Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.124
Filter
1.
J Biochem Mol Toxicol ; 38(8): e23781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39051179

ABSTRACT

Lisdexamfetamine dimesylate (LDX) is a prodrug of dextroamphetamine, which has been widely recommended for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). There are still no data in the literature relating the possible toxic effects of LDX in the kidney. Therefore, the present study aims to evaluate the effects of LDX exposure on morphological, oxidative stress, cell death and inflammation parameters in the kidneys of male pubertal Wistar rats, since the kidneys are organs related to the excretion of most drugs. For this, twenty male Wistar rats were distributed randomly into two experimental groups: LDX group-received 11,3 mg/kg/day of LDX; and Control group-received tap water. Animals were treated by gavage from postnatal day (PND) 25 to 65. At PND 66, plasma was collected to the biochemical dosage, and the kidneys were collected for determinations of the inflammatory profile, oxidative status, cell death, and for histochemical, and morphometric analyses. Our results show that there was an increase in the number of cells marked for cell death, and a reduction of proximal and distal convoluted tubules mean diameter in the group that received LDX. In addition, our results also showed an increase in MPO and NAG activity, indicating an inflammatory response. The oxidative status showed that the antioxidant system is working undisrupted and avoiding oxidative stress. Therefore, LDX-exposition in male rats during the peripubertal period causes renal changes in pubertal age involving inflammatory mechanisms, antioxidant activity and apoptosis process.


Subject(s)
Antioxidants , Apoptosis , Kidney , Lisdexamfetamine Dimesylate , Oxidative Stress , Rats, Wistar , Animals , Male , Apoptosis/drug effects , Rats , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Inflammation/metabolism , Inflammation/pathology , Sexual Maturation/drug effects
2.
Food Chem Toxicol ; 189: 114773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823497

ABSTRACT

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fluorides , Testis , Animals , Male , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Testis/drug effects , Testis/metabolism , Fluorides/toxicity , Mice , Sexual Maturation/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Sperm Count , Spermatogenesis/drug effects
3.
Toxicol Appl Pharmacol ; 489: 116981, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838792

ABSTRACT

Obesity in adult females impairs fertility by altering oxidative stress, DNA repair and chemical biotransformation. Whether prepubertal obesity results in similar ovarian impacts is under-explored. The objective of this study was to induce obesity in prepubertal female mice and assess puberty onset, follicle number, and abundance of oxidative stress, DNA repair and chemical biotransformation proteins basally and in response to 7,12-dimethylbenz(a)anthracene (DMBA) exposure. DMBA is a polycyclic aromatic hydrocarbon that has been shown to be ovotoxic. Lactating dams (C57BL6J) were fed either a normal rodent containing 3.5% kCal from fat (lean), or a high fat diet comprised of 60% kCal from fat, and 9% kCal from sucrose. The offspring were weaned onto the diet of their dam and exposed at postnatal day 35 to either corn oil or DMBA (1 mg/kg) for 7 d via intraperitoneal injection. Mice on the HFD had reduced (P < 0.05) age at puberty onset as measured by vaginal opening but DMBA did not impact puberty onset. Heart, spleen, kidney, uterus and ovary weight were increased (P < 0.05) by obesity and liver weight was increased (P < 0.05) by DMBA exposure in obese mice. Follicle number was largely unaffected by obesity or DMBA exposure, with the exception of primary follicle number, which were higher (P < 0.05) in lean DMBA exposed and obese control relative to lean control mice. There were also greater numbers (P < 0.05) of corpora lutea in obese relative to lean mice. In lean mice, DMBA exposure reduced (P < 0.05) the level of CYP2E1, EPHX1, GSTP1, BRCA1, and CAT but this DMBA-induced reduction was absent in obese mice. Basally, obesity reduced (P < 0.05) the abundance of CYP2E1, EPHX1, GSTP1, BRCA1, SOD1 and CAT. There was greater (P < 0.05) fibrotic staining in obese DMBA-exposed ovaries and PPP2CA was decreased (P < 0.05) in growing follicles by both obesity and DMBA exposure. Thus, prepubertal obesity alters the capacity of the ovary to respond to DNA damage, ovotoxicant exposure and oxidative stress.


Subject(s)
DNA Repair , Mice, Inbred C57BL , Obesity , Ovary , Oxidative Stress , Animals , Female , Oxidative Stress/drug effects , Ovary/drug effects , Ovary/metabolism , Obesity/metabolism , Obesity/chemically induced , Mice , DNA Repair/drug effects , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Biotransformation , Diet, High-Fat/adverse effects , Sexual Maturation/drug effects , Pregnancy
4.
Toxicol Sci ; 200(2): 287-298, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38730545

ABSTRACT

Male fertility depends on normal pubertal development. Di-(2-ethylhexyl) phthalate (DEHP) is a potent antiandrogen chemical, and exposure to DEHP during peripuberty can damage the developing male reproductive system, especially the testis. However, the specific cellular targets and differentiation processes affected by DEHP, which lead to testicular toxicity, remain poorly defined. Herein, we presented the first single-cell transcriptomic profile of the pubertal mouse testis following DEHP exposure. To carry out the experiment, 2 groups (n = 8 each) of 3-week-old male mice were orally administered 0.5% carboxymethylcellulose sodium salt or 100 mg/kg body weight DEHP daily from postnatal day 21-48, respectively. Using single-cell RNA sequencing, a total of 31 distinct cell populations were identified, notably, Sertoli and Leydig cells emerged as important targets of DEHP. DEHP exposure significantly decreased the proportions of Sertoli cell clusters expressing mature Sertoli markers (Sox9 and Ar), and selectively reduced the expression of testosterone synthesis genes in fetal Leydig cells. Through cell-cell interaction analyses, we observed changed numbers of interactions in Sertoli cells 1 (SCs1), Leydig cells 1 (LCs1), and interstitial macrophages, and we also identified cell-specific ligand gene expressions in these clusters, such as Inha, Fyn, Vcam1, and Apoe. Complementary in vitro assays confirmed that DEHP directly reduced the expression of genes related to Sertoli cell adhesion and intercellular communication. In conclusion, peripubertal DEHP exposure reduced the number of mature Sertoli cells and may disrupt testicular steroidogenesis by affecting the testosterone synthesis genes in fetal Leydig cells rather than adult Leydig cells.


Subject(s)
Diethylhexyl Phthalate , Leydig Cells , Sertoli Cells , Testis , Animals , Male , Diethylhexyl Phthalate/toxicity , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/pathology , Testis/drug effects , Testis/metabolism , Testis/pathology , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/pathology , Mice , Single-Cell Analysis , Sexual Maturation/drug effects , Testosterone/blood , Transcriptome/drug effects , Cell Communication/drug effects , Mice, Inbred C57BL
5.
J Hazard Mater ; 470: 134160, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574665

ABSTRACT

OBJECTIVE: To investigate the effects of polycyclic aromatic hydrocarbons(PAHs) on puberty in boys. METHODS: 695 subjects were selected from four primary schools in Chongqing, China. 675 urine samples from these boys were collected four PAH metabolites: 1-hydroxypyrene, 2-hydroxynaphthoic, 2-hydroxyfluorene, and 9-hydroxyphenanthrene. Pubertal development of 695 boys was assessed at follow-up visits starting in December 2015 and occurring every six months thereafter until now, data used in this article ending in June 2021. A total of 12 follow-up visits were performed. Cox proportional hazards regression models were used to analyze the relationship between PAH metabolite concentrations and indicators of pubertal timing. RESULTS: The mean age at puberty onset of testicular volume, facial hair, pubic hair, first ejaculation, and axillary hair in boys was 11.66, 12.43, 12.51, 12.72 and 13.70 years, respectively. Cox proportional hazards regression models showed that boys with moderate level of 1-OHPyr exposure was associated with earlier testicular development (hazard ratio [HR] = 1.276, 95% confidence interval [CI]: 1.006-1.619), with moderate level of 2-OHNap were at higher risk of early testicular development (HR = 1.273, 95% CI: 1.002-1.617) and early axillary hair development (HR = 1.355, 95% CI: 1.040-1.764), with moderate level of 2-OHFlu was associated with earlier pubic hair development (HR = 1.256, 95% CI: 1.001-1.577), with high level of 9-OHPhe were at higher risk of early fisrt ejaculation (HR = 1.333, 95% CI: 1.005-1.767) and early facial hair development (HR = 1.393, 95% CI: 1.059-1.831). CONCLUSION: Prepubertal exposure to PAHs may be associated with earlier pubertal development in boys.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Puberty , Humans , Male , Polycyclic Aromatic Hydrocarbons/urine , Polycyclic Aromatic Hydrocarbons/toxicity , Child , Adolescent , Puberty/drug effects , Longitudinal Studies , China , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/urine , Sexual Maturation/drug effects , Testis/drug effects , Proportional Hazards Models
6.
Endocrinology ; 165(5)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38597659

