Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Pharmacol Biochem Behav ; 242: 173823, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002804

ABSTRACT

PURPOSE: For understanding the neurochemical mechanism of neuropsychiatric conditions associated with cognitive deficits it is of major relevance to elucidate the influence of serotonin (5-HT) agonists and antagonists on memory function as well dopamine (DA) and 5-HT release and metabolism. In the present study, we assessed the effects of the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and the 5-HT2A receptor altanserin (ALT) on object and place recognition memory and cerebral neurotransmitters and metabolites in the rat. METHODS: Rats underwent a 5-min exploration trial in an open field with two identical objects. After systemic injection of a single dose of either DOI (0.1 mg/kg), ALT (1 mg/kg) or the respectice vehicle (0.9 % NaCl, 50 % DMSO), rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Upon the assessment of object exploration and motor/exploratory behaviors, rats were sacrificed. DA, 5-HT and metabolite levels were analyzed in cingulate (CING), caudateputamen (CP), nucleus accumbens (NAC), thalamus (THAL), dorsal (dHIPP) and ventral hippocampus (vHIPP), brainstem and cerebellum with high performance liquid chromatography. RESULTS: DOI decreased rearing but increased head-shoulder motility relative to vehicle. Memory for object and place after both DOI and ALT was not different from vehicle. Network analyses indicated that DOI inhibited DA metabolization in CING, CP, NAC, and THAL, but facilitated it in dHIPP. Likewise, DOI inhibited 5-HT metabolization in CING, NAC, and THAL. ALT facilitated DA metabolization in the CING, NAC, dHIPP, vHIPP, and CER, but inhibited it in the THAL. Additionally, ALT facilitated 5-HT metabolization in NAC and dHIPP. CONCLUSIONS: DOI and ALT differentially altered the quantitative relations between the neurotransmitter/metabolite levels in the individual brain regions, by inducing region-specific shifts in the metabolization pathways. Findings are relevant for understanding the neurochemistry underlying DAergic and/or 5-HTergic dysfunction in neurological and psychiatric conditions.


Subject(s)
Amphetamines , Brain , Dopamine , Serotonin , Animals , Rats , Serotonin/metabolism , Male , Dopamine/metabolism , Amphetamines/pharmacology , Brain/metabolism , Brain/drug effects , Ketanserin/pharmacology , Ketanserin/analogs & derivatives , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
2.
J Pharmacol Toxicol Methods ; 128: 107542, 2024.
Article in English | MEDLINE | ID: mdl-39032441

ABSTRACT

Cardiac valvulopathy (Cardiac Valve Disease; CVD) associated with off-target activation of the 5-hydroxytryptamine (5-HT) 2B receptor has been well recognized, but is still poorly predicted during drug development. The regulatory guidance proposes the use of 5-HT2B binding data (i.e., Ki values) and free maximum therapeutic exposure (Cmax) to calculate safety margins as a threshold of detection (>10) for eliminating the risk of drug-induced cardiac valvulopathy. In this paper, we provide additional recommendations for preclinical prediction of CVD risk based on clinical pharmacodynamic and pharmacokinetic data obtained from drugs with or without 5-HT2B receptor activation. Our investigations showed that 5-HT2B agonist affinity of molecules tested in an in vitro 5-HT2B cell-based functional assay, placed in perspective to their sustained plasma exposure (AUCs) and not to their peak plasma exposure, Cmax (i.e., maximum therapeutic exposure) provide a solid basis for interpreting 5-HT2B data, for calculating safety margins and then, accurately differentiate drugs associated with a clinical risk of CVD from those which are not (despite having some agonist 5-HT2B activity). In addition, we discuss the risk of multi-organ fibrosis linked to 5-HT2B receptor activation, often underestimated, however well reported in FAERS for 5-HT2B agonists. We believe that our recommendations have the potential to mitigate the risk for the clinical development of CVD and fibrosis.


Subject(s)
Heart Valve Diseases , Receptor, Serotonin, 5-HT2B , Serotonin 5-HT2 Receptor Agonists , Serotonin 5-HT2 Receptor Agonists/pharmacology , Humans , Heart Valve Diseases/chemically induced , Heart Valve Diseases/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Animals , Drug Evaluation, Preclinical/methods , Drug Development/methods
3.
Expert Opin Pharmacother ; 25(9): 1121-1130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916481

ABSTRACT

INTRODUCTION: Developmental epileptic encephalopathies (DEEs) pose significant challenges due to their refractory nature and limited treatment options. Despite advancements in genetic understanding, effective therapies targeting underlying pathophysiology are lacking. Serotoninergic dysfunction has been implicated in epilepsy, sparking interest in serotonin as a therapeutic target. AREA COVERED: This article explores the potential of bexicaserin, a selective 5-HT2C receptor agonist, as an adjunctive antiseizure medication in DEEs. Bexicaserin is thought to modulate GABAergic neurotransmission, suppressing central hyperexcitability. Preclinical studies demonstrate its efficacy across various seizure models. Clinical trials, including the Pacific Study, reveal promising results in reducing motor seizures. However, challenges such as adverse effects and treatment discontinuation underscore the need for further investigation. EXPERT OPINION: The efficacy of 5-HT2C serotoninergic agonists, validated in preclinical and clinical studies, highlights serotonin's role in DEEs. Bexicaserin offers new therapeutic possibilities, potentially synergizing with existing antiseizure medications. Polypharmacotherapy, targeting distinct pathways, may enhance therapeutic outcomes. Monitoring pharmacological interactions and addressing central nervous system comorbidities are crucial for optimizing treatment strategies. Further research is needed to elucidate bexicaserin's mechanisms and potential antiepileptogenic effects.


Subject(s)
Anticonvulsants , Serotonin 5-HT2 Receptor Agonists , Humans , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Animals , Serotonin 5-HT2 Receptor Agonists/therapeutic use , Serotonin 5-HT2 Receptor Agonists/pharmacology , Epilepsy/drug therapy , Spasms, Infantile/drug therapy
4.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941473

ABSTRACT

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Subject(s)
Alzheimer Disease , Memory , Mice, Transgenic , Neuronal Plasticity , Receptor, Serotonin, 5-HT2C , Animals , Humans , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Memory/drug effects , Memory/physiology , Mice , Neuronal Plasticity/drug effects , Alzheimer Disease/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Serotonin/metabolism , Disease Models, Animal , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Neurons/metabolism , Neurons/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology
5.
Biomed Pharmacother ; 177: 116867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889634

ABSTRACT

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.


Subject(s)
Alkaloids , Neuralgia , Receptor, Serotonin, 5-HT2A , Visceral Pain , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Male , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Mice , Visceral Pain/drug therapy , Visceral Pain/metabolism , Alkaloids/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Disease Models, Animal , Analgesics/pharmacology , Dose-Response Relationship, Drug
6.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792047

ABSTRACT

Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.


Subject(s)
Microsomes, Liver , Parkinson Disease , Humans , Animals , Rats , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Microsomes, Liver/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology
7.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38753765

ABSTRACT

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Subject(s)
Deep Learning , Drug Discovery , Molecular Docking Simulation , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Serotonin 5-HT2 Receptor Antagonists , Humans , Cryoelectron Microscopy , Drug Design , Drug Discovery/methods , Ligands , Protein Conformation , Protein Folding , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/ultrastructure , Receptors, sigma/chemistry , Receptors, sigma/metabolism , Small Molecule Libraries/chemistry , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology
8.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38777263

ABSTRACT

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Exploratory Behavior , Recognition, Psychology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Brain/metabolism , Brain/drug effects , Emotions/drug effects , Emotions/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
9.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677331

ABSTRACT

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Subject(s)
Mice, Inbred ICR , Nicotine , Reward , Serotonin 5-HT2 Receptor Agonists , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/drug therapy , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Serotonin 5-HT2 Receptor Agonists/pharmacology , Mice , Dose-Response Relationship, Drug , Tobacco Use Disorder/drug therapy , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Anxiety/drug therapy , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage
10.
J Med Chem ; 67(9): 7224-7244, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38648420

ABSTRACT

Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.


Subject(s)
Piperidines , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists , Animals , Humans , Rats , Drug Discovery , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Structure-Activity Relationship , Lysergic Acid Diethylamide/chemical synthesis , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/pharmacology
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673988

ABSTRACT

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Subject(s)
Hypercapnia , Parkinson Disease , Receptor, Serotonin, 5-HT1A , Receptor, Serotonin, 5-HT2A , Animals , Male , Rats , Disease Models, Animal , Dopamine/metabolism , Hypercapnia/metabolism , Hypercapnia/physiopathology , Norepinephrine/metabolism , Norepinephrine/pharmacology , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Respiration/drug effects , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
12.
Neuropharmacology ; 252: 109949, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636726

ABSTRACT

Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.


