Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.974
Filter
1.
J Food Sci ; 89(7): 4403-4418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957090

ABSTRACT

The improper storage of seeds can potentially compromise agricultural productivity, leading to reduced crop yields. Therefore, assessing seed viability before sowing is of paramount importance. Although numerous techniques exist for evaluating seed conditions, this research leveraged hyperspectral imaging (HSI) technology as an innovative, rapid, clean, and precise nondestructive testing method. The study aimed to determine the most effective classification model for watermelon seeds. Initially, purchased watermelon seeds were segregated into two groups: One underwent sterilization in a dehydrator machine at 40°C for 36 h, whereas the other batch was stored under favorable conditions. Watermelon seeds' spectral images were captured using an HSI with a charge-coupled device camera ranging from 400 to 1000 nm, and the segmented regions of all samples were measured. Preprocessing techniques and wavelength selection methods were applied to manage spectral data workload, followed by the implementation of a support vector machine (SVM) model. The initial hybrid-SVM model achieved a predictive accuracy rate of 100%, with a test set accuracy of 92.33%. Subsequently, an artificial bee colony (ABC) optimization was introduced to enhance model precision. The results indicated that, with kernel parameters (c, g) set at 13.17 and 0.01, respectively, and a runtime of 4.19328 s, the training and evaluation of the dataset achieved an accuracy rate of 100%. Hence, it was practical to utilize HSI technology combined with the PCA-ABC-SVM model to detect different watermelon seeds. As a result, these findings introduce a novel technique for accurately forecasting seed viability, intended for use in agricultural industrial multispectral imaging. PRACTICAL APPLICATION: The traditional methods for determining the condition of seeds primarily emphasize aesthetics, rely on subjective assessment, are time-consuming, and require a lot of labor. On the other hand, HSI technology as green technology was employed to alleviate the aforementioned problems. This work significantly contributes to the field of industrial multispectral imaging by enhancing the capacity to discern various types of seeds and agricultural crop products.


Subject(s)
Citrullus , Hyperspectral Imaging , Machine Learning , Seeds , Spectroscopy, Near-Infrared , Citrullus/chemistry , Seeds/chemistry , Hyperspectral Imaging/methods , Spectroscopy, Near-Infrared/methods , Support Vector Machine , Algorithms
2.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952166

ABSTRACT

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Subject(s)
Ocimum basilicum , Plant Mucilage , Rheology , Seeds , Ocimum basilicum/chemistry , Seeds/chemistry , Plant Mucilage/chemistry , Animals , Milk/chemistry , Viscosity , Deglutition Disorders , Malus/chemistry , Fruit and Vegetable Juices/analysis , Humans , Water , Powders , Lubrication
3.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872006

ABSTRACT

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Subject(s)
Apoptosis , Colonic Neoplasms , Glycogen Synthase Kinase 3 beta , Harmine , Peganum , Seeds , Humans , Peganum/chemistry , HCT116 Cells , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Seeds/chemistry , Harmine/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alkaloids/pharmacology , Harmaline/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Proliferation/drug effects
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124578, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833887

ABSTRACT

It is an important thing to identify internal crack in seeds from normal seeds for evaluating the quality of rice seeds (Oryza sativa L.). In this study, non-destructive discrimination of internal crack in rice seeds using near infrared spectroscopy and chemometrics is proposed. Principal component analysis (PCA) was used to analyze the rice seeds spectra. Four supervised classification techniques(partial least squares discriminate analysis (PLS-DA), support vector machines (SVM), k-nearest neighbors (KNN) and random forest (RF)) with four different pre-processing techniques (standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative with Savitzky-Golay (SG) smoothing) were applied. The best results (Sn = 0.8824, Sp = 0.9429, Acc = 0.913) were achieved by PLS-DA with the raw spectral data. The performance of the best SVM model was inferior to that of PLS-DA, but superior to that of RF and KNN. Except for PLS-DA, four different preprocessing techniques were improved the performance of the developed models. The important variables for discriminating internal cracks in rice seeds were related to the amylose. Overall, the all results demonstrated the feasibility of non-destructive discrimination of internal crack for rice seeds (Oryza sativa L.) using near infrared spectroscopy and chemometrics.


Subject(s)
Oryza , Principal Component Analysis , Seeds , Spectroscopy, Near-Infrared , Support Vector Machine , Oryza/chemistry , Spectroscopy, Near-Infrared/methods , Seeds/chemistry , Least-Squares Analysis , Discriminant Analysis
5.
Bioresour Technol ; 405: 130935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851598

ABSTRACT

This study investigated the potential of using biochar and Moringa oleifera seed proteins for sustainable greywater treatment in rural Kenya. Greywater samples from washing clothes were collected from households in the Kenyan counties of Kwale and Siaya. Two treatment methods, batch stirring and filtration, were used to assess the effectiveness of using biochar and Moringa oleifera seed protein extract together to treat greywater at a household level. Both methods achieved a significant reduction in contaminants: colour was reduced by up to 43% in Kwale and 67% in Siaya, turbidity decreased by 91-98%, and surfactant levels were lowered by 89-93%. There were increases in total organic carbon and total dissolved solids post-treatment, but both methods effectively reduced levels of phosphates, nitrates and iron. This research highlights the potential of using locally available materials for greywater treatment and provides insights into sustainable water management nature-based solutions in the Global South.