ABSTRACT

We examined the effect of the puberty blocker, leuprolide acetate, on sex differences in juvenile rough-and-tumble play behavior and anxiety-like behavior in adolescent male and female rats. We also evaluated leuprolide treatment on gonadal and pituitary hormone levels and activity-regulated cytoskeleton-protein messenger RNA levels within the adolescent amygdala, a region important both for rough-and-tumble play and anxiety-like behavior. Our findings suggest that leuprolide treatment lowered anxiety-like behavior during adolescent development, suggesting that the maturation of gonadotropin-releasing hormone systems may be linked to increased anxiety. These data provide a potential new model to understand the emergence of increased anxiety triggered around puberty. Leuprolide also reduced masculinized levels of rough-and-tumble play behavior, lowered follicle-stimulating hormone, and produced a consistent pattern of reducing or halting sex differences of hormone levels, including testosterone, growth hormone, thyrotropin, and corticosterone levels. Therefore, leuprolide treatment not only pauses sexual development of peripheral tissues, but also reduces sex differences in hormones, brain, and behavior, allowing for better harmonization of these systems following gender-affirming hormone treatment. These data contribute to the intended use of puberty blockers in stopping sex differences from developing further with the potential benefit of lowering anxiety-like behavior.


Subject(s)
Anxiety , Behavior, Animal , Leuprolide , Sexual Maturation , Animals , Leuprolide/pharmacology , Male , Female , Anxiety/drug therapy , Rats , Behavior, Animal/drug effects , Sexual Maturation/drug effects , Sex Characteristics , Amygdala/drug effects , Amygdala/metabolism , Corticosterone/blood , Rats, Sprague-Dawley , Testosterone/blood
7.
PLoS One ; 19(4): e0300728, 2024.
Article in English | MEDLINE | ID: mdl-38683862

ABSTRACT

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Subject(s)
Growth Hormone , Animals , Cattle , Female , Growth Hormone/blood , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/drug effects , Insulin-Like Growth Factor I/metabolism , Diet/veterinary , Animal Feed/analysis , Sexual Maturation/drug effects , Body Composition/drug effects , Animal Nutritional Physiological Phenomena , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/metabolism
8.
Ecotoxicol Environ Saf ; 277: 116399, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677070

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.


Subject(s)
Alkanesulfonates , Apoptosis , Endocrine Disruptors , Reactive Oxygen Species , Sexual Maturation , Uterus , Animals , Female , Rats , Apoptosis/drug effects , Cell Proliferation/drug effects , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Sexual Maturation/drug effects , Uterus/drug effects , Alkanesulfonates/toxicity
9.
J Cardiovasc Pharmacol ; 83(6): 635-645, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547515

ABSTRACT

ABSTRACT: Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.


Subject(s)
Abatacept , Kidney , Obesity , Rats, Inbred Dahl , Receptors, Leptin , T-Lymphocytes , Animals , Abatacept/pharmacology , Obesity/drug therapy , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/deficiency , Male , Rats , Disease Progression , Disease Models, Animal , Proteinuria/drug therapy , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Sexual Maturation/drug effects
10.
Toxicology ; 504: 153789, 2024 May.
Article in English | MEDLINE | ID: mdl-38522820