Subject(s)
Adaptation, Psychological , Aggression , Amphetamines , Hallucinogens , Stress, Psychological , Animals , Male , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Hallucinogens/administration & dosage , Hallucinogens/pharmacology , Adaptation, Psychological/drug effects , Adaptation, Psychological/physiology , Mice , Aggression/drug effects , Aggression/physiology , Amphetamines/pharmacology , Amphetamines/administration & dosage , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/administration & dosage , Escape Reaction/drug effects , Coping Skills
13.
J Med Chem ; 67(8): 6144-6188, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38593423

ABSTRACT

Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT2 receptor agonist. CYB210010 exhibited high agonist potency at 5-HT2A and 5-HT2C receptors, modest selectivity over 5-HT2B, 5-HT1A, 5-HT6, and adrenergic α2A receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.1-3 mg/kg) elicited a head-twitch response (HTR) and could be administered subchronically at threshold doses without behavioral tolerance. CYB210010 was orally bioavailable in three species, readily and preferentially crossed into the CNS, engaged frontal cortex 5-HT2A receptors, and increased the expression of genes involved in neuroplasticity in the frontal cortex. CYB210010 represents a new tool molecule for investigating the therapeutic potential of 5-HT2 receptor activation. In addition, several other compounds with high 5-HT2A receptor potency, yet with little or no HTR activity, were discovered, providing the groundwork for the development of nonpsychedelic 5-HT2A receptor ligands.


Subject(s)
Phenethylamines , Serotonin 5-HT2 Receptor Agonists , Structure-Activity Relationship , Animals , Humans , Phenethylamines/pharmacology , Phenethylamines/chemistry , Phenethylamines/chemical synthesis , Administration, Oral , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Male , Biological Availability , Rats , Mice , Rats, Sprague-Dawley , Drug Discovery , Receptors, Serotonin, 5-HT2/metabolism , Receptor, Serotonin, 5-HT2A/metabolism
14.
Article in English | MEDLINE | ID: mdl-38301886

ABSTRACT

Psychedelic compounds, including psilocybin, LSD (lysergic acid diethylamide), DMT (N,N -dimethyltryptamine), and 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), all of which are serotonin 2A receptor agonists, are being investigated as potential treatments. This review aims to summarize the current clinical research on these 4 compounds and mescaline to guide future research. Their mechanism(s) of action, pharmacokinetics, pharmacodynamics, efficacy, and safety were reviewed. While evidence for therapeutic indications, with the exception of psilocybin for depression, is still relatively scarce, we noted no differences in psychedelic effects beyond effect duration. Therefore, it remains unclear whether different receptor profiles contribute to the therapeutic potential of these compounds. More research is needed to differentiate these compounds in order to inform which compounds might be best for different therapeutic uses.


Subject(s)
Hallucinogens , Lysergic Acid Diethylamide , Psilocybin , Hallucinogens/pharmacokinetics , Hallucinogens/pharmacology , Humans , Psilocybin/pharmacokinetics , Psilocybin/pharmacology , Lysergic Acid Diethylamide/pharmacology , Lysergic Acid Diethylamide/pharmacokinetics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics
15.
Neurosci Lett ; 820: 137597, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38110146

ABSTRACT

According to the opponent-process theory of drug addiction, the intake of an addictive substance initiates two processes: a rapid primary process that results in the drug's rewarding effects, and a slower opponent process that leads to the aversive motivational state of drug aftereffects. This aversive state is integral in the desire, pursuit, and maintenance of drug use, potentially leading to dependence and addiction. However, current observational and experimental evidence suggests that the administration of a 5-hydroxytryptamine receptors-type 2A (5-HT2A) agonist, while capable of inducing a positive mental state in humans, may not generate the behavioral patterns typically associated with drugs of abuse. In this study, we found that administering the 5-HT2A agonist 4-Acetoxy-N,N-dimethyltryptamine fumarate (4-AcO-DMT) did not result in place preference in male rats compared to control saline administration 24 h later, after the drug has been cleared from the organism. However, in a modified place preference test where only the acute motivational effects of the drug were evaluated (excluding withdrawal), 4-AcO-DMT was found to be rewarding. Furthermore, in another modified place preference test where only the motivational effects of drug withdrawal were evaluated (excluding the acute effects of drug administration), the 24-hour aftereffect of 5-HT2A agonist administration also resulted in a robust place preference. Therefore, while 4-AcO-DMT administration was able to induce place preference, its 24-hour aftereffect also produced a strong reward. In the counterbalanced test, this reward from the aftereffect effectively overshadowed its acute rewarding properties, which could potentially create a false impression that 4-AcO-DMT lacks motivational properties. This suggests that 5-HT2A agonist administration follows a different dynamic than that proposed by the opponent-process theory of motivation and implies that the administration of 5-HT2A agonists may lead to behavioral patterns less typical of drugs associated with addiction.