Subject(s)
Charcoal , Moringa oleifera , Plant Proteins , Seeds , Water Purification , Charcoal/chemistry , Moringa oleifera/chemistry , Seeds/chemistry , Water Purification/methods , Farms , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Filtration
6.
Environ Geochem Health ; 46(7): 257, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884845

ABSTRACT

Gold nanoparticles (AuNPs) were extensively employed for in-situ detection sulfadiazine (SDZ) residues, yet current synthesis methods suffer from complex procedures, reagent pollution of the environment, and low particle quality. This study presents a novel synthesis method using discarded longan seed extract as a reducing agent to synthesized high-quality AuNPs, and then can be used for in-situ SDZ detection. Response surface methodology (RSM) was employed to optimize synthesis parameters, which resulted in five optimal combinations that enhanced the flexibility of synthesis. These AuNPs, ranging in size from 18.26 nm to 33.8 nm with zeta potentials from - 29.5 mV to - 14.3 mV, were successfully loaded with functional groups from longan seed extract. In the detection of SDZ, the colorimetric aptasensor demonstrated excellent sensitivity and selectivity over other antibiotics with a limit of detection and quantification at 70.98 ng·mL-1 and 236.59 ng·mL-1 in the concentration range of 200-800 ng·mL-1. Recoveries of spiked SDZ samples ranged from 97.90% to 106.7%, with RSD values below 9.25%. Meanwhile, the aptasensor exhibited exceptional diagnostic efficacy (AUC: 0.976) compared to UV absorption methods in the ROC evaluation. In conclusion, this study highlights the potential of using AuNPs synthesized from longan seed extract coupled with aptamer technology as a straightforward detection method for SDZ in river water, offering promising applications in environmental monitoring.


Subject(s)
Aptamers, Nucleotide , Colorimetry , Gold , Metal Nanoparticles , Plant Extracts , Rivers , Seeds , Sulfadiazine , Water Pollutants, Chemical , Gold/chemistry , Metal Nanoparticles/chemistry , Seeds/chemistry , Colorimetry/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Plant Extracts/chemistry , Sulfadiazine/analysis , Aptamers, Nucleotide/chemistry , Limit of Detection , Biosensing Techniques/methods
7.
Toxicon ; 245: 107787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844000

ABSTRACT

PURPOSE: Medicines derived from natural sources have been used for thousands of years throughout the world. Because natural compounds are thought to have less toxic effects and fewer side effects, these products are becoming more popular by the day. CASE REPORT: In this case report, we presented a case of acute kidney injury, rhabdomyolysis, and hepatotoxicity after ingestion of black seed oil. Although black seed oil is widely used around the world, there is currently limited knowledge on its adverse effects. CONCLUSION: It is important to keep in mind that rhabdomyolysis, acute renal damage, and hepatotoxicity might occur following the use of black seed oil. Black seed oil ingestion should be considered when making a differential diagnosis for these conditions in patients suspected of taking herbal products.


Subject(s)
Acute Kidney Injury , Plant Oils , Rhabdomyolysis , Rhabdomyolysis/chemically induced , Humans , Acute Kidney Injury/chemically induced , Plant Oils/adverse effects , Male , Adult , Seeds/chemistry , Chemical and Drug Induced Liver Injury/etiology
8.
PLoS One ; 19(6): e0304021, 2024.
Article in English | MEDLINE | ID: mdl-38875282

ABSTRACT

Milk thistle seed oil is still not a well-known edible oil. Silybum marianum (milk thistle), is present in several countries and is the only known representative of the genus Silybum. However, Silybum eburneum, which is an endemic plant in Spain, Kenya, Morocco, Algeria, and Tunisia, is considered a marginalized species. The present work is the first report that gives information on the lipid and phenolic profiles of Tunisian S. eburneum seed oil compared to those of Tunisian S. marianum seed oil. In addition, the antioxidant properties of these oils were determined with DPPH, FRAP, and KRL assays, and their ability to prevent oxidative stress was determined on human monocytic THP-1 cells. These oils are characterized by high amounts of unsaturated fatty acids; linoleic acid and oleic acid are the most abundant. Campesterol, sitosterol, stigmasterol, and ß-amyrin were the major phytosterols identified. α-tocopherol was the predominant tocopherol found. These oils also contain significant amounts of phenolic compounds. The diversity and richness of Silybum marianum and Silybum eburneum seed oils in unsaturated fatty acids, phenolic compounds, and tocopherols are associated with high antioxidant activities revealed by the DPPH, FRAP, and KRL assays. In addition, on THP-1 cells, these oils powerfully reduced the oxidative stress induced by 7-ketocholesterol and 7ß-hydroxycholesterol, two strongly pro-oxidant oxysterols often present at increased levels in patients with age-related diseases. Silybum marianum and Silybum eburneum seed oils are therefore important sources of bioactive molecules with nutritional interest that prevent age-related diseases, the frequency of which is increasing in all countries due to the length of life expectancy.


Subject(s)
Antioxidants , Phytosterols , Plant Oils , Seeds , Silybum marianum , Silybum marianum/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/analysis , Seeds/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Phytosterols/analysis , Phytochemicals/analysis , Phytochemicals/chemistry , Oxidative Stress/drug effects , THP-1 Cells
9.
Molecules ; 29(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893498

ABSTRACT

Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.


Subject(s)
Polysaccharides , Rheology , Seeds , Starch , Tamarindus , Temperature , Tamarindus/chemistry , Polysaccharides/chemistry , Seeds/chemistry , Viscosity , Starch/chemistry , Chemical Phenomena
10.
Adv Food Nutr Res ; 110: 275-325, 2024.
Article in English | MEDLINE | ID: mdl-38906589

ABSTRACT

Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.


Subject(s)
Cannabis , Peptides , Plant Proteins , Seeds , Cannabis/chemistry , Seeds/chemistry , Plant Proteins/chemistry , Peptides/chemistry , Humans , Nutritive Value
11.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902620

ABSTRACT

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Subject(s)
Anti-Infective Agents , Anti-Inflammatory Agents , Nigella sativa , Plant Extracts , Seeds , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Ferric Compounds/chemistry , Green Chemistry Technology
12.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891825

ABSTRACT

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Subject(s)
Anthocyanins , Mutation , Phaseolus , Polyphenols , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/chemistry , Phaseolus/genetics , Phaseolus/metabolism , Polyphenols/biosynthesis , Anthocyanins/biosynthesis , Flavonoids/biosynthesis , Flavonoids/metabolism , Genotype , Hydroxybenzoates/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
13.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891841

ABSTRACT

Ailanthus altissima, an invasive plant species, exhibits pharmacological properties, but also some allergic effects on humans. This study aimed to evaluate the potential toxicity of A. altissima leaves, using a complex approach towards different organisms. The ecotoxic impact of a crude extract was investigated on seeds germination and brine shrimp lethality. Cytotoxicity was studied in vitro using non-target (haemolysis, liposomal model, fibroblast), and target (cancer cells) assays. Leaf extract at 1000 µg/mL significantly inhibited wheat and tomato germination, while no significant effects were found on parsley germination. A slight stimulatory effect on wheat and tomato germination was found at 125 µg/mL. In a brine shrimp-test, the extract showed a low toxicity at 24 h post-exposure (LC50 = 951.04 ± 28.26 µg/mL), the toxic effects increasing with the exposure time and extract concentration. Leaf extract caused low hematotoxicity. The extract was biocompatible with human gingival fibroblasts. No anti-proliferative effect was found within the concentration range of 10-500 µg/mL on malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2). In a liposomal model-test, the extract proved to possess low capability to alter the eukaryotic cell-mimicking membranes within the tested concentration range. Given the low to moderate toxicity on tested organisms/cells, the A. altissima autumn leaves may find useful applications.


Subject(s)
Ailanthus , Artemia , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ailanthus/chemistry , Animals , Plant Leaves/chemistry , Humans , Artemia/drug effects , Germination/drug effects , Hep G2 Cells , Seeds/chemistry , Fibroblasts/drug effects , Cell Line, Tumor
14.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891918

ABSTRACT

Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.


Subject(s)
Cannabis , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Peptides , Seeds , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Cannabis/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Peptides/chemistry , Humans , Plant Proteins/chemistry , Hydrolysis , Seed Storage Proteins/chemistry , Computational Biology/methods
15.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892535

ABSTRACT

Rice bean [Vigna umbellata (Thunb.) Ohwi and Ohashi], an annual legume in the genus Vigna, is a promising crop suitable for cultivation in a changing climate to ensure food security. It is also a medicinal plant widely used in traditional Chinese medicine; however, little is known about the medicinal compounds in rice bean. In this study, we assessed the diuretic effect of rice bean extracts on mice as well as its relationship with the contents of eight secondary metabolites in seeds. Mice gavaged with rice bean extracts from yellow and black seeds had higher urinary output (5.44-5.47 g) and water intake (5.8-6.3 g) values than mice gavaged with rice bean extracts from red seeds. Correlation analyses revealed significant negative correlations between urine output and gallic acid (R = -0.70) and genistein (R = -0.75) concentrations, suggesting that these two polyphenols negatively regulate diuresis. There were no obvious relationships between mice diuresis-related indices (urine output, water intake, and weight loss) and rutin or catechin contents, although the concentrations of both of these polyphenols in rice bean seeds were higher than the concentrations of the other six secondary metabolites. Our study findings may be useful for future research on the diuretic effects of rice bean, but they should be confirmed on the basis of systematic medical trials.


Subject(s)
Diuretics , Polyphenols , Seeds , Animals , Mice , Diuretics/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Male , Plant Extracts/pharmacology , Vigna/chemistry , Gallic Acid/pharmacology , Genistein/pharmacology , Catechin/pharmacology , Catechin/analysis , Rutin/pharmacology , Rutin/analysis , Diuresis/drug effects
16.
Drug Des Devel Ther ; 18: 1917-1932, 2024.
Article in English | MEDLINE | ID: mdl-38828022

ABSTRACT

The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.


Subject(s)
Anti-Bacterial Agents , Biofilms , Dental Caries , Nigella sativa , Phytochemicals , Seeds , Biofilms/drug effects , Nigella sativa/chemistry , Seeds/chemistry , Dental Caries/microbiology , Dental Caries/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Microbial Sensitivity Tests , Structure-Activity Relationship
17.
Theor Appl Genet ; 137(7): 148, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836887

ABSTRACT

KEY MESSAGE: Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.


Subject(s)
Alleles , Chromosome Mapping , Iron , Phenotype , Quantitative Trait Loci , Triticum , Zinc , Triticum/genetics , Zinc/metabolism , Iron/metabolism , Edible Grain/genetics , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/chemistry , Genotype
18.
Theor Appl Genet ; 137(7): 155, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858311

ABSTRACT

White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.


Subject(s)
Alkaloids , Disease Resistance , Lupinus , Phenotype , Plant Diseases , Polymorphism, Single Nucleotide , Seeds , Lupinus/genetics , Lupinus/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Seeds/genetics , Seeds/chemistry , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Quantitative Trait Loci , Plant Breeding , Genetic Association Studies
19.
Sci Rep ; 14(1): 13342, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858425

ABSTRACT

Yemeni smallholder coffee farmers face several challenges, including the ongoing civil conflict, limited rainfall levels for irrigation, and a lack of post-harvest processing infrastructure. Decades of political instability have affected the quality, accessibility, and reputation of Yemeni coffee beans. Despite these challenges, Yemeni coffee is highly valued for its unique flavor profile and is considered one of the most valuable coffees in the world. Due to its exclusive nature and perceived value, it is also a prime target for food fraud and adulteration. This is the first study to identify the potential of Near Infrared Spectroscopy and chemometrics-more specifically, the discriminant analysis (PCA-LDA)-as a promising, fast, and cost-effective tool for the traceability of Yemeni coffee and sustainability of the Yemeni coffee sector. The NIR spectral signatures of whole green coffee beans from Yemeni regions (n = 124; Al Mahwit, Dhamar, Ibb, Sa'dah, and Sana'a) and other origins (n = 97) were discriminated with accuracy, sensitivity, and specificity ≥ 98% using PCA-LDA models. These results show that the chemical composition of green coffee and other factors captured on the spectral signatures can influence the discrimination of the geographical origin, a crucial component of coffee valuation in the international markets.


Subject(s)
Coffea , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Coffea/chemistry , Discriminant Analysis , Coffee/chemistry , Seeds/chemistry
20.
Acta Chim Slov ; 71(2): 204-214, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38919106

ABSTRACT

The aim of this study is to optimize the extraction process and characterize the proteins found in fenugreek seeds. The water and oil holding capacities, coagulated protein content, foaming and emulsification properties of the isolated proteins at all extraction conditions were investigated. Also, solubility, molecular weights, structural and thermal properties were determined. In the extraction processes carried out at different pHs (pH 6.0-12.0) and solid:solvent ratios (20-60 g/L), it was determined that the highest extraction yield (94.3±0.3%) was achieved when the pH was 11.47 and the solid-solvent ratio was 34.50 g/L. Three distinct bands (46, 59 and 80 kDa) in the range of 22-175 kDa were determined for the fenugreek seed protein isolate obtained at optimum extraction conditions. Protein secondary structures were achieved using Fourier Transform Infrared (FT-IR) spectra and it was determined that ß-sheet structures were highly present. In addition, denaturation temperatures and denaturation enthalpy were calculated as ~119°C and 28 mJ/g, respectively.


Subject(s)
Plant Proteins , Seeds , Trigonella , Trigonella/chemistry , Seeds/chemistry , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Solubility , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...