ABSTRACT

Chlorpyrifos is an organophosphate insecticide used to control pests in crops. Thus, humans are constantly exposed through ingestion of contaminated food or water, inhalation of contaminated air, and through the skin. The juvenile and peripubertal periods comprise a window of development of the reproductive system, sensitive to toxic agents. Considering the scarcity of data on exposure to the insecticide during these periods, the aim of this study was to evaluate the effects of chlorpyrifos on the testis during the juvenile and peripubertal periods. Thirty Wistar rats with an initial age of 25 days were distributed into 3 groups: control, which received corn oil (vehicle); CPS5, which received 5 mg/Kg b.w. of chlorpyrifos; and CPS15, which received 15 mg/Kg b.w. of chlorpyrifos. The groups were treated via gavage daily for 40 days and on the 41st experimental day, the animals were anesthetized and submitted to euthanasia to collect the organs. Blood was collected to obtain plasma and testosterone measurement. The testicles were removed, weighed and used for sperm count analyses, histopathological and morphometric analyzes and for oxidative stress analyses. Spermatozoa from the vas deferens were collected for analyzes of sperm morphology and acrosome integrity. The results showed that the two concentrations of chlorpyrifos caused a decrease in the number of Leydig and Sertoli cells and germ cells and increased the number of morphologically abnormal sperm and sperm with acrosomal damage. Furthermore, a decrease in lipid peroxidation was observed in the CPS5 and CPS15 groups, and a decrease in glutathione-S-transferase activity in the CPS5 group. We conclude that exposure to chlorpyrifos harms the daily production of sperm, as well as their quality, in addition to causing an imbalance in the oxidoreductive balance of the testicle.


Subject(s)
Chlorpyrifos , Insecticides , Leydig Cells , Rats, Wistar , Sertoli Cells , Spermatozoa , Animals , Male , Chlorpyrifos/toxicity , Insecticides/toxicity , Spermatozoa/drug effects , Spermatozoa/pathology , Leydig Cells/drug effects , Leydig Cells/pathology , Leydig Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/pathology , Rats , Sexual Maturation/drug effects , Oxidative Stress/drug effects , Testosterone/blood , Testis/drug effects , Testis/pathology , Testis/metabolism , Sperm Count
11.
Endocrine ; 84(3): 1216-1228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38273138

ABSTRACT

BACKGROUND: It is now well known that visfatin is expressed in the testis and ovary of various animals. Visfatin is known to regulate gonadal functions such as steroidogenesis, proliferation, and apoptosis in the ovary and testis of mice. Recently, we have shown that visfatin has an inhibitory role in the infantile mice testis. It has also been shown that visfatin stimulates testicular steroidogenesis in adult rats. However, the role of visfatin during puberty has not been investigated in relation to the above-mentioned process. OBJECTIVE: The objective of the present study was to examine the effect of visfatin inhibition by FK866 from PND25 to PND35 (pre-pubertal to early pubertal) in male Swiss albino mice on steroidogenesis, proliferation, and apoptosis. METHODS: Sixteen mice (25 days old) were divided into two groups, one group was given normal saline and the other group was administered with an inhibitor of visfatin (FK866) at the dose of 1.5 mg/kg by intraperitoneal injection for 10 days. Histopathological and immunohistochemical analysis, western blot analysis and hormonal assay were done. RESULTS: Visfatin inhibition resulted in increased estrogen secretion, body weight, seminiferous tubule diameter, germinal epithelium height, and proliferation along with increased expression of BCl2, casapse3, ERs and aromatase expression in the mice testis. Visfatin inhibition down-regulated the testicular visfatin expression and also decreased abundance in the adipose tissues. CONCLUSION: In conclusion, decreased AR expression and increased ERs expression by FK866, suggest that visfatin might have a stimulatory effect on AR signaling than ERs in the early pubertal stage of mice.


