Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 578
Filter
1.
Nat Commun ; 15(1): 6968, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138203

ABSTRACT

The use of pneumococcal conjugate vaccine (PCV) schedules with fewer doses are being considered to reduce costs and improve access, particularly in low- and middle-income countries. While several studies have assessed their immunogenicity, there are limited data on their potential for long-term immune protection, as assessed by pneumococcal serotype-specific memory B cell (Bmem) responses. This current study reports secondary outcome data that aims to compare Bmem responses following reduced-dose (0 + 1 and 1 + 1) schedules of PCV10 and PCV13 in Vietnamese infants from our randomised-controlled trial (trial registration number NCT03098628). Following vaccination at 12 months of age, Bmem levels for most serotypes peaked seven days post-vaccination and were higher in magnitude for the 1 + 1 than 0 + 1 schedules and for PCV13 than PCV10. Furthermore, Bmem did not wane as rapidly as IgG levels by 24 months of age. Further studies are needed to assess the use of Bmem as markers of long-term protection against pneumococcal carriage and disease, which is crucial to generate data for immunisation program decision-making.


Subject(s)
Immunization Schedule , Memory B Cells , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Vietnam , Infant , Streptococcus pneumoniae/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Memory B Cells/immunology , Female , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Male , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Vaccination/methods , Child, Preschool , Immunoglobulin G/blood , Immunoglobulin G/immunology , Serogroup
2.
Vet Rec ; 195(4): e4533, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39148262

ABSTRACT

BACKGROUND: The bluetongue virus serotype 3 (BTV-3) outbreak in the Netherlands in 2023 caused severe clinical signs in ruminants. The clinical and pathological signs in ruminants and their spread during the outbreak in 2023 are described. METHODS: Data from the Dutch monitoring and surveillance system were available to describe clinical signs and pathological findings related to BTV-3 in sheep, cattle and goats. During the outbreak, 13 farms (five sheep, five cattle and three dairy goats) were closely monitored. RESULTS: In 2023, BTV-3 infections were confirmed by real-time polymerase chain reaction in sheep flocks (n = 1807), cattle herds (n = 1864), goat herds (n = 62), alpaca and/or llama herds (n = 15) and one dog. Sheep exhibited the most severe clinical signs and had the highest mortality. In other animal species, a large variation in both occurrence and severity of clinical signs was observed. LIMITATION: Only 13 farms were closely monitored. CONCLUSIONS: The clinical signs observed in affected animals during the 2023 BTV-3 outbreak seem to be more severe than those observed during the BTV-8 outbreak between 2006 and 2008. It seems likely that BTV-3 will overwinter, similar to BTV-8. Therefore, the availability of an effective and safe vaccine is crucial to limit the future impact of BTV-3.


Subject(s)
Bluetongue virus , Bluetongue , Disease Outbreaks , Goats , Serogroup , Animals , Bluetongue virus/isolation & purification , Bluetongue/epidemiology , Bluetongue/pathology , Bluetongue/virology , Netherlands/epidemiology , Sheep , Disease Outbreaks/veterinary , Cattle , Seroepidemiologic Studies , Ruminants/virology , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/pathology , Female , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/pathology
3.
Front Public Health ; 12: 1418221, 2024.
Article in English | MEDLINE | ID: mdl-39175895

ABSTRACT

Salmonella enterica serovar Newport is a human pathogen underreported in most developing countries. It is known for causing gastroenteritis and extraintestinal infections. In this case report, we report the case of ceftriaxone-resistant Salmonella enterica serovar Newport from South India, causing acute gastroenteritis in a sixty-year-old female patient having a history of antimicrobial therapy and recent hospital admission. Serovar Newport, especially among antibiotic-exposed patients, poses a significant public health threat due to its ability to acquire multidrug resistance. This emphasizes the necessity for robust surveillance and monitoring of nontyphoidal Salmonella infections, particularly given the limited data on serovar Newport in India. Vigilance in clinical practice and public health initiatives is crucial to effectively address the emergence and spread of multidrug-resistant strains.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Salmonella Infections , Salmonella enterica , Humans , Female , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , India , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Middle Aged , Drug Resistance, Multiple, Bacterial , Gastroenteritis/microbiology , Gastroenteritis/drug therapy , Serogroup , Microbial Sensitivity Tests
4.
World J Microbiol Biotechnol ; 40(10): 299, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134916

ABSTRACT

Shiga toxin-producing and Enteropathogenic Escherichia coli are foodborne pathogens commonly associated with diarrheal disease in humans. This study investigated the presence of STEC and EPEC in 771 dairy cattle fecal samples which were collected from 5 abattoirs and 9 dairy farms in South Africa. STEC and EPEC were detected, isolated and identified using culture and PCR. Furthermore, 339 STEC and 136 EPEC isolates were characterized by serotype and major virulence genes including stx1, stx2, eaeA and hlyA and the presence of eaeA and bfpA in EPEC. PCR screening of bacterial sweeps which were grown from fecal samples revealed that 42.2% and 23.3% were STEC and EPEC positive, respectively. PCR serotyping of 339 STEC and 136 EPEC isolates revealed 53 different STEC and 19 EPEC serotypes, respectively. The three most frequent STEC serotypes were O82:H8, OgX18:H2, and O157:H7. Only 10% of the isolates were classified as "Top 7" STEC serotypes: O26:H2, 0.3%; O26:H11, 3.2%; O103:H8, 0.6%; and O157:H7, 5.9%. The three most frequent EPEC serotypes were O10:H2, OgN9:H28, and O26:H11. The distribution of major virulence genes among the 339 STEC isolates was as follows: stx1, 72.9%; stx2, 85.7%; eaeA, 13.6% and hlyA, 69.9%. All the 136 EPEC isolates were eaeA-positive but bfpA-negative, while 46.5% carried hlyA. This study revealed that dairy cattle are a major reservoir of STEC and EPEC in South Africa. Further comparative studies of cattle and human STEC and EPEC isolates will be needed to determine the role played by dairy cattle STEC and EPEC in the occurrence of foodborne disease in humans.Please kindly check and confirm the country and city name in affiliation [6].This affiliation is correct.Please kindly check and confirm the affiliationsConfirmed. All Affiliations are accurate.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Feces , Serogroup , Shiga-Toxigenic Escherichia coli , Virulence Factors , Animals , Cattle , South Africa , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/isolation & purification , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/pathogenicity , Feces/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/classification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Virulence Factors/genetics , Virulence/genetics , Escherichia coli Proteins/genetics , Serotyping , Cattle Diseases/microbiology , Dairying , Abattoirs , Polymerase Chain Reaction
5.
Front Cell Infect Microbiol ; 14: 1411658, 2024.
Article in English | MEDLINE | ID: mdl-39165917

ABSTRACT

Objective: This study used whole-genome sequencing (WGS) to explore the genetic diversity, virulence factors, and antimicrobial resistance determinants of string test-positive Klebsiella pneumoniae (KP) over a 4-year surveillance period in Huzhou, China. Methods: In total, 632 clinical isolates were collected via hospital surveillance from 2020 to 2023; 100 were positive in the string test and these 100 strains were subjected to antimicrobial susceptibility testing using an agar dilution method followed by WGS. Results: The resistance rates to cefotaxime (77.0%), trimethoprim-sulfamethoxazole (67.0%), and nalidixic acid (64.0%) were high. Multilocus sequence typing revealed high genetic diversity; there were 33 sequence types (STs) and 15 capsular serotypes. The most common ST was ST23 (16.0%) and the most common capsular serotype was K1 (22.5%). Virulome analysis revealed among-strain differences in virulence factors that affected bacterial adherence, efflux pump action, iron uptake, nutritional factors, metabolic regulation, the secretion system, and toxin production. The Kleborate strain-specific virulence scores of all 100 string test-positive KPs were derived: 28 strains scored 5, 28 scored 4, 21 scored 3, 12 scored 1, and 11 scored 0. All 77 strains with scores of 3 to 5 contained the iucA gene. The phylogeny based on whole-genome single nucleotide polymorphisms (wgSNPs) indicated high clonality; the string test-positive KP strains were grouped into six clades. Closely related isolates in each genetic cluster usually shared STs. Conclusion: The present study highlights the significance of the KP iucA gene in terms of hypervirulence and the diverse genotypes of string test-positive KP strains isolated in Huzhou hospitals.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Virulence Factors , Whole Genome Sequencing , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Virulence Factors/genetics , Genetic Variation , Anti-Bacterial Agents/pharmacology , Serogroup , Phylogeny , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Virulence/genetics , Male , Female
6.
Sci Rep ; 14(1): 18414, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117747

ABSTRACT

Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.


Subject(s)
Apoptosis , Dengue Virus , Dengue , Myeloid Cell Leukemia Sequence 1 Protein , Neutrophils , Reactive Oxygen Species , Dengue Virus/physiology , Neutrophils/immunology , Neutrophils/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Humans , Dengue/immunology , Dengue/virology , Reactive Oxygen Species/metabolism , Serogroup , Cell Survival
7.
BMC Vet Res ; 20(1): 356, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127663

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a zoonotic opportunistic pathogen, and also one of the common pathogenic bacteria causing mink pneumonia. The aim of this study was to get a better understanding of the whole-genome of multi-drug resistant Klebsiella pneumoniae with K2 serotype in China. This study for the first time to analyze Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, resistance and virulence genes of Klebsiella pneumoniae in mink. RESULTS: The isolate was Klebsiella pneumoniae with serotype K2 and ST6189 by PCR method. The string test was positive and showed high mucus phenotype. There was one plasmid with IncFIB replicons in the genome. The virulence factors including capsule, lipopolysaccharide, adhesin, iron uptake system, urease, secretory system, regulatory gene (rcsA, rcsB), determinants of pili adhesion, enolase and magnesium ion absorption related genes. The strain was multi-drug resistant. A total of 26  resistance genes, including beta-lactam, aminoglycosides, tetracycline, fluoroquinolones, sulfonamides, amide alcohols, macrolides, rifampicin, fosfomycin, vancomycin, diaminopyrimidines and polymyxin. Multidrug-resistant efflux protein AcrA, AcrB, TolC, were predicted in the strain. CONCLUSION: It was the first to identify that serotype K2 K. pneumonia with ST6189 isolated from mink in China. The finding indicated that hypervirulent and multi-drug resistant K. pneumoniae was exist in Chinese mink. The whole-genome of K. pneumoniae isolates have importance in mink farming practice.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Mink , Serogroup , Whole Genome Sequencing , Animals , Drug Resistance, Multiple, Bacterial/genetics , Mink/microbiology , China , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Genome, Bacterial , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics
8.
PLoS One ; 19(8): e0306746, 2024.
Article in English | MEDLINE | ID: mdl-39150924

ABSTRACT

Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease of livestock that has a significant economic impact on domestic animals and threatens wildlife survival in China and border countries. However, effective surveillance and prevention of this disease is often incomplete and unattainable due to the cost, the great diversity of wildlife hosts, the changing range and dynamics, and the diversity of FMDV. In this study, we used predictive models to reveal the spread and risk of FMD in anticipation of identifying key nodes to control its spread. For the first time, the spatial distribution of FMD serotype O was predicted in western China and border countries using a niche model, which is a combination of eco-geographic, human, topographic, and vegetation variables. The transboundary least-cost pathways (LCPs) model for ungulates in the study area were also calculated. Our study indicates that FMD serotype O survival is seasonal at low altitudes (March and June) and more sensitive to temperature differences at high altitudes. FMD serotype O risk was higher in Central Asian countries and both were highly correlated with the population variables. Ten LCPs were obtained representing Pakistan, Kazakhstan, Kyrgyzstan, and China.


Subject(s)
Foot-and-Mouth Disease , Serogroup , China/epidemiology , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/economics , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/isolation & purification , Seasons , Animals, Wild
9.
Nat Commun ; 15(1): 6504, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090110

ABSTRACT

The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.


Subject(s)
O Antigens , O Antigens/genetics , O Antigens/metabolism , O Antigens/biosynthesis , Salmonella/genetics , Salmonella/metabolism , Gene Expression Regulation, Bacterial , Serogroup , Promoter Regions, Genetic , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
10.
Front Cell Infect Microbiol ; 14: 1391879, 2024.
Article in English | MEDLINE | ID: mdl-39104851

ABSTRACT

This study aimed to investigate the bacterial characteristics of pneumococcal isolates obtained from a tertiary care hospital in Japan. We analyzed the antimicrobial susceptibility, possession of macrolide resistance genes, pneumococcal serogroup/serotype, and sequence type (ST) of pneumococcal isolates from patients aged 15 years or older between 2011 and 2020 at Nagasaki University Hospital. Of the 73 isolates analyzed, 86.3% showed resistance to macrolides, and 28.8%, 46.6%, and 11.0% harbored mefA, ermB, and both, respectively. Of the isolates possessing ermB, 97.6% showed high levels of macrolide resistance [minimal inhibitory concentration (MIC) range, > 16 µg/mL]. Solithromycin (MIC range, 0.03-0.25 µg/mL), regardless of the presence of macrolide resistance genes, and lascufloxacin (MIC range, 0.06-0.5 µg/mL) showed potent in vitro activity against pneumococci. Serotype 19A was the most prevalent (six isolates), followed by serotypes 10A, 15A, and 15B/C (five isolates each). Four serotypes (11A, 19A, 22F, and 23B) and five STs (36, 99, 433, 558, and 3111) were significantly correlated with the presence of macrolide resistance genes. All four isolates with serotype 11A/ST99 and three isolates with serotype 19A/ST3111 harbored both mefA and ermB. No macrolide resistance genes were detected in either of the two isolates with serotype 22F/ST433, while all ten isolates with serogroup 15 (serotypes 15A and 15B/C, five isolates each) possessed ermB alone. Our study revealed the bacterial characteristics of the pneumococcal isolates obtained from our hospital. In vitro activity of solithromycin and lascufloxacin against these isolates was confirmed.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Microbial Sensitivity Tests , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Tertiary Care Centers , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Humans , Pneumococcal Infections/microbiology , Japan , Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Drug Resistance, Bacterial/genetics , Young Adult , Adolescent , Phenotype , Aged , Middle Aged , Adult , Bacterial Proteins/genetics , Female , Male , Methyltransferases/genetics , Aged, 80 and over , East Asian People , Membrane Proteins
11.
Arch Microbiol ; 206(9): 376, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141167

ABSTRACT

Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.


Subject(s)
Culture Media , Microbial Viability , Vibrio parahaemolyticus , Vibrio parahaemolyticus/growth & development , Animals , Culture Media/chemistry , Serogroup , Cold Temperature , Food Microbiology , Artemia/microbiology , Seafood/microbiology
12.
Mol Biol Rep ; 51(1): 906, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141163

ABSTRACT

BACKGROUND: Dengue virus (DENV) and Chikungunya virus (CHIKV) are major arboviruses that are transmitted to humans by Aedes aegypti (A. aegypti) and Aedes Albopictus (A. Albopictus) mosquitoes. In absence of specific antivirals and vaccine against these two viruses, prompt diagnosis of acute infections and robust surveillance for outbreak identification remain crucial. Therefore, rapid, robust, high-throughput, accessible, and low-cost assays are essential for endemic countries. This study evaluated our recently developed multiplex RT-PCR and RT-qPCR assays to screen for DENV1-4 and CHIKV circulation in Burkina Faso. METHODS AND RESULTS: This study, conducted between June to August 2023, enrolled patients with suspected arbovirus infection presenting at healthcare facilities in three Burkina Faso cities (Bobo-Dioulasso, Houndé, and Ouagadougou). Serum samples were collected and screened for DENV serotypes and CHIKV using our newly multiplex RT-PCR and RT-q PCR techniques recently developed. A total of 408 patients (age median = 33, range from 3 to 84 years) participated in this study. Of these, 13.7% (56/408) had DENV infection; DENV-1 was 32.1% (18/56) and DENV-3 was 67.9% (38/56). DENV-2, DENV-4 and CHIKV were not detected. CONCLUSIONS: This study demonstrates the effectiveness of our molecular methods for DENV detection and serotyping in Burkina Faso. The affordability of our methods makes them valuable for implementing widespread routine clinical diagnostics or arbovirus surveillance in resource-limited settings.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Humans , Burkina Faso/epidemiology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Middle Aged , Dengue/epidemiology , Dengue/virology , Dengue/diagnosis , Dengue/blood , Female , Adult , Adolescent , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya Fever/diagnosis , Chikungunya Fever/blood , Aged , Male , Child, Preschool , Child , Serogroup , Aged, 80 and over , Multiplex Polymerase Chain Reaction/methods , Young Adult , Epidemiological Monitoring , Animals , Aedes/virology
13.
PLoS One ; 19(8): e0306921, 2024.
Article in English | MEDLINE | ID: mdl-39121085

ABSTRACT

Immune response elicited during pneumococcal carriage has been shown to protect against subsequent colonization and infection by Streptococcus pneumoniae. The study was designed to measure the baseline serotype-specific anti-capsular IgG concentration and opsonic titers elicited in response to asymptomatic carriage in adults with and without type 2-diabetes. Level of IgG to capsular polysaccharide was measured in a total of 176 samples (124 with type 2 diabetes and 52 without type 2 diabetes) against serotype 1, 19F, 9V, and 18C. From within 176 samples, a nested cohort of 39 samples was selected for measuring the functional capacity of antibodies by measuring opsonic titer to serotypes 19F, 9V, and 18C. Next, we measured levels of IgG to PspA in 90 samples from individuals with and without diabetes (22 non-diabetes and 68 diabetes). Our results demonstrated comparable IgG titers against all serotypes between those with and without type 2-diabetes. Overall, we observed higher opsonic titers in those without diabetes as compared to individuals with diabetes for serotypes 19F and 9V. The opsonic titers for 19F and 9V significantly negatively correlated with HbA1c. For 19F, 41.66% (n = 10) showed opsonic titers ≥ 1:8 in the diabetes group as compared to 66.66% (n = 10) in the non-diabetes group. The percentage was 29.6% (n = 7) vs 66.66% (n = 10) for 9V and 70.83% (n = 17) vs 80% (n = 12) for 18C in diabetes and non-diabetes groups respectively. A comparable anti-PspA IgG (p = 0.409) was observed in those with and without diabetes, indicating that response to protein antigen is likely to remain intact in those with diabetes. In conclusion, we demonstrated comparable IgG titers to both capsular polysaccharide and protein antigens in those with and without diabetes, however, the protective capacity of antibodies differed between the two groups.


Subject(s)
Antibodies, Bacterial , Diabetes Mellitus, Type 2 , Immunoglobulin G , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/blood , Male , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Adult , Middle Aged , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pakistan/epidemiology , Aged
14.
Methods Mol Biol ; 2838: 123-136, 2024.
Article in English | MEDLINE | ID: mdl-39126627

ABSTRACT

The virus neutralization test (VNT) is a functional immunoassay which detects the presence and quantity of neutralizing antibodies. It is a highly sensitive and specific test. As with most neutralization assays, the EHDV VNT does not react with all virus-targeting antibodies, but specifically with those antibodies that bind to VP2, the outermost capsid structural protein of the virus. The interaction between VP2 and neutralizing antibodies can block EHDV cell binding, neutralizing its infectivity. The detection and quantification of neutralizing antibodies are indicative of how protected an animal is against reinfection. The EHD VNT can therefore be a useful tool to monitor the efficacy of a vaccination campaign. VP2 is also the main determinant of EHDV serotype specificity, and so EHDV-neutralizing antibodies which target VP2 are also serotype-specific. Throughdetecting and quantifying neutralizing antibodies, the VNT can discriminate the EHDV serotype responsible for an infection and provides insights into the time of infection. It is considered the gold standard test for identifying and quantifying antibodies against EHDV serotypes present in test serum samples. The assay is performed in vitro and is based on inhibition of virus infectivity in the presence of neutralizing antibodies. A neutralizing antibody titer is determined through the presence or absence of cytopathic effect in a cell monolayer. The VNT is a relatively inexpensive assay using standard laboratory equipment; however, to perform the assay, cell cultures, significant time, intensive labor, and technical skill are required.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Hemorrhagic Disease Virus, Epizootic , Neutralization Tests , Neutralization Tests/methods , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Animals , Antibodies, Viral/immunology , Antibodies, Viral/blood , Hemorrhagic Disease Virus, Epizootic/immunology , Serogroup , Reoviridae Infections/immunology , Reoviridae Infections/diagnosis , Reoviridae Infections/veterinary , Reoviridae Infections/virology
15.
Methods Mol Biol ; 2838: 197-209, 2024.
Article in English | MEDLINE | ID: mdl-39126634

ABSTRACT

Molecular methods are routinely used for the differential diagnosis and genetic characterization of viral disease of livestock. Real-time, quantitative PCR (qPCR) allows RNA/DNA sequence detection and quantification and is considered the gold standard diagnostic method for most viruses. However, Sanger sequencing offers additional information and opportunity to differentiate closely related virus strains and/or serotypes, by providing the full sequence of a genetic region of interest. Therefore, to determine epizootic hemorrhagic disease virus (EHDV) serotype or identify additional genetic markers, end-point RT-PCR can be performed on EHDV-positive clinical samples, followed by Sanger sequencing and data analysis. Here we describe a detailed method for the molecular characterization of EHDV serotype using Sanger sequencing.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Serotyping , Hemorrhagic Disease Virus, Epizootic/genetics , Hemorrhagic Disease Virus, Epizootic/classification , Animals , Serotyping/methods , Reoviridae Infections/virology , Reoviridae Infections/veterinary , RNA, Viral/genetics , Serogroup , Sequence Analysis, DNA/methods , Real-Time Polymerase Chain Reaction/methods
16.
Nat Commun ; 15(1): 6577, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097620

ABSTRACT

Limited data from Asia are available on long-term effects of pneumococcal conjugate vaccine introduction on pneumococcal carriage. Here we assess the impact of 13-valent pneumococcal conjugate vaccine (PCV13) introduction on nasopharyngeal pneumococcal carriage prevalence, density and antimicrobial resistance. Cross-sectional carriage surveys were conducted pre-PCV13 (2015) and post-PCV13 introduction (2017 and 2022). Pneumococci were detected and quantified by real-time PCR from nasopharyngeal swabs. DNA microarray was used for molecular serotyping and to infer genetic lineage (Global Pneumococcal Sequence Cluster). The study included 1461 infants (5-8 weeks old) and 1489 toddlers (12-23 months old) enrolled from family health clinics. We show a reduction in PCV13 serotype carriage (with non-PCV13 serotype replacement) and a reduction in the proportion of samples containing resistance genes in toddlers six years post-PCV13 introduction. We observed an increase in pneumococcal nasopharyngeal density. Serotype 15 A, the most prevalent non-vaccine-serotype in 2022, was comprised predominantly of GPSC904;9. Reductions in PCV13 serotype carriage will likely result in pneumococcal disease reduction. It is important for ongoing surveillance to monitor serotype changes to potentially inform new vaccine development.


Subject(s)
Carrier State , Nasopharynx , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/classification , Infant , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Nasopharynx/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Carrier State/prevention & control , Mongolia/epidemiology , Cross-Sectional Studies , Vaccines, Conjugate/immunology , Female , Male , Serogroup , Prevalence , Serotyping
17.
Andes Pediatr ; 95(3): 309-318, 2024 Jun.
Article in Spanish | MEDLINE | ID: mdl-39093217

ABSTRACT

Since 1941, outbreaks of Neisseria meningitidis have been recorded in Chile which, to date, have varied according to clinical form, incidence, lethality, and the responsible serogroup. OBJECTIVE: To summarize the available evidence on the epidemiological profile of acute bacterial meningitis due to Neisseria meningitidis in Chile, analyzing the incidence between 1990 and 2019. METHOD: A systematized review of primary articles was carried out following the Cochrane Collaboration standards. The information sources were PubMed, Scielo, and LILACS. Publications on acute bacterial meningitis due to Neisseria meningitidis were included, with a descriptive design, and in English and Spanish. Studies on the effectiveness of vaccines and diagnostic techniques were excluded. RESULTS: Between 1990 and 2019, the evidence collected focuses exclusively on the year 2012. Of the 133 cases of invasive meningococcal disease (IMD) reported that year, 42 cases presented with meningitis. Of the IMD cases caused by serogroup W135 strains, 21.7% of the cases presented with meningitis (13 cases), compared with the "Non-W135" strains, in which it was 67.4% (29 cases). Lethality due to IMD was higher in patients affected by serogroup W135 (26.7%), compared with patients affected by serogroup "Non-W135" (13.9%). DISCUSSION: The year 2012 shows a change in the prevalent serogroup from serogroup B to W, with a decrease in cases of meningitis and an increase in cases of meningo- coccemia and the lethality of IMD.


Subject(s)
Meningitis, Meningococcal , Neisseria meningitidis , Chile/epidemiology , Humans , Meningitis, Meningococcal/epidemiology , Meningitis, Meningococcal/diagnosis , Incidence , Neisseria meningitidis/classification , Neisseria meningitidis/isolation & purification , Disease Outbreaks , Serogroup , Child
18.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965586

ABSTRACT

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Subject(s)
Anti-Bacterial Agents , Cefepime , Chickens , Colistin , Drug Resistance, Multiple, Bacterial , Levofloxacin , Microbial Sensitivity Tests , Salmonella enterica , Serogroup , Animals , Egypt , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Colistin/pharmacology , Levofloxacin/pharmacology , Cefepime/pharmacology , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Salmonella Infections, Animal/microbiology , Humans
19.
Vet Med Sci ; 10(4): e1530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979670

ABSTRACT

AIM: This study aimed to summarize the frequency and the antimicrobial susceptibility profiles of the Salmonella serotypes identified from the specimens of companion animals, livestock, avian, wildlife and exotic species within Atlantic Canada. MATERIALS AND METHODS: The retrospective electronic laboratory data of microbiological analyses of a selected subset of samples from 03 January 2012 to 29 December 2021 submitted from various animal species were retrieved. The frequency of Salmonella serotypes identified, and their antimicrobial susceptibility results obtained using the disk diffusion or broth method were analysed. The test results were interpreted according to the Clinical and Laboratory Standards Institute standard. The Salmonella serotypes were identified by slide agglutination (Kauffman-White-Le-Minor Scheme) and/or the Whole Genome Sequencing for the Salmonella in silico Serovar Typing Resource-based identification. RESULTS: Of the cases included in this study, 4.6% (n = 154) had at least one Salmonella isolate, corresponding to 55 different serovars. Salmonella isolation was highest from exotic animal species (n = 40, 1.20%), followed by porcine (n = 26, 0.78%), and canine (n = 23, 0.69%). Salmonella subsp. enterica serovar Typhimurium was predominant among exotic mammals, porcine and caprine samples, whereas S. Enteritidis was mostly identified in bovine and canine samples. S. Typhimurium of porcine origin was frequently resistant (>70.0%) to ampicillin. In contrast, S. Typhimurium isolates from porcine and caprine samples were susceptible (>70.0%) to florfenicol. S. Oranienburg from equine samples was susceptible to chloramphenicol, but frequently resistant (>90.0%) to azithromycin. In avian samples, S. Copenhagen was susceptible (>90.0%) to florfenicol, whereas Muenchen was frequently resistant (>90.0%) to florfenicol. S. subsp. diarizonae serovar IIIb:61:k:1,5 of ovine origin was resistant (50.0% isolates) to sulfadimethoxine. No significant changes were observed in the antibiotic resistance profiles across the study years. CONCLUSIONS: This report provides data for surveillance studies, distribution of Salmonella serotypes and their antimicrobial resistance among veterinary specimens of Atlantic Canada.


Subject(s)
Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Retrospective Studies , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Animals, Wild/microbiology , Canada/epidemiology , Livestock/microbiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Birds/microbiology , Microbial Sensitivity Tests/veterinary
20.
Front Immunol ; 15: 1424307, 2024.
Article in English | MEDLINE | ID: mdl-39011043

ABSTRACT

Introduction: Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology: In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results: We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion: These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.


Subject(s)
Bluetongue virus , Computational Biology , Epitopes, T-Lymphocyte , Viral Nonstructural Proteins , Viral Vaccines , Animals , Bluetongue virus/immunology , Epitopes, T-Lymphocyte/immunology , Viral Vaccines/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics , Mice , Computational Biology/methods , Serogroup , Cattle , Bluetongue/prevention & control , Bluetongue/immunology , Bluetongue/virology , Conserved Sequence
SELECTION OF CITATIONS
SEARCH DETAIL