Subject(s)
Hallucinogens , Substance-Related Disorders , Humans , Rats , Male , Animals , Hallucinogens/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , N,N-Dimethyltryptamine , Reward
16.
ACS Chem Neurosci ; 14(19): 3665-3673, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37721710

ABSTRACT

Orthogonal recreation of the signaling profile of a chemical synapse is a current challenge in neuroscience. This is due in part to the kinetics of synaptic signaling, where neurotransmitters are rapidly released and quickly cleared by active reuptake machinery. One strategy to produce a rapid rise in an orthogonally controlled signal is via photocaged compounds. In this work, photocaged compounds are employed to recreate both the rapid rise and equally rapid fall in activation at a chemical synapse. Specifically, a complementary pair of photocages based on BODIPY were conjugated to a 5-HT2C subtype-selective agonist, WAY-161503, and antagonist, N-desmethylclozapine, to generate "caged" versions of these drugs. These conjugates release the bioactive drug upon illumination with green light (agonist) or red light (antagonist). We report on the synthesis, characterization, and bioactivity testing of the conjugates against the 5-HT2C receptor. We then characterize the kinetics of photolysis quantitatively using HPLC and qualitatively in cell culture conditions stimulating live cells. The compounds are shown to be stable in the dark for 48 h at room temperature, yet photolyze rapidly when irradiated with visible light. In live cells expressing the 5-HT2C receptor, precise spatiotemporal control of the degree and length of calcium signaling is demonstrated. By loading both compounds in tandem and leveraging spectral multiplexing as a noninvasive method to control local small-molecule drug availability, we can reproducibly initiate and suppress intracellular calcium flux on a timescale not possible by traditional methods of drug dosing. These tools enable a greater spatiotemporal control of 5-HT2C modulation and will allow for more detailed studies of the receptors' signaling, interactions with other proteins, and native physiology.


Subject(s)
Receptor, Serotonin, 5-HT2C , Serotonin , Serotonin/metabolism , Serotonin Receptor Agonists , Serotonin 5-HT2 Receptor Agonists/pharmacology
17.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37566000

ABSTRACT

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Subject(s)
Alkaloids , Quinuclidines , Serotonin , Alkaloids/pharmacology , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Tropanes , Quinuclidines/chemistry , Quinuclidines/pharmacology
18.
ACS Chem Neurosci ; 14(15): 2727-2742, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37474114

ABSTRACT

Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of ß-arrestin2 (ßarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the ßarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).


Subject(s)
Hallucinogens , Serotonin , Receptor, Serotonin, 5-HT2A , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/chemistry , Phenethylamines/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
19.
J Med Chem ; 66(13): 9057-9075, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37378639

ABSTRACT

There is concern for important adverse effects with use of second-generation antipsychotics in Parkinson's disease psychosis (PDP) and dementia-related psychosis. Pimavanserin is the only antipsychotic drug authorized for PDP and represents an inverse agonist of 5-HT2A receptors (5-HT2AR) lacking affinity for dopamine receptors. Therefore, the development of serotonin 5-HT2AR inverse agonists without dopaminergic activity represents a challenge for different neuropsychiatric disorders. Using ligand-based drug design, we discovered a novel structure of pimavanserin analogues (2, 3, and 4). In vitro competition receptor binding and functional G protein coupling assays demonstrated that compounds 2, 3, and 4 showed higher potency than pimavanserin as 5-HT2AR inverse agonists in the human brain cortex and recombinant cells. To assess the effect of molecular substituents for selectivity and inverse agonism at 5-HT2ARs, molecular docking and in silico predicted physicochemical parameters were performed. Docking studies were in agreement with in vitro screenings and the results resembled pimavanserin.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Humans , Serotonin/therapeutic use , Drug Inverse Agonism , Molecular Docking Simulation , Receptor, Serotonin, 5-HT2A , Serotonin 5-HT2 Receptor Agonists/pharmacology , Psychotic Disorders/drug therapy , Serotonin Receptor Agonists/therapeutic use , Urea/pharmacology , Antipsychotic Agents/therapeutic use
20.
Behav Brain Res ; 447: 114438, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37059187

ABSTRACT

Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5 mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5 mg/kg, whereas operant responding was reduced at 1 mg/kg. At a much lower dose range lorcaserin 0.05-0.2 mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by the fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.


Subject(s)
Receptor, Serotonin, 5-HT2C , Serotonin , Animals , Male , Mice , Impulsive Behavior , Mice, Inbred C57BL , Reward , Serotonin/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL