Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.584
Filter
1.
Fish Shellfish Immunol ; 151: 109734, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950759

ABSTRACT

Toll-like receptors (TLRs) are pattern recognition receptors that trigger host immune responses against various pathogens by detecting evolutionarily conserved pathogen-associated molecular patterns (PAMPs). TLR21 is a member of the Toll-like receptor family, and emerging data suggest that it recognises unmethylated CpG DNA and is considered a functional homologue of mammalian TLR9. However, little is known regarding the role of TLR21 in the fish immune response. In the present study, we isolated the cDNA sequence of TLR21 from the largemouth bass (Micropterus salmoides) and termed it MsTLR21. The MsTLR21 gene contained an open reading frame (ORF) of 2931 bp and encodes a polypeptide of 976 amino acids. The predicted MsTLR21 protein has two conserved domains, a conserved leucine-rich repeats (LRR) domain and a C-terminal Toll-interleukin (IL) receptor (TIR) domain, similar to those of other fish and mammals. In healthy largemouth bass, the TLR21 transcript was broadly expressed in all the examined tissues, with the highest expression levels in the gills. After challenge with Nocardia seriolae and polyinosinic polycytidylic acid (Poly[I:C]), the expression of TLR21 mRNA was upregulated or downregulated in all tissues tested. Overexpression of TLR21 in 293T cells showed that it has a positive regulatory effect on nuclear factor-kappaB (NF-κB) and interferons-ß (IFN-ß) activity. Subcellular localisation analysis showed that TLR21 was expressed in the cytoplasm. We performed pull-down assays and determined that TLR21 did not interact with myeloid differentiation primary response gene 88 (Myd88); however, it interacted with TIR domain-containing adaptor inducing interferon-ß (TRIF). Taken together, these findings suggest that MsTLR21 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.


Subject(s)
Adaptor Proteins, Vesicular Transport , Amino Acid Sequence , Bass , Fish Diseases , Fish Proteins , NF-kappa B , Phylogeny , Animals , Bass/immunology , Bass/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Fish Diseases/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Signal Transduction/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Sequence Alignment/veterinary , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/chemistry , Gene Expression Profiling/veterinary , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism , Base Sequence
2.
Fish Shellfish Immunol ; 151: 109736, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950760

ABSTRACT

RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.


Subject(s)
Crassostrea , Necroptosis , Phylogeny , Signal Transduction , Animals , Crassostrea/genetics , Crassostrea/immunology , Necroptosis/immunology , Signal Transduction/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Amino Acid Sequence , Immunity, Innate/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Staphylococcus aureus/physiology , Dinoflagellida/physiology , Dinoflagellida/genetics
3.
Fish Shellfish Immunol ; 151: 109743, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964433

ABSTRACT

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.


Subject(s)
Adenosine Deaminase , Pectinidae , Phylogeny , RNA Editing , Animals , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Pectinidae/genetics , Pectinidae/immunology , Immunity, Innate/genetics , Gene Expression Profiling , Gene Expression Regulation/immunology , Amino Acid Sequence , Transcriptome , Sequence Alignment/veterinary
4.
Fish Shellfish Immunol ; 151: 109741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964436

ABSTRACT

Decay-accelerating factor (DAF) is an essential member of the complement regulatory protein family that plays an important role in immune response and host homeostasis in mammals. However, the immune function of DAF has not been well characterized in bony fish. In this study, a complement regulatory protein named CiDAF was firstly characterized from Ctenopharyngodon idella and its potential roles were investigated in intestine following bacterial infection. Similar to mammalian DAFs, CiDAF has multiple complement control protein (CCP) functional domains, suggesting the evolutionary conservation of DAFs. CiDAF was broadly expressed in all tested tissues, with a relatively high expression level detected in the spleen and kidney. In vivo immune challenge experiments revealed that CiDAF strongly responded to bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and PAMPs (lipopolysaccharide (LPS) or muramyl dipeptide (MDP)) challenges. In vitro RNAi experiments indicated that knockdown of CiDAF could upregulate the expression of complement genes (C4b, C5 and C7) and inflammatory cytokines (TNF-α, IL-1ß and IL-8). Moreover, 2000 ng/mL of CiDAF agonist progesterone effectively alleviated LPS- or MDP-induced intestinal inflammation by regulating expression of complement factors, TLR/PepT1 pathway genes and inflammatory cytokines. Overall, these findings revealed that CiDAF may act as a negative regulator of intestinal complement pathway and immune response to bacterial challenge in grass carp.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Intestines , Animals , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Diseases/immunology , Immunity, Innate/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Intestines/immunology , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Aeromonas hydrophila/physiology , Amino Acid Sequence , Sequence Alignment/veterinary , Complement System Proteins/immunology
5.
Fish Shellfish Immunol ; 151: 109747, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969154

ABSTRACT

The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.


Subject(s)
Adaptive Immunity , Cichlids , Fish Diseases , Fish Proteins , Lymphocyte Activation , MAP Kinase Kinase Kinases , Animals , Cichlids/immunology , Cichlids/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Fish Diseases/immunology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Edwardsiella/immunology , Edwardsiella/physiology , Gene Expression Regulation/immunology , Signal Transduction/immunology , Gene Expression Profiling/veterinary , Phylogeny , Sequence Alignment/veterinary , Amino Acid Sequence
6.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844185

ABSTRACT

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Subject(s)
Arthropod Proteins , COP9 Signalosome Complex , Immunity, Innate , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/genetics , Penaeidae/immunology , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/immunology , White spot syndrome virus 1/physiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Phylogeny
7.
Fish Shellfish Immunol ; 151: 109669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849106

ABSTRACT

The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.


Subject(s)
Fish Diseases , Fish Proteins , Gene Expression Regulation , Immunity, Innate , Perciformes , Phylogeny , Pseudomonas Infections , Pseudomonas , Suppressor of Cytokine Signaling Proteins , Animals , Perciformes/immunology , Perciformes/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/immunology , Suppressor of Cytokine Signaling Proteins/chemistry , Immunity, Innate/genetics , Pseudomonas Infections/immunology , Pseudomonas Infections/veterinary , Pseudomonas Infections/genetics , Pseudomonas/physiology , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Stress, Physiological/immunology , Stress, Physiological/genetics , Sequence Alignment/veterinary , Hypoxia/genetics , Hypoxia/immunology , Hypoxia/veterinary
8.
Fish Shellfish Immunol ; 151: 109720, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945413

ABSTRACT

Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.


Subject(s)
Fish Diseases , Fish Proteins , Gene Expression Profiling , Phylogeny , Toll-Like Receptors , Vibrio , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Gene Expression Profiling/veterinary , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Fish Diseases/immunology , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Multigene Family , Sequence Alignment/veterinary , Amino Acid Sequence
9.
Fish Shellfish Immunol ; 151: 109686, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852787

ABSTRACT

The scavenger receptors (SRs) gene family is considered as the membrane-associated pattern recognition receptors that plays important roles in the immune responses of organisms. However, there is currently limited research on the systematic identification of the SRs gene family in teleost and their role in the innate immunity of S. schegelii. In this study, we identified and annotated 15 SRs genes in S. schegelii. Through phylogenetic analysis, analysis of conserved domains, gene structure, and motif composition, we found that SRs gene family within different classes were relatively conserved. Additionally, we used qRT-PCR to analyze the expression patterns of SRs genes in immune-related tissues from healthy and Acinetobacter johnsonii-infected S. schegelii. The results showed that SRs genes exhibited different tissue expression patterns and the expression of SRs genes significantly changed after A. johnsonii infection. These results provided a valuable basis for further understanding of the functions of SRs in the innate immune response of S. schegelii.


Subject(s)
Evolution, Molecular , Fish Diseases , Fish Proteins , Gene Expression Profiling , Immunity, Innate , Phylogeny , Receptors, Scavenger , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Immunity, Innate/genetics , Fish Diseases/immunology , Gene Expression Profiling/veterinary , Receptors, Scavenger/genetics , Receptors, Scavenger/immunology , Receptors, Scavenger/chemistry , Perciformes/genetics , Perciformes/immunology , Gene Expression Regulation/immunology , Fishes/genetics , Fishes/immunology , Sequence Alignment/veterinary
10.
Fish Shellfish Immunol ; 151: 109697, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871139

ABSTRACT

Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-ß, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.


Subject(s)
Amino Acid Sequence , Gene Expression Regulation , Immunity, Innate , Myeloid Differentiation Factor 88 , Pectinidae , Phylogeny , Sequence Alignment , Toll-Like Receptors , Animals , Immunity, Innate/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Pectinidae/immunology , Pectinidae/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Sequence Alignment/veterinary , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Signal Transduction/immunology , Humans , HEK293 Cells , Base Sequence
11.
Fish Shellfish Immunol ; 151: 109681, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871142

ABSTRACT

The EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) is involved in connective tissue development, elastic fiber formation, and tumor growth. In this study, we characterized the cDNA of EFEMP2 (PoEFEMP2), a member of the fibulin family of ECM proteins, in the olive flounder Paralichthys olivaceus. The coding region of PoEFEMP2 encodes a protein that contains six calcium-binding EGF-like (EGF-CA) domains and four complement Clr-like EGF-like (cEGF) domains. PoEFEMP2 shows 67.51-96.77 % similarities to orthologs in a variety of fish species. PoEFEMP2 mRNA was detected in all tissues examined; the highest levels of PoEFEMP2 mRNA expression were observed in the heart, testis, ovary and muscle. The PoEFEMP2 mRNA level increases during early development. In addition, the PoEFEMP2 mRNA level increased at 3 h post-infection (hpi) and decreased from 6 to 48 hpi in flounder Hirame natural embryo (HINAE) cells infected with viral hemorrhagic septicemia virus (VHSV). Disruption of PoEFEMP2 using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system resulted in a significant upregulation of VHSV G mRNA levels and immune-related genes expression in knockout cells. These findings implicate PoEFEMP2 in antiviral responses in P. olivaceus.


Subject(s)
Amino Acid Sequence , Extracellular Matrix Proteins , Fish Proteins , Gene Expression Regulation , Hemorrhagic Septicemia, Viral , Immunity, Innate , Novirhabdovirus , Phylogeny , Animals , Novirhabdovirus/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/immunology , Hemorrhagic Septicemia, Viral/immunology , Hemorrhagic Septicemia, Viral/genetics , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Fish Diseases/immunology , Fish Diseases/virology , Gene Expression Profiling/veterinary , Flatfishes/immunology , Flatfishes/genetics
12.
Fish Shellfish Immunol ; 151: 109698, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871141

ABSTRACT

In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.


Subject(s)
Amino Acid Sequence , Phylogeny , Animals , Sequence Alignment/veterinary , Trematoda/physiology , Perforin/genetics , Perforin/immunology , Perforin/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Snails/immunology , Snails/genetics , Gene Expression Profiling/veterinary
13.
Fish Shellfish Immunol ; 151: 109703, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878912

ABSTRACT

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.


Subject(s)
Aeromonas hydrophila , Cichlids , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Heme Oxygenase-1 , Immunity, Innate , Phylogeny , Animals , Cichlids/immunology , Cichlids/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence
14.
Fish Shellfish Immunol ; 151: 109702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897309

ABSTRACT

CD49d, encoded by the gene Integrin α4, is a significant member of cell adhesion receptors, which is widely expressed in various immune cells to trigger immune responses against invading pathogens. In the present study, the expression of CgCD49d and its regulatory role in TNF expression were investigated in the Pacific oyster Crassostrea gigas. There were five Int-alpha domains, an Integrin_alpha2 region and a unique FG-GAP repeat region inserted identified in CgCD49d. CgCD49d transcript was specifically expressed in haemocytes, and its mRNA expression level in haemocytes increased after LPS and Vibrio splendidus stimulation. After CgCD49d was blocked by using its antibody, the phosphorylation level of CgJNK in the MAPK signaling pathway and CgTNF transcripts decreased significantly post V. splendidus stimulation. After phosphorylation level of CgJNK was inhibited by using its inhibitor, the nuclear translocation of CgRel was restrained and CgTNF transcripts also decreased significantly post V. splendidus stimulation. Furthermore, CgCD49d was found to be mainly expressed in the agranulocyte subpopulation, and Alexa Fluor 488-conjugated CgCD49d antibody labeled agranulocytes with a circle of green fluorescence signals on CgCD49d+ agranulocyte surface under Confocal microscopy, which accounted for 24.9 ± 4.53% of total haemocytes. Collectively, these results suggested that CgCD49d promoted TNF expression in oyster haemocytes against bacterial invasion by mediating MAPK pathway, and it could be used as a surface marker to type and sort a subset of agranulocyte subpopulation among haemocytes.


Subject(s)
Crassostrea , Hemocytes , MAP Kinase Signaling System , Vibrio , Animals , Crassostrea/immunology , Crassostrea/genetics , Hemocytes/immunology , Vibrio/physiology , MAP Kinase Signaling System/immunology , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary
15.
Fish Shellfish Immunol ; 151: 109712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901682

ABSTRACT

The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Immunity, Innate , Mannose-Binding Protein-Associated Serine Proteases , Phylogeny , Reoviridae Infections , Reoviridae , Animals , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Fish Diseases/immunology , Fish Diseases/virology , Carps/immunology , Carps/genetics , Reoviridae/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Complement System Proteins/immunology , Complement System Proteins/genetics , Amino Acid Sequence , Sequence Alignment/veterinary
16.
Fish Shellfish Immunol ; 151: 109709, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901684

ABSTRACT

Metabotropic glutamate receptors (mGluRs) play a pivotal role in the neuroendocrine-immune regulation. In this study, eight mGluRs were identified in the Pacific Oyster Crassostrea gigas, which were classified into three subfamilies based on genetic similarity. All CgmGluRs harbor variable numbers of PBP1 domains at the N-terminus. The sequence and structural features of CgmGluRs are highly similar to mGluRs in other species. A uniformly upregulated expression of CgmGluRs was observed during D-shaped larval stage compared to early D-shaped larval stage. The transcripts of CgmGluRs were detectable in various tissues of oyster. Different CgmGluR exhibited diverse expression patterns response against different PAMP stimulations, among which CgmGluR5 was significantly downregulated under these stimulations, reflecting its sensitivity and broad-spectrum responsiveness to microbes. Following LPS stimulation, the mRNA expression of CgmGluR5 and CgCALM1 in haemocytes was suppressed within 6 h and returned to normal levels by 12 h. Inhibition of CgmGluR5 activity resulted in a significant reduction in CgCALM1 expression after 12 h. Further KEGG enrichment analysis suggested that CgmGluR5 might modulate calcium ion homeostasis and metabolic pathways by regulating CgCALM1. This research delivers the systematic analysis of mGluR in the Pacific Oyster, offering insights into evolutionary characteristics and immunoregulatory function of mGluR in mollusks.


Subject(s)
Crassostrea , Gene Expression Regulation , Immunity, Innate , Receptors, Metabotropic Glutamate , Animals , Crassostrea/immunology , Crassostrea/genetics , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/immunology , Receptors, Metabotropic Glutamate/metabolism , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Lipopolysaccharides/pharmacology
17.
Fish Shellfish Immunol ; 151: 109708, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908810

ABSTRACT

Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Nocardia Infections , Nocardia , Animals , Nocardia Infections/veterinary , Nocardia Infections/immunology , Nocardia/immunology , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics , Phylogeny , Amino Acid Sequence , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Fishes/immunology , Fishes/genetics , Perciformes/immunology , Perciformes/genetics , Base Sequence
18.
Fish Shellfish Immunol ; 151: 109718, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909635

ABSTRACT

Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.


Subject(s)
Amino Acid Sequence , Bass , Fish Diseases , Fish Proteins , Gene Expression Regulation , Immunity, Innate , Nodaviridae , RNA Virus Infections , Virus Replication , Animals , Nodaviridae/physiology , Fish Diseases/immunology , Fish Diseases/virology , RNA Virus Infections/immunology , RNA Virus Infections/veterinary , Fish Proteins/genetics , Fish Proteins/immunology , Bass/immunology , Bass/genetics , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Sequence Alignment/veterinary , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , Gene Expression Profiling/veterinary , Interferons/immunology , Interferons/genetics
19.
Fish Shellfish Immunol ; 151: 109715, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909637

ABSTRACT

Red-spotted grouper nervous necrosis virus (RGNNV) is a major viral pathogen of grouper and is able to antagonize interferon responses through multiple strategies, particularly evading host immune responses by inhibiting interferon responses. Ovarian tumor (OTU) family proteins are an important class of DUBs and the underlying mechanisms used to inhibit interferon pathway activation are unknown. In the present study, primers were designed based on the transcriptome data, and the ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) and OTUB2 genes of Epinephelus coioides (EcOTUB1 and EcOTUB2) were cloned and characterized. The homology alignment showed that both EcOTUB1 and EcOTUB2 were most closely related to E. lanceolatus with 98 % identity. Both EcOTUB1 and EcOTUB2 were distributed to varying degrees in grouper tissues, and the transcript levels were significantly up-regulated following RGNNV stimulation. Both EcOTUB1 and EcOTUB2 promoted replication of RGNNV in vitro, and inhibited the promoter activities of interferon stimulated response element (ISRE), nuclear transcription factors kappaB (NF-κB) and IFN3, and the expression levels of interferon related genes and proinflammatory factors. Co-immunoprecipitation experiments showed that both EcOTUB1 and EcOTUB2 could interact with TRAF3 and TRAF6, indicating that EcOTUB1 and EcOTUB2 may play important roles in interferon signaling pathway. The results will provide a theoretical reference for the development of novel disease prevention and control techniques.


Subject(s)
Bass , Fish Diseases , Fish Proteins , Immunity, Innate , Nodaviridae , RNA Virus Infections , Virus Replication , Animals , Fish Diseases/immunology , Fish Diseases/virology , Immunity, Innate/genetics , Nodaviridae/physiology , Fish Proteins/genetics , Fish Proteins/immunology , RNA Virus Infections/immunology , RNA Virus Infections/veterinary , Bass/immunology , Phylogeny , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment/veterinary , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/immunology , Gene Expression Profiling/veterinary
20.
Fish Shellfish Immunol ; 151: 109719, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914181

ABSTRACT

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Rhabdoviridae/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Autophagy/immunology
SELECTION OF CITATIONS
SEARCH DETAIL