Subject(s)
Acrylamides , Nicotinamide Phosphoribosyltransferase , Piperidines , Receptors, Androgen , Sexual Maturation , Testis , Animals , Male , Nicotinamide Phosphoribosyltransferase/metabolism , Mice , Testis/drug effects , Testis/metabolism , Sexual Maturation/drug effects , Sexual Maturation/physiology , Receptors, Androgen/metabolism , Acrylamides/pharmacology , Piperidines/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Receptors, Estrogen/metabolism , Testosterone/blood , Testosterone/pharmacology , Aromatase/metabolism
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4663-4675, 2024 07.
Article in English | MEDLINE | ID: mdl-38112729

ABSTRACT

Cyfluthrin, a widely used synthetic pyrethroid insecticide, poses potential risks to both human health and the environment due to its extensive application in residential, agricultural, and outdoor settings. Conversely, benfotiamine, a fat-soluble derivative of vitamin B1, offers versatile therapeutic potential. This experimental study aimed to investigate the impact of cyfluthrin exposure during the prepubertal period on sperm characteristics and testicular tissue integrity in male rats, as well as to assess the protective effects of benfotiamine. A total of 32 4-week-old Wistar albino male rats were divided into four groups. Group I received daily oral gavage of 1 ml/kg/day of olive oil (control). Group II was administered cyfluthrin (54 mg/kg/day) dissolved in 1 ml of olive oil. Group III received both cyfluthrin (54 mg/kg/day) and benfotiamine (100 mg/kg/day) in olive oil. Group IV was given benfotiamine (100 mg/kg/day) in olive oil. After 5 weeks of treatment, the rats underwent evaluations for sperm motility, epididymal sperm density, and abnormal sperm rates. Additionally, their testicular tissues were examined histologically and immunohistochemically. This study underscores the potential hazards of cyfluthrin exposure on male reproductive health and highlights the protective role of benfotiamine in mitigating these effects. It emphasizes the importance of careful pesticide usage and dosage considerations to prevent potential public health issues, including infertility, associated with long-term exposure to pesticides like cyfluthrin.


Subject(s)
Insecticides , Nitriles , Pyrethrins , Rats, Wistar , Sperm Motility , Spermatozoa , Testis , Male , Animals , Pyrethrins/toxicity , Testis/drug effects , Testis/pathology , Spermatozoa/drug effects , Sperm Motility/drug effects , Insecticides/toxicity , Nitriles/toxicity , Nitriles/pharmacology , Rats , Sperm Count , Sexual Maturation/drug effects
13.
Ecotoxicol Environ Saf ; 249: 114413, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36516620

ABSTRACT

Acrylamide (AA) is widely contaminated in environment and diet. However, the association of AA and sex hormones has rarely been investigated, especially in adolescents, a period of particular susceptibility to sex hormone disruption. In this study, survey-weighted multivariate linear regression models were conducted to determine the association between AA Hb biomarkers [HbAA and glycidamide (HbGA)] and sex hormones [total testosterone (TT) and estradiol (E2)] in a total of 3268 subjects from National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves. Additionally, adult and pubertal mice were treated with AA to assess the effect of AA on sex hormones and to explore the potential mechanisms. Among all the subjects, significant negative patterns for HbGA and sex hormones were identified only in youths (6-19 years old), with the lowest ß being - 0.53 (95% CI: -0.80 to -0.26) for TT in males and - 0.58 (95% CI: -0.93 to -0.23) for E2 in females. Stratified analysis further revealed significant negative associations between HbGA and sex hormones in adolescents, with the lowest ß being - 0.58 (95% CI: -1.02 to -0.14) for TT in males and - 0.54 (95% CI: -1.03 to -0.04) for E2 in females, while there were no significant differences between children or late adolescents. In mice, the levels of TT and E2 were dramatically reduced in AA-treated pubertal mice but not in adult mice. AA disturbed the expression of genes in the hypothalamic-pituitary-gonadal (HPG) axis, induced apoptosis of hypothalamus-produced gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus and reduced serum and hypothalamic GnRH levels in pubertal mice. Our study indicates AA could reduce TT and E2 levels by injuring GnRH neurons and disrupting the HPG axis in puberty, which manifested as severe endocrine disruption on adolescents. Our findings reinforce the idea that adolescence is a vulnerable stage in AA-induced sex hormone disruption.


