging , Oligodendroglia , Schizophrenia , Humans , Schizophrenia/metabolism , Schizophrenia/pathology , Schizophrenia/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Aging/metabolism , Animals , Genomics/methods , White Matter/metabolism , White Matter/pathology , Myelin Sheath/metabolism , Brain/metabolism , Brain/pathology
12.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38629703

The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.


Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/pharmacology , Humans , Animals , Schizophrenia/drug therapy , Schizophrenia/metabolism , Islands of Calleja/drug effects , Islands of Calleja/metabolism , Neurogenesis/drug effects
13.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688917

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Corpus Striatum , Dopamine , Schizophrenia , Humans , Dopamine/metabolism , Dopamine/biosynthesis , Schizophrenia/genetics , Schizophrenia/metabolism , Male , Female , Corpus Striatum/metabolism , Adult , Caudate Nucleus/metabolism , Signal Transduction , Middle Aged , Hippocampus/metabolism , Multifactorial Inheritance , Genetic Predisposition to Disease , Dorsolateral Prefrontal Cortex/metabolism , Reward
14.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Article En | MEDLINE | ID: mdl-38592583

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Brain-Derived Neurotrophic Factor , Lung Neoplasms , Mice, Knockout , Receptor, trkB , Receptors, Tumor Necrosis Factor, Type II , Schizophrenia , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Humans , Mice , Schizophrenia/metabolism , Schizophrenia/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptor, trkB/metabolism , Receptor, trkB/genetics , A549 Cells , Male , Behavior, Animal/drug effects , Cell Proliferation/drug effects , Mice, Inbred C57BL , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
15.
Bioorg Med Chem ; 105: 117728, 2024 May 01.
Article En | MEDLINE | ID: mdl-38640587

Muscarinic acetylcholine receptors (mAChRs) play a significant role in the pathophysiology of schizophrenia. Although activating mAChRs holds potential in addressing the full range of schizophrenia symptoms, clinical application of many non-selective mAChR agonists in cognitive deficits, positive and negative symptoms is hindered by peripheral side effects (gastrointestinal disturbances and cardiovascular effects) and dosage restrictions. Ligands binding to the allosteric sites of mAChRs, particularly the M1 and M4 subtypes, demonstrate activity in improving cognitive function and amelioration of positive and negative symptoms associated with schizophrenia, enhancing our understanding of schizophrenia. The article aims to critically examine current design concepts and clinical advancements in synthesizing and designing small molecules targeting M1/M4, providing theoretical insights and empirical support for future research in this field.


Antipsychotic Agents , Receptor, Muscarinic M1 , Schizophrenia , Antipsychotic Agents/pharmacology , Antipsychotic Agents/chemistry , Antipsychotic Agents/therapeutic use , Molecular Structure , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M4/metabolism , Receptor, Muscarinic M4/antagonists & inhibitors , Schizophrenia/drug therapy , Schizophrenia/metabolism
16.
J Psychiatr Res ; 174: 84-93, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626565

Schizophrenia (SCZ) represents a set of enduring mental illnesses whose underlying etiology remains elusive, posing a significant challenge to public health. Previous studies have shown that the neurodevelopmental process involving small molecules such as miRNA and mRNA is one of the etiological hypotheses of SCZ. We identified and verified that miR-30e-3p and ABI1 can be used as biomarkers in peripheral blood transcriptome sequencing data of patients with SCZ, and confirmed the regulatory relationship between them. To further explore their involvement, we employed retinoic acid (RA)-treated SH-SY5Y differentiated cells as a model system. Our findings indicate that in RA-induced SH-SY5Y cells, ABI1 expression is up-regulated, while miR-30e-3p expression is down-regulated. Functionally, both miR-30e-3p down-regulation and ABI1 up-regulation promote apoptosis and inhibit the proliferation of SH-SY5Y cells. Subsequently, the immunofluorescence assay detected the expression location and abundance of the neuron-specific protein ß-tubulinIII. The expression levels of neuronal marker genes MAPT, TUBB3 and SYP were detected by RT-qPCR. We observed that these changes of miR-30e-3p and ABI1 inhibit the neurite growth of SH-SY5Y cells. Rescue experiments further support that ABI1 silencing can correct miR-30e-3p down-regulation-induced SH-SY5Y neurodevelopmental defects. Collectively, our results establish that miR-30e-3p's regulation of neurite development in SH-SY5Y cells is mediated through ABI1, highlighting a potential mechanism in SCZ pathogenesis.


Biomarkers , MicroRNAs , Schizophrenia , Humans , MicroRNAs/blood , MicroRNAs/genetics , Schizophrenia/blood , Schizophrenia/metabolism , Cell Line, Tumor , Biomarkers/blood , Biomarkers/metabolism , Neurites/drug effects , Tretinoin/pharmacology , Tubulin/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Neuroblastoma
17.
Schizophr Res ; 267: 451-461, 2024 May.
Article En | MEDLINE | ID: mdl-38643726

The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-ß. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.


Disease Models, Animal , Methylazoxymethanol Acetate , Schizophrenia , Sex Characteristics , Animals , Methylazoxymethanol Acetate/pharmacology , Schizophrenia/physiopathology , Schizophrenia/chemically induced , Schizophrenia/metabolism , Female , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Thalamus/drug effects , Thalamus/physiopathology , Thalamus/metabolism , Phosphorylation/drug effects , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/pathology , Rats, Sprague-Dawley
18.
Neuropharmacology ; 254: 109970, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38685343

Pharmacological approaches to induce N-methyl-d-aspartate receptor (NMDAR) hypofunction have been intensively used to understand the aetiology and pathophysiology of schizophrenia. Yet, the precise cellular and molecular mechanisms that relate to brain network dysfunction remain largely unknown. Here, we used a set of complementary approaches to assess the functional network abnormalities present in male mice that underwent a 7-day subchronic phencyclidine (PCP 10 mg/kg, subcutaneously, once daily) treatment. Our data revealed that pharmacological intervention with PCP affected cognitive performance and auditory evoked gamma oscillations in the prefrontal cortex (PFC) mimicking endophenotypes of some schizophrenia patients. We further assessed PFC cellular function and identified altered neuronal intrinsic membrane properties, reduced parvalbumin (PV) immunostaining and diminished inhibition onto L5 PFC pyramidal cells. A decrease in the strength of optogenetically-evoked glutamatergic current at the ventral hippocampus to PFC synapse was also demonstrated, along with a weaker shunt of excitatory transmission by local PFC interneurons. On a macrocircuit level, functional ultrasound measurements indicated compromised functional connectivity within several brain regions particularly involving PFC and frontostriatal circuits. Herein, we reproduced a panel of schizophrenia endophenotypes induced by subchronic PCP application in mice. We further recapitulated electrophysiological signatures associated with schizophrenia and provided an anatomical reference to critical elements in the brain circuitry. Together, our findings contribute to a better understanding of the physiological underpinnings of deficits induced by subchronic NMDAR antagonist regimes and provide a test system for characterization of pharmacological compounds.


Disease Models, Animal , Phencyclidine , Prefrontal Cortex , Receptors, N-Methyl-D-Aspartate , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Male , Phencyclidine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Schizophrenia/chemically induced , Schizophrenia/physiopathology , Schizophrenia/metabolism , Mice, Inbred C57BL , Parvalbumins/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Gamma Rhythm/drug effects , Gamma Rhythm/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Excitatory Amino Acid Antagonists/pharmacology
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674063

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


3' Untranslated Regions , Glial Cell Line-Derived Neurotrophic Factor , MicroRNAs , Polymorphism, Single Nucleotide , Schizophrenia , Adult , Female , Humans , Male , Middle Aged , Alleles , Binding Sites , Case-Control Studies , Gene Expression Regulation , Genetic Predisposition to Disease , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , HEK293 Cells , MicroRNAs/genetics , Schizophrenia/genetics , Schizophrenia/metabolism
20.
Psychoneuroendocrinology ; 165: 107049, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657340

BACKGROUND: Past studies on schizophrenia (SCZ) and the stress-sensitive neuroendocrine systems have mostly focused on a single system and traditionally utilized acute biomarkers (e.g., biomarkers from blood, urine and saliva) that poorly match the chronic course of schizophrenia in time span. Using eight biomarkers in hair, this study aimed to explore the functional characteristics of SCZ patients in the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes and the interaction between the two axes. METHODS: Hair samples were taken from 137 SCZ patients and 73 controls. The SCZ patients were diagnosed by their attending physician according to the Diagnostic and Statistical Manual of Mental Disorders IV and were clinically stable after treatment. Gender, age, BMI, frequency of hair washing, marital status, education level, family history of mental illness and clozapine dosage were concurrently collected as covariates. The 10-item perceived stress scale (PSS-10) and the social readjustment rating scale were used to assess chronic stress status in SCZ patients. Eight hair biomarkers, cortisol, cortisone, dehydroepiandrosterone (DHEA), testosterone, progesterone, cortisol/cortisone, cortisol/DHEA and cortisol/testosterone, were measured by high performance liquid chromatography tandem mass spectrometer. Among them, cortisol, cortisone, DHEA and cortisol/DHEA reflected the functional activity of the HPA axis, and testosterone and progesterone reflected the functional activity of the HPG axis, and cortisol/cortisone reflected the activity of 11ß-hydroxysteroid dehydrogenase types 2 (11ß-HSD 2), and cortisol/testosterone reflected the HPA-HPG interaction. RESULTS: SCZ patients showed significantly higher cortisone and cortisol/testosterone than controls (p<0.001, η²p=0.180 and p=0.015, η²p=0.031), lower testosterone (p=0.009, η²p=0.034), progesterone (p<0.001, η²p=0.069) and cortisol/cortisone (p=0.001, η²p=0.054). There were significant intergroup differences in male and female progesterone (p=0.003, η²p=0.088 and p=0.030, η²p=0.049) and female testosterone (p=0.028, η²p=0.051). In SCZ patients, cortisol, cortisol/cortisone, cortisol/DHEA and cortisol/testosterone were positively associated with PSS-10 score (ps<0.05, 0.212

Biomarkers , Cortisone , Dehydroepiandrosterone , Hair , Hydrocortisone , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Schizophrenia , Stress, Psychological , Testosterone , Humans , Female , Male , Hypothalamo-Hypophyseal System/metabolism , Schizophrenia/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Hair/chemistry , Hair/metabolism , Biomarkers/metabolism , Adult , Hydrocortisone/metabolism , Hydrocortisone/analysis , Cortisone/metabolism , Cortisone/analysis , Testosterone/metabolism , Testosterone/analysis , Dehydroepiandrosterone/metabolism , Dehydroepiandrosterone/analysis , Stress, Psychological/metabolism , Middle Aged , Progesterone/metabolism , Progesterone/analysis , Case-Control Studies
...