Subject(s)
Acrylamide , Endocrine Disruptors , Environmental Pollutants , Gonadal Steroid Hormones , Puberty , Sexual Maturation , Animals , Female , Humans , Male , Mice , Acrylamide/toxicity , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Estradiol/metabolism , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism , Gonadotropin-Releasing Hormone/blood , Gonadotropin-Releasing Hormone/metabolism , Nutrition Surveys , Puberty/drug effects , Puberty/metabolism , Sexual Maturation/drug effects , Testosterone/blood , Testosterone/metabolism , Child , Adolescent , Young Adult , Biomarkers/blood
14.
Ecotoxicol Environ Saf ; 249: 114387, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508816

ABSTRACT

Increasing evidence shows that the early onset of puberty in female offspring may be caused by maternal prenatal exposure to bisphenol A (BPA) during pregnancy; however, the critical time window of maternal prenatal BPA exposure remains unknown. Here, we identify the critical time window of gestational BPA exposure that induces early onset of puberty in female offspring. Pregnant CD-1 mice were gavaged with BPA (8 mg/kg) daily during the early gestational stage (GD1-GD6), middle gestational stage (GD7-GD12) or late gestational stage (GD13-GD18). We show that maternal BPA exposure during the early and middle gestational stages could advance the vaginal opening time and increase the serum levels of kisspeptin-10 and GnRH in the female offspring at PND 34. Mechanistically, maternal BPA exposure during early and middle gestation could significantly increase CpG island methylation in the Eed gene promoters but reduce the mRNA expression of Eed in the hypothalamus tissues of the female offspring. In conclusion, the critical period of maternal BPA exposure-induced early onset of puberty in female offspring is early and middle gestation; this BPA-induced early onset of puberty might be partly attributed to epigenetic programming of the Eed gene in the hypothalamus. This study provides important insights regarding the relationship and the mechanisms between BPA and offspring pubertal development.


Subject(s)
Benzhydryl Compounds , Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Mice , Pregnancy , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Sexual Maturation/drug effects
15.
Toxicol Sci ; 190(2): 189-203, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36161332

ABSTRACT

Despite increased prescription of sertraline during pregnancy, little is known about its action on reproductive development. Therefore, this study aimed to investigate the impact that stress, associated or not with sertraline, causes on the reproductive development of male rats. Pregnant Wistar rats were divided into 4 groups (n = 16/group): CO-received filtered water; SE-received 20 mg/kg sertraline; ST-submitted to restraint stress and received filtered water; SS-submitted to restraint stress and received sertraline. The treatment was carried out from gestational days (GDs) 13-20. The animals were euthanized on GD 20 (n = 8/group), postnatal day (PND) 45 (n = 8/group), and PND 110 (n = 8/group). The testes and epididymis were analyzed histologically, and immunohistochemistry was performed on the testes by proliferating cell nuclear antigen (PCNA) and the Wilms tumor protein (Wt1). Sperm quality was also analyzed on PND 110. The evolution of body weight, anogenital distance (AGD), and puberty installation day were also verified. Statistical analysis: 2-way ANOVA or Kruskal-Wallis test (p ≤ .05). Fetal testes presented a large number of acidophilic cells in the sertraline-exposed groups. The SS group also showed a decrease in the nuclear volume of Leydig cells. This same group showed low expression of PCNA and Wt1, decreased weight of the testes and epididymis, lower AGD, and delayed puberty installation. The adulthood groups exposed to sertraline presented alterations in sperm morphology and motility. The results demonstrated that prenatal exposure to sertraline compromises the development of the rat reproductive system.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Sertraline , Sexual Maturation , Animals , Female , Male , Pregnancy , Rats , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Proliferating Cell Nuclear Antigen , Rats, Wistar , Semen , Sertraline/toxicity , Sexual Maturation/drug effects , Testis/pathology
16.
Physiol Behav ; 254: 113879, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35705155

ABSTRACT

The present study examined the long-term effects of suppressing puberty with a GnRH agonist on reproductive physiology and behavior in female rats. We have recently reported that administration of the GnRH agonist leuprolide acetate (25 µg/kg) daily between postnatal day (PD) 25-50 delayed puberty and disrupted the development of copulatory behavior and sexual motivation in male rats. However, pilot data from our lab suggest that this low dose of leuprolide acetate (25 µg/kg) was not high enough to significantly delay puberty in female rats. Therefore, we injected female Long-Evans rats with leuprolide acetate at a higher dose (50 µg/kg) or 0.9% sterile saline, daily , starting on PD 25 and ending on PD 50. Vaginal opening was monitored daily starting on PD 30 for signs of pubertal onset and first estrous cycle. In addition, we measured estrous cyclicity starting approximately 2 weeks after the last injection of leuprolide (∼PD 64). Immediately after monitoring estrous cyclicity, the female rats were mated on their first day in behavioral estrus using the partner-preference paradigm, with and without physical contact (PD 95-110). We found that this dose of leuprolide (50 µg/kg) significantly delayed puberty; however, neither estrous cyclicity nor sexual motivation was significantly affected by periadolescent exposure to leuprolide. Together with our findings in male rats, these results add to our understanding of the developmental effects of chemically suppressing puberty in rats.


Subject(s)
Estrous Cycle , Fertility Agents, Female , Leuprolide , Sexual Behavior, Animal , Sexual Maturation , Animals , Estrous Cycle/drug effects , Estrous Cycle/physiology , Estrus , Female , Fertility Agents, Female/pharmacology , Gonadotropin-Releasing Hormone/agonists , Leuprolide/pharmacology , Models, Animal , Periodicity , Rats , Rats, Long-Evans , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Sexual Maturation/drug effects , Sexual Maturation/physiology
17.
Reprod Toxicol ; 108: 1-9, 2022 03.
Article in English | MEDLINE | ID: mdl-34974146

ABSTRACT

Tamoxifen, a selective non-steroidal estrogen receptor modulator, is the standard adjuvant endocrine treatment for breast cancer. Since information on the risk of using tamoxifen during pregnancy is still scarce, this study evaluated whether the in utero and lactational treatment with this drug could compromise reproductive and behavioural parameters in male offspring. Pregnant Wistar rats were exposed to three doses of tamoxifen (0.12; 0.6; 3 µg/kg), by gavage, from gestational day 15 to lactational day 20. Tamoxifen exposure did not alter the anogenital distance in the male offspring; however, there was a significant increase in the body weight in the 0.12 µg/kg dose and a decrease in the 0.6 µg/kg dose. The male offspring treated with the highest dose exhibited a delay in the onset of puberty, evidenced by an increase in the age of preputial separation. Regarding sperm parameters, there was an increase in the sperm count in the cauda epididymis in the intermediate and highest dose groups, in addition to an increase in the number of static sperm and a decrease in the progressive sperm in the same groups. Moreover, an increase in the number of hyperplasia of the epithelial clear cells was observed in the epididymis. In conclusion, the present study demonstrated that maternal exposure to tamoxifen compromised the installation of puberty of the male offspring and the maturation of the epididymis, affecting sperm storage and motility in the adult life.


Subject(s)
Behavior, Animal/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Selective Estrogen Receptor Modulators/toxicity , Spermatozoa/drug effects , Tamoxifen/toxicity , Animals , Epididymis/drug effects , Epididymis/growth & development , Female , Hypothalamus/cytology , Lactation , Male , Maternal-Fetal Exchange , Neurons/drug effects , Neurons/metabolism , Pregnancy , Rats, Wistar , Receptors, Androgen/metabolism , Sexual Maturation/drug effects , Sperm Count , Sperm Motility/drug effects , Spermatozoa/physiology
18.
Article in English | MEDLINE | ID: mdl-34871860

ABSTRACT

BACKGROUND: Ethanol (EtOH) exposure impairs, but docosahexaenoic acid (DHA) supports testis functions. This study investigated whether dietary DHA and prenatal EtOH exposure affected fatty acid profiles equally in immature and mature testis during developmental stages. METHODS: Female rats were exposed to ± EtOH (3g/kg BW, twice a day via gavage) throughout pregnancy, while consuming a diet supplemented ± DHA (1.4%, w/w). Pups were continued on their mother's diet after weaning with testes collected for fatty acid analysis at different stages of reproductive development, at gestational day 20 (GD20) and postnatal day (PD) 4, 21, 49, and 90, to present fetal, neonatal, weaning, prepubertal and adult stages, respectively. RESULTS: Regardless of EtOH exposure, dietary DHA significantly increased in testis DHA at all ages, with testis at weaning and prepuberty being more responsive to the diet (p<0.0002). Immature testis at GD20 and PD4 contained more DHA than n-6 docosapentaenoic acid (n-6 DPA) compared to mature testis while being well responsive to the maternal DHA diet through gestation and lactation. The level of n-6 very long chain fatty acids and (VLCFA) and n-6 DPA, distinctively increased from weaning and prepuberty, respectively, and were not reduced by the DHA diet at prepuberty and adulthood. Prenatal EtOH minimally affected testis fatty acids during development. CONCLUSION: Immature and mature testis responds differently to dietary DHA. The age around sexual maturity might be a critical time for dietary intervention as testis was more responsive to diet at this time point. The increase in DPA and n-6 VLCFA in matured testis while not affected by dietary DHA, indicates their critical roles in male reproductive function in rodents.


Subject(s)
Diet/methods , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/metabolism , Ethanol/administration & dosage , Fetal Development/drug effects , Sexual Maturation/drug effects , Testis/embryology , Testis/growth & development , Animals , Fatty Acids, Unsaturated/metabolism , Female , Gestational Age , Lactation , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Testis/metabolism , Weaning
19.
Mol Cell Endocrinol ; 541: 111507, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34785282

ABSTRACT

Bisphenol A (BPA) is a common endocrine disruptor and a high-fat diet (HFD) also affects fertility. However, little is known about the long-term consequences of simultaneous exposure to BPA and a HFD on reproductive health. Herein, we assessed the effects of maternal exposure to BPA in combination with a HFD on reproductive function in subsequent generations of female mice and evaluated its effects on the hypothalamic-pituitary-gonadal axis. We found that the combination of maternal exposure to BPA and a HFD led to increased urine BPA levels, precocious puberty, altered estrous cyclicity, decreased follicle numbers, and altered hypothalamic Kiss1 methylation status in F1 and F2 mice. Therefore, we demonstrated that maternal exposure to BPA in combination with a HFD exerts a trans-generational effect on female reproduction.


Subject(s)
Benzhydryl Compounds/toxicity , Diet, High-Fat/adverse effects , Genitalia, Female/physiopathology , Infertility, Female/etiology , Phenols/toxicity , Prenatal Exposure Delayed Effects/physiopathology , Animals , Dietary Fats/adverse effects , Endocrine Disruptors/toxicity , Estrous Cycle/drug effects , Estrous Cycle/physiology , Female , Genitalia, Female/drug effects , Male , Maternal Exposure/adverse effects , Mice , Mice, Inbred ICR , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Reproduction/drug effects , Reproduction/physiology , Sexual Maturation/drug effects , Sexual Maturation/physiology
20.
Nutrients ; 13(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34836437

ABSTRACT

Pesticide residues are largely found in daily consumed food because of their extensive use in farming and their long half-life, which prolongs their presence in the environment. Many of these pesticides act as endocrine-disrupting chemicals after pre- or postnatal exposure, significantly affecting, among other things, the time of puberty onset, progression, and completion. In humans, precocious or delayed puberty, and early or delayed sexual maturation, may entail several negative long-term health implications. In this review, we summarize the current evidence on the impact of endocrine-disrupting pesticides upon the timing of the landmarks of female and male puberty in both animals (vaginal opening, first estrus, and balanopreputial separation) and humans (thelarche, menarche, gonadarche). Moreover, we explore the possible mechanisms of action of the reviewed endocrine-disrupting pesticides on the human reproductive system. Access to safe, healthy, and nutritious food is fundamental for the maintenance of health and wellbeing. Eliminating the presence of hazardous chemicals in largely consumed food products may increase their nutritional value and be proven beneficial for overall health. Consequently, understanding the effects of human exposure to hazardous endocrine-disrupting pesticides, and legislating against their circulation, are of major importance for the protection of health in vulnerable populations, such as children and adolescents.


Subject(s)
Dietary Exposure/adverse effects , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Pesticides/toxicity , Puberty/drug effects , Adolescent , Agriculture , Animals , Female , Humans , Male , Sexual Maturation/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL