Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.489
Filter
1.
PLoS Negl Trop Dis ; 18(7): e0012287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012848

ABSTRACT

BACKGROUND: Coxiella burnetii is causing infections in both humans and animals, resulting in Q fever and Coxiellosis, respectively. Information on the occurrence of C. burnetii infection is scarce in Ethiopia. This study estimated the sero-prevalence of C. burnetii infection and associated risk factors in four common livestock species from Addis Ababa, Adama, and Modjo abattoirs and pastoral areas of Oromia, Ethiopia. RESULTS/PRINCIPAL FINDINGS: Sera samples were analyzed for the presence of anti-C. burnetii antibodies using an indirect Enzyme Linked Immunosorbent Assay kit. Out of the 4140 serum samples tested, 777 (18.77%; 95% CI: 17.59, 19.99) were found positive for C. burnetii. The sero-prevalence estimate was 27.17% at Addis Ababa abattoir, 19.41% at Adama abattoir, 19.13% at Modjo abattoir and 12.1% in animals tested from pastoral areas. Sera analysis at the animal species level showed that cattle exhibited the lowest sero-prevalence estimate (11.83%; 95% CI, 10.27-13.53%), while the highest was observed in camels (28.39%; 95% CI, 25.16-31.80%). The sero-prevalence estimate was 21.34% (95% CI, 18.86-23.99%) in goats and 20.17% (95% CI, 17.49-23.07%) in sheep. The results of multivariable logistic regression analysis showed that species, age, sex of animals and tick infestation were important risk factors for C. burnetii infection. The odds of infection were 3.22 times higher in camels and almost twice as high in goats and sheep compared to cattle. Adult animals were infected more likely (OR = 3.23) than young ones. Interestingly, a significant difference was observed in the sero-prevalence of infection between animals that were infested with ticks (OR = 16.32) and those which were tick-free. CONCLUSION: This study provides valuable insights into the sero-epidemiology of C. burnetii infection in four common livestock species at major abattoirs and pastoral areas of Ethiopia. The findings highlight the need for further studies and implementing surveillance and biosecurity measures to prevent the spread of the disease in both humans and livestock to safeguard the economical and public health aspects.


Subject(s)
Abattoirs , Antibodies, Bacterial , Camelus , Cattle Diseases , Coxiella burnetii , Goat Diseases , Goats , Livestock , Q Fever , Animals , Ethiopia/epidemiology , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/blood , Risk Factors , Seroepidemiologic Studies , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Cattle , Sheep , Male , Female , Livestock/microbiology , Antibodies, Bacterial/blood , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Camelus/microbiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Prevalence
2.
Vet Parasitol Reg Stud Reports ; 53: 101069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025548

ABSTRACT

Fort Munro is a hill station in Southern Punjab the residents of whom are heavily dependent upon livestock for their living but ticks are a big treat for the livestock. The purpose of this study was to ascertain the tick infestation among the small ruminants of Fort Munro. Ticks (N = 273) were collected from 333 animals (165 goats and 168 sheep) during August and September 2022. Two tick genera Hyalomma and Rhipicephalus were identified. Rhipicephalus was most abundant tick genera (78.02%) followed by Hyalomma (21.98%).Tick distribution significantly varied with the host: Rhipicephalus ticks were more frequently infesting goats while Hyalomma were more common on sheep. For both hosts, tick infestation varied with the sampling sites and male animals were significantly more infested than females. Five tick species were infesting goats with the following relative abundance: Rhipicephalus (R.) senegalensis (39.20%) > R. sanguineus (36.8%) > R. appendiculatus (10.40%) > R. turanicus (8%) > R. guilhoni (5.6%). Rhipicephalus senegalensis (41.22%) was also the most common tick species infesting sheep followed by Hyalomma (H.) marginatum (29.73%), R. guilhoni (18.24%), H. dromedarii (5.41%) and H. impeltatum (5.41%). Male ticks very more abundantly on both goats and sheep than female. Distribution of Hyalomma species also varied between the sampling sites. In conclusion, we are reporting the infestation of 3 Hyalomma and 5 Rhipicephalus in small ruminants of Fort Munro. The data generated through this study will help in developing appropriate tick control in the study area and will add to the existing knowledge regarding tick species that are infesting the small ruminants of Pakistan.


Subject(s)
Goat Diseases , Goats , Ixodidae , Sheep Diseases , Tick Infestations , Animals , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Pakistan/epidemiology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Female , Prevalence , Male , Ixodidae/classification , Ixodidae/physiology , Rhipicephalus/physiology
3.
Vet Parasitol Reg Stud Reports ; 53: 101073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025543

ABSTRACT

Dicrocoeliosis is a parasitic disease that mainly affects ruminants during grazing, caused by trematodes of the genus Dicrocoelium, with D. dendriticum being the most common species worldwide. This parasitosis is a chronic and generally subclinical process, with nonspecific signs, which makes its diagnosis challenging. This study aimed to determine the prevalence and seasonal dynamics of D. dendriticum infection in adult sheep from the Valencian Community, eastern Spain, as well as to evaluate the efficacy of flotation and sedimentation techniques when compared with the macroscopic exam of the liver. From February to May 2018, 2019, 2020, 2021, and 2022, a total of 290 adult sheep were examined. The animals were sourced from Castellón province, where a semi-intensive production system predominates. Each animal was euthanized and underwent a macroscopic examination of the liver, as well as a fecal analysis. Among the sampled animals, 117 (40.6%) tested positive for adult trematodes in their liver, while 87 (30%) showed evidence of trematode eggs in the coprological exam, reaching a total of 126 sheep parasitized, with a prevalence of 43.4%. The parasitic burden was established in 90.3 adults per animal when the liver was examined and in 54.5 eggs per gram when the sedimentation coprological exam was performed. No eggs were observed when the flotation technique was employed. A positive correlation was found between the number of adults in the liver and the fecal egg count. No significant differences were detected in the prevalence or parasitic burden throughout the study. Considering the difficulty in controlling the intermediate hosts and the complexity of the life cycle, effective diagnostic methods, combined with the adoption of other preventive measures, is crucial to achieving proper management of this parasitic disease.


Subject(s)
Dicrocoeliasis , Dicrocoelium , Feces , Sheep Diseases , Animals , Spain/epidemiology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Dicrocoeliasis/veterinary , Dicrocoeliasis/epidemiology , Dicrocoeliasis/parasitology , Dicrocoeliasis/diagnosis , Prevalence , Dicrocoelium/isolation & purification , Feces/parasitology , Seasons , Liver/parasitology , Female , Male
4.
Vet Parasitol Reg Stud Reports ; 53: 101078, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025545

ABSTRACT

Livestock industry is a pivotal sector for providing food, work places and monetary support for Egyptian people. Besnoitia besnoiti and Neospora caninum are protozoan parasites that are responsible for significant economic losses in ruminants, particularly in cattle. Besnoitia besnoiti can cause fertility problems and a general loss in productivity, while N. caninum is a major cause of abortion and neonatal abnormalities in infected animals. There is little information on the existence of these protozoa in Egypt, thus we conducted this study to reveal the current situation in cattle (n = 264), sheep (n = 151), and goats (n = 25). Serum samples were collected from governorates of Cairo, Giza, and Beni Suef, representing the most densely populated regions in Egypt. Using commercial ELISAs, an overall estimation among all tested animals (n = 440) revealed 7.7%, 13.2%, and 0.9% as seropositive rates for B. besnoiti, N. caninum, and mixed infection, respectively. Animal species (cattle vs sheep vs goat) and age of cattle (less than vs >1 year old) were analyzed as risk factors for infection. Regarding B. besnoiti, the seroprevalence was significantly higher in cattle than in sheep and goats and in adult cattle than calves. For N. caninum infection, no significant differences were recorded, although the seropositive rates were higher in cattle, and in adult cattle. This study provides the first seroprevalence data for B. besnoiti in all surveyed animals in the regions included, and in sheep and goats from Egypt, and supports the current knowledge for the occurrence of N. caninum in Egypt.


Subject(s)
Antibodies, Protozoan , Cattle Diseases , Coccidiosis , Goat Diseases , Goats , Neospora , Sarcocystidae , Sheep Diseases , Animals , Egypt/epidemiology , Neospora/immunology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Cattle , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Goat Diseases/epidemiology , Goat Diseases/parasitology , Antibodies, Protozoan/blood , Seroepidemiologic Studies , Sarcocystidae/immunology , Sarcocystidae/isolation & purification , Goats/parasitology , Female , Enzyme-Linked Immunosorbent Assay/veterinary
5.
Vet Parasitol Reg Stud Reports ; 53: 101070, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025549

ABSTRACT

The general aim of this study is to analyse the risk factors for gastrointestinal parasitosis in small ruminants in order to contribute to the emergence of targeted treatment methods, at herd and agro-climatic zone levels, for the integrated and sustainable management of parasitic diseases in Sahelian livestock systems. The methodology was based on a questionnaire survey conducted in 37 villages and coprological analysis using the McMaster method on faecal samples from 968 small ruminants, including 555 goats and 413 sheep. Multiple logistic regression was used to highlight the risk factors associated with each type of parasitosis encountered. The results showed that the most widespread farming system remained 100% traditional, with feeding based essentially on natural grazing. Coprological results showed the prevalence of nematodosis (70.2%), Cestodosis (4.1%) and Coccidiosis (79.9%), with an average prevalence of coinfection of 56.9%. These parasite loads were significantly higher during the rainy season and in the more arid northern Sahelian zone, with a marked reduction at the end of the season. Average parasitic egg excretions were 1089 EPG of nematodes and 6864 EPG of coccidia. Parasite loads were higher in the wetter southern strip and varied significantly by breed. Of the five breeds of small ruminants studied, the ara-ara sheep had the highest parasitic loads and prevalences for nematodosis (78.6%), coccidiosis (89,3%) and coinfection (70.9%), appears to be the most susceptible to parasitosis. As for risk factors for severe parasite pressure, animals at the end of the rainy season, older animals and those with poor body condition were at risk of nematodiasis or coinfection. On the other hand, animals at the beginning of the rainy season, farms located in less arid southern Sahelian zones and male subjects were the groups at significant risk of coccidiosis. In these extensive Sahelian farming conditions, the control of these parasitoses by selective treatment of animals could be developed, targeting in particular the risk groups highlighted in this study.


Subject(s)
Goat Diseases , Goats , Sheep Diseases , Animals , Risk Factors , Prevalence , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep , Goat Diseases/parasitology , Goat Diseases/epidemiology , Goats/parasitology , Male , Female , Niger/epidemiology , Feces/parasitology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Seasons , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Animal Husbandry/methods , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/epidemiology , Surveys and Questionnaires , Nematode Infections/veterinary , Nematode Infections/epidemiology , Nematode Infections/parasitology , Parasite Egg Count/veterinary
6.
Trop Anim Health Prod ; 56(6): 212, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002035

ABSTRACT

Diseases caused by small ruminant lentiviruses, Mycobacterium avium ssp. paratuberculosis (MAP), Schmallenberg virus, and peste des petits ruminants virus (PPR) is globally recognised as serious threats to the ruminant industry due to their potential to spread rapidly across boundaries. Despite their global distribution and negative impacts on ruminant production, there is a gap in knowledge of the current trends in their epidemiology among sheep and goat populations in Peninsular Malaysia. This study was therefore designed to fill the gap of knowledge concerning the seroprevalence and contributing factors of CAEV, paratuberculosis, SBV, and PPRV among small ruminants from selected flocks in Selangor, Negeri Sembilan, and Pahang states in Peninsular Malaysia. A cross-sectional study design was used to collect animal data and blood samples for serological assays simultaneously. The ID Screen (ID.VET, France) indirect ELISA screening tests were used to detect serum antibodies directed against CAEV/MVV (VISNAS Ver 0922), paratuberculosis (PARAS Ver 0516), SBV (SBVC Ver 1114) and PPRV (PPRC Ver 0821). There was 45.4% (95% CI = 40.74-50.74), 6.8% (95% CI = 4.66-9.69), 27.8% (95% CI = 23.35-32.77), and 2.6% (95% CI = 1.11-0.51) true seroprevalence for CAEV, paratuberculosis, SBV, and PPR, respectively. Geographical location and species were the risk factors for CAEV and paratuberculosis, while the management system and age of small ruminants were the risk factors for SBV. The present study is the first to document a large-scale seroprevalence of MAP and PPR infection among sheep and goat flocks in Peninsular Malaysia. The presence of PPRV and MAP antibodies among small ruminant flocks is signalling current or previous exposure to the pathogens or cross reactions with similar antigens. This finding further suggests the potential for future outbreaks of these devastating diseases among sheep and goats in Malaysia. The high seroprevalence of CAEV and SBV among small ruminants indicates high levels of exposure to the viruses in the environment, which is a potential threat to production.


Subject(s)
Goat Diseases , Goats , Sheep Diseases , Animals , Seroepidemiologic Studies , Malaysia/epidemiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Goat Diseases/virology , Sheep , Cross-Sectional Studies , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/virology , Risk Factors , Female , Male , Antibodies, Viral/blood
7.
Vet Med Sci ; 10(4): e1516, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001593

ABSTRACT

BACKGROUND: Papilloma DNA viruses are one of the viruses that cause skin lesions in ruminants. OBJECTIVES: The clinical, histopathological and molecular characteristics of cutaneous papilloma in ruminants in Iran are to be investigated in this study. METHODS: Samples were collected from 19 small ruminants (5 sheep and 14 goats) with various papillomatosis lesions. The samples taken were studied with histopathological and molecular techniques. RESULTS: In clinical terms, the lesions appeared in different sizes, ranging from 0.5 to 11 cm, and the cauliflower exophytic masses appeared in other parts of the animal's body. In the limbs, most papilloma lesions have been seen (42.1%). In histopathological examination, perinuclear vacuolation epidermal granule layer with various degrees of hypergranulosis, hyperkeratosis, acanthosis, orthokeratosis and parakeratosis were seen. Moreover, all the suspected samples were positive for papillomavirus using the polymerase chain reaction technique. CONCLUSIONS: Although the prevalence of papillomaviruses in Iranian sheep and goats is low, it seems necessary to distinguish them from other viral skin diseases, such as cutaneous contagious ecthyma, using molecular techniques and histopathology.


Subject(s)
Goat Diseases , Goats , Papillomaviridae , Papillomavirus Infections , Sheep Diseases , Animals , Iran/epidemiology , Sheep Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/pathology , Sheep , Goat Diseases/virology , Goat Diseases/pathology , Goat Diseases/epidemiology , Papillomaviridae/isolation & purification , Papillomaviridae/genetics , Papillomavirus Infections/veterinary , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/epidemiology , Papilloma/veterinary , Papilloma/virology , Papilloma/pathology , Papilloma/epidemiology , Polymerase Chain Reaction/veterinary , Female , Prevalence , Male , Sheep, Domestic
8.
PLoS One ; 19(7): e0294853, 2024.
Article in English | MEDLINE | ID: mdl-38950318

ABSTRACT

Feral populations of aoudad (Ammotragus lervia) occur in Texas bighorn sheep (Ovis canadensis) habitat and pose several conceptual ecological threats to bighorn sheep re-establishment efforts. The potential threat of disease transmission from aoudad to bighorn sheep may exacerbate these issues, but the host competency of aoudad and subsequent pathophysiology and transmissibility of pneumonic pathogens involved in the bighorn sheep respiratory disease complex is largely unknown. Because the largest population-limiting diseases of bighorn sheep involve pathogens causing bronchopneumonia, we evaluated the host competency of aoudad for Mycoplasma ovipneumoniae and leukotoxigenic Pasteurellaceae. Specifically, we described the shedding dynamics, pathogen carriage, seroconversion, clinical patterns, and pathological effects of experimental infection among wild aoudad held in captivity. We found that aoudad are competent hosts capable of maintaining and intraspecifically transmitting Mycoplasma ovipneumoniae and Pasteurellaceae and can shed the bacteria for 53 days after exposure. Aoudad developed limited clinical signs and pathological findings ranged from mild chronic lymphohistiocytic bronchointerstitial pneumonia to severe and acute suppurative pneumonia, similarly, observed in bighorn sheep infected with Mycoplasma spp. and Pasteurellaceae bacteria, respectively. Furthermore, as expected, clinical signs and lesions were often more severe in aoudad inoculated with a combination of Mycoplasma ovipneumoniae and Pasteurellaceae as compared to aoudad inoculated with only Mycoplasma ovipneumoniae. There may be evidence of interindividual susceptibility, pathogenicity, and/or transmissibility, indicated by individual aoudad maintaining varying severities of chronic infection who may be carriers continuously shedding pathogens. This is the first study to date to demonstrate that aoudad are a conceptual disease transmission threat to sympatric bighorn sheep populations due to their host competency and intraspecific transmission capabilities.


Subject(s)
Mycoplasma ovipneumoniae , Pasteurellaceae , Pneumonia, Mycoplasma , Animals , Mycoplasma ovipneumoniae/pathogenicity , Pasteurellaceae/pathogenicity , Pneumonia, Mycoplasma/transmission , Pneumonia, Mycoplasma/veterinary , Pneumonia, Mycoplasma/microbiology , Sheep , Sheep, Bighorn/microbiology , Ruminants/microbiology , Sheep Diseases/transmission , Sheep Diseases/microbiology , Pasteurellaceae Infections/transmission , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/veterinary , Female
9.
Front Cell Infect Microbiol ; 14: 1380708, 2024.
Article in English | MEDLINE | ID: mdl-39006745

ABSTRACT

Introduction: The escalating occurrence of infectious disease outbreaks in humans and animals necessitates innovative, effective, and integrated research to better comprehend their transmission and dynamics. Viral infection in livestock has led to profound economic losses globally. Pneumonia is the prevalent cause of death in sheep. However, very few studies exist regarding virus-related pathogens in sheep. Metagenomics sequencing technologies in livestock research hold significant potential to elucidate these contingencies and enhance our understanding. Methods: Therefore, this study aims to characterize respiratory viromes in paired nasal swabs from Inner Mongolian feedlot sheep in China using metaviromic sequencing. Through deep sequencing, de novo assembly, and similarity searches using translated protein sequences, several previously uncharacterized and known viruses were identified in this study. Results: Among these discoveries, a novel Bovine Rhinitis B Virus (BRBV) (BRBV-sheep) strain was serendipitously detected in the nasal swabs of domestic sheep (Ovis aries). To facilitate further molecular epidemiological studies, the entire genome of BRBV-sheep was also determined. Owing to the unique sequence characteristics and phylogenetic position of BRBV-sheep, genetically distinct lineages of BRBV in sheep may exist. A TaqMan-based qRT-PCR assay targeting the 3D polymerase gene was developed and used to screen 592 clinical sheep specimens. The results showed that 44.59% of the samples (264/592) were positive. These findings suggest that BRBV sheep are widespread among Inner Mongolian herds. Conclusion: This discovery marks the initial identification of BRBV in sheep within Inner Mongolia, China. These findings contribute to our understanding of the epidemiology and genetic evolution of BRBV. Recognizing the presence of BRBV in sheep informs strategies for disease management and surveillance and the potential development of targeted interventions to control its spread.


Subject(s)
Phylogeny , Sheep Diseases , Animals , China/epidemiology , Sheep , Sheep Diseases/virology , Sheep Diseases/epidemiology , Sheep, Domestic , Nose/virology , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Metagenomics/methods
10.
Parasitol Res ; 123(7): 267, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990228

ABSTRACT

Exsheathment is crucial in the transition from free-living to parasitic phase for most strongyle nematode species. A greater understanding of this process could help in developing new parasitic control methods. This study aimed to identify commonalities in response to exsheathment triggers (heat acclimation, CO2 and pH) in a wide range of species (Haemonchus contortus, Trichostrongylus spp., Cooperia spp., Oesophagostomum spp., Chabertia ovina, and members of the subfamily Ostertagiinae) from sheep, cattle and farmed deer. The initial expectation of similarity in pH requirements amongst species residing within the same organ was not supported, with unexpected pH preferences for exsheathment of Trichostrongylus axei, Trichostrongylus vitrinus, Trichostrongylus colubriformis and Cooperia oncophora. We also found differences between species in their response to temperature acclimation, with higher exsheathment in response to heat shock observed for H. contortus, Ostertagia ostertagi, T. axei, T. vitrinus and Oesophagostomum sikae. Furthermore, some species showed poor exsheathment under all experimental conditions, such as Cooperia curticei and the large intestinal nematodes C. ovina and Oesophagostomum venulosum. Interestingly, there were some significant differences in response depending on the host from which the parasites were derived. The host species significantly impacted on the exsheathment response for H. contortus, Teladorsagia circumcincta, T. vitrinus and T. colubriformis. Overall, the data showed variability between nematode species in their response to these in vitro exsheathment triggers, highlighting the complexity of finding a common set of conditions for all species in order to develop a control method based on triggering the exsheathment process prematurely.


Subject(s)
Deer , Nematode Infections , Sheep Diseases , Animals , Deer/parasitology , Cattle , Sheep/parasitology , Sheep Diseases/parasitology , Nematode Infections/parasitology , Nematode Infections/veterinary , Hydrogen-Ion Concentration , Nematoda/physiology , Nematoda/classification , Cattle Diseases/parasitology , Carbon Dioxide , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Hot Temperature
11.
PLoS One ; 19(7): e0306697, 2024.
Article in English | MEDLINE | ID: mdl-38990813

ABSTRACT

Raising small ruminants is the main source of income for farmers in Pakistan especially in rural areas of Dera Ghazi Khan in Punjab. Despite having large sheep population, the prevalence of intra-erythrocytic protozoa, Theileria (T.) lestoquardi, has never been reported from this area. This study was conducted to fill this knowledge gap and 333 blood samples of apparently healthy small ruminants (168 sheep and 165 goats) along with their epidemiological data were collected from Dera Ghazi Khan district during August till November 2022. The polymerase chain reaction (PCR) analysis amplified a 785 base pair amplicon specific for the Merozoite surface antigen (ms 1-2) gene of T. lestoquardi in 2 out of the 168 (3.3%) sheep blood samples, while no goat blood sample out of 165 was found to be infected with T. lestoquardi. DNA sequencing confirmed the presence of Theileria lestoquardi in both samples and phylogenetic analysis revealed that these amplicon resembled the partial ms 1-2 gene sequences detected in small ruminants from Pakistan, India Iran and Egypt. All the studied epidemiological factors (age, sex, breed, size of herd, dogs with herd, composition of herd, size of herd and Tick burden on sheep) were not found associated with the prevalence of T. lestoquardi. In conclusion, this study reports a low prevalence of T. lestoquardi infection in the Dera Ghazi Khan District of Punjab, Pakistan. The data generated from this work will help pave the way for the prophylactic detection and control of ovine and caprine theileriosis in the region.


Subject(s)
Goats , Phylogeny , Sheep Diseases , Theileria , Theileriasis , Animals , Theileria/genetics , Theileria/classification , Theileria/isolation & purification , Theileriasis/epidemiology , Theileriasis/parasitology , Theileriasis/blood , Sheep/parasitology , Pakistan/epidemiology , Goats/parasitology , Prevalence , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , Sheep Diseases/blood , Risk Factors , Goat Diseases/parasitology , Goat Diseases/epidemiology , Goat Diseases/blood , Female , Male
12.
BMC Vet Res ; 20(1): 283, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956647

ABSTRACT

BACKGROUND: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS: To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS: These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.


Subject(s)
Intestine, Small , Sheep Diseases , Synaptosomal-Associated Protein 25 , Animals , Sheep , Sheep Diseases/metabolism , Sheep Diseases/parasitology , Intestine, Small/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptosomal-Associated Protein 25/genetics , Enteric Nervous System/metabolism , Rabbits
14.
Acta Vet Scand ; 66(1): 28, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965632

ABSTRACT

BACKGROUND: Visna-maedi is a notifiable disease in Norway, and eliminating the disease is a national goal. The import of sheep into Norway is very limited, and strict regulations apply to the movement of small ruminants between flocks and within defined geographical regions. Several outbreaks have occurred in the last 50 years, and the most recent before 2019 occurred in Trøndelag county in Central Norway in 2002. A national surveillance programme for small ruminant lentivirus infection exists since 2003. RESULTS: In 2019, the national surveillance programme detected seropositive animals for small ruminant lentivirus in a sheep flock in Trøndelag. Based on the result of polymerase chain reaction analysis and histopathological findings, the Norwegian Food Safety Authority concluded the diagnosis of maedi. Further investigations detected maedi in eight additional sheep flocks in the same county. The flocks were placed under restrictions, and the authorities also imposed restrictions on 82 contact flocks. Sequencing of partial gag genes indicated that the virus in the current outbreak was related to the small ruminant lentivirus detected in the same area between 2002 and 2005. CONCLUSIONS: The outbreak investigation shows the need for sensitive and specific diagnostic methods, and an improved and more targeted surveillance strategy. It also demonstrates the risk of disease spreading between flocks through animal movements, and highlights the importance of biosecurity and structured livestock trade. In addition to allowing livestock trade only from flocks documented free from maedi, it may be necessary to monitor sheep flocks over many years, when aiming to eliminate maedi from the Norwegian sheep population.


Subject(s)
Disease Outbreaks , Visna-maedi virus , Animals , Norway/epidemiology , Sheep , Disease Outbreaks/veterinary , Visna-maedi virus/isolation & purification , Pneumonia, Progressive Interstitial, of Sheep/epidemiology , Pneumonia, Progressive Interstitial, of Sheep/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology
15.
Schweiz Arch Tierheilkd ; 166(7): 368-378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975649

ABSTRACT

INTRODUCTION: Ovine foot rot is a highly contagious and multifactorial claw disease, caused by Dichelobacter nodosus (D. nodosus) and is the main cause of lameness in sheep. The aim of this cross-sectional study was to determine the prevalence of D. nodosus in western Austria both at animal and farm levels. Real-time PCR was evaluated in comparison with clinical and bacteriological investigations from interdigital foot swabs to detect D. nodosus-infected animals. In addition, the use of pooled four-foot swabs to detect foot rot was determined. In course of the study a total of 3156 sheep from 124 farms were examined for lameness and clinical signs of foot rot. The found flock prevalence of D. nodosus was 30,65 % with bacterial culture showing a sensitivity of 75,0 % and a specificity of 100,0 % (p < 0,001) respectively, compared with PCR. Furthermore, clinical foot rot scores (Ckorr = 0,87; p < 0,001) and lameness scores (Ckorr = 0,71; p < 0,001) highly correlated with the detection of D. nodosus by PCR. The result showed that the clinical examination can be used to identify animals infected with D. nodosus in flocks, but PCR must be used to confirm the diagnosis. D. nodosus could be detected equally well with risk-based pools-of-five samples as with undiluted samples (p < 0,001), suggesting that a pool-of-five samples might be a suitable and cost-effective method for detecting D. nodosus in sheep flocks. This study provides an overview of foot rot in Tyrolean sheep flocks and outlines the possibilities and limitations of the various diagnostic tools for D. nodosus. Further studies to investigate possible influencing factors, including alpine pasturing, management factors and biosecurity predisposing to foot rot are necessary for the design of effective future control programs in alpine regions.


INTRODUCTION: Le piétin ovin est une maladie des onglons hautement contagieuse et multifactorielle, causée par Dichelobacter nodosus (D. nodosus) qui constitue la principale cause de boiterie chez les ovins. L'objectif de cette étude transversale était de déterminer la prévalence de D. nodosus dans l'ouest de l'Autriche, tant au niveau de l'animal que de l'exploitation. La PCR en temps réel a été évaluée en comparaison avec les examens cliniques et bactériologiques effectués à partir d'écouvillons des espaces interdigités pour détecter les animaux infectés par D. nodosus. En outre, l'utilisation d'un pool d'écouvillons des quatre membres pour détecter le piétin a été déterminée. Au cours de l'étude, un total de 3156 moutons provenant de 124 fermes ont été examinés pour détecter des boiteries et des signes cliniques de piétin. La prévalence de D. nodosus dans les troupeaux était de 30,65 %, la culture bactérienne montrant une sensibilité de 75 % et une spécificité de 100 % (p < 0,001), respectivement, par rapport à la PCR. En outre, les scores cliniques de piétin (Ckorr = 0,87; p < 0,001) et les scores de boiterie (Ckorr = 0,71; p < 0,001) étaient fortement corrélés avec la détection de D. nodosus par PCR. Les résultats montrent que l'examen clinique peut être utilisé pour identifier les animaux infectés par D. nodosus dans les troupeaux mais que la PCR doit être utilisée pour confirmer le diagnostic. D. nodosus a pu être détecté aussi bien avec des pools de cinq échantillons basés sur le risque qu'avec des échantillons non dilués (p < 0,001), ce qui suggère qu'un pool de cinq échantillons pourrait être une méthode appropriée et rentable pour détecter D. nodosus dans les troupeaux de moutons. Cette étude donne un aperçu du piétin dans les troupeaux de moutons tyroliens et souligne les possibilités et les limites des différents outils de diagnostic pour D. nodosus. D'autres études visant à examiner les facteurs d'influence possibles, y compris les pâturages alpins, les facteurs de gestion et la biosécurité prédisposant au piétin, sont nécessaires pour la conception de futurs programmes de contrôle efficaces dans les régions alpines.


Subject(s)
Dichelobacter nodosus , Foot Rot , Gram-Negative Bacterial Infections , Lameness, Animal , Sheep Diseases , Animals , Dichelobacter nodosus/genetics , Dichelobacter nodosus/isolation & purification , Foot Rot/microbiology , Foot Rot/epidemiology , Foot Rot/diagnosis , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/diagnosis , Sheep , Lameness, Animal/epidemiology , Lameness, Animal/microbiology , Lameness, Animal/diagnosis , Austria/epidemiology , Cross-Sectional Studies , Prevalence , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Sensitivity and Specificity
16.
Trop Anim Health Prod ; 56(6): 205, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001933

ABSTRACT

This study aimed to establish an accurate epidemiological surveillance tool for the detection of different C. perfringens types from 76 diseased and 34 healthy animals in Dakhalia Governorate, Egypt. A total of 110 intestinal content samples were randomly collected from camels, sheep, and cattle. C. perfringens was isolated and biochemically identified by the VITEK2 system. Toxinotyping and genotyping of C. perfringens isolates were specified by a multiscreen ELISA and real-time qPCR (rt-qPCR). The occurrence of C. perfringens was highest among camels (20% in healthy and 25% in diseased) and was lowest in cattle (23.1% and 14.7%). The cpa toxin was detected in all isolates by rt-qPCR and in 7 isolates by ELISA, ext toxin was detected in 7 isolates by rt-qPCR and in 6 isolates by ELISA, and cpb toxin was detected in 2 isolates by both rt-qPCR and ELISA. Four types of C. perfringens were identified by rt-qPCR, type A (65.2%), B (4.3%), C (4.3%), and D (26.1%), and three types by ELISA, type D (17.4%), A (8.7%) and C (4.3%). Our study indicated the prevalence of infection in Dakahlia by C. perfringens type A and D, particularly camels, and recommends adopting an appropriate vaccination strategy among the studied animals.


Subject(s)
Bacterial Toxins , Camelus , Cattle Diseases , Clostridium Infections , Clostridium perfringens , Enzyme-Linked Immunosorbent Assay , Sheep Diseases , Animals , Egypt/epidemiology , Clostridium perfringens/isolation & purification , Cattle , Cross-Sectional Studies , Clostridium Infections/veterinary , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Enzyme-Linked Immunosorbent Assay/veterinary , Sheep , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/diagnosis , Bacterial Toxins/analysis , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Prevalence , Intestines/microbiology , Genotype
17.
Sci Rep ; 14(1): 15166, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956077

ABSTRACT

The study aimed to investigate molecularly the presence of flea-borne viruses in infested small ruminants with fleas. It was carried out in Egypt's Northern West Coast (NWC) and South Sinai Governorate (SSG). Three specific primers were used targeting genes, ORF103 (for Capripoxvirus and Lumpy skin disease virus), NS3 (for Bluetongue virus), and Rdrp (for Coronavirus), followed by gene sequencing and phylogenetic analyses. The results revealed that 78.94% of sheep and 65.63% of goats were infested in the NWC area, whereas 49.76% of sheep and 77.8% of goats were infested in the SSG region. Sheep were preferable hosts for flea infestations (58.9%) to goats (41.1%) in the two studied areas. Sex and age of the animals had no effects on the infestation rate (p > 0.05). The season and site of infestation on animals were significantly different between the two areas (p < 0.05). Ctenocephalides felis predominated in NWC and Ctenocephalides canis in SSG, and males of both flea species were more prevalent than females. Molecular analysis of flea DNA revealed the presence of Capripoxvirus in all tested samples, while other viral infections were absent. Gene sequencing identified three isolates as sheeppox viruses, and one as goatpox virus. The findings suggest that Capripoxvirus is adapted to fleas and may be transmitted to animals through infestation. This underscores the need for ongoing surveillance of other pathogens in different regions of Egypt.


Subject(s)
Phylogeny , Siphonaptera , Animals , Egypt/epidemiology , Sheep , Siphonaptera/virology , Goats/virology , Capripoxvirus/genetics , Capripoxvirus/isolation & purification , Capripoxvirus/classification , Flea Infestations/epidemiology , Flea Infestations/veterinary , Male , Female , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology
18.
Vet Parasitol ; 330: 110250, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970904

ABSTRACT

The apicomplexan Eimeria ovinoidalis is distributed worldwide. It can cause clinical coccidiosis, which is one of the most pathogenic species in sheep, reducing growth rates and resulting in significant economic losses in the industry. Its principal clinical sign is profuse diarrhoea in young animals. In this study, we established a model of E. ovinoidalis infection in lambs to understand its pathogenicity and evaluate the gut microbiota and fecal metabolite profiles. Specifically, we observed a significant shift in the abundance of bacteria and disrupted metabolism in lambs. Especially during the peak period of excrete oocysts, it promoted the reproduction of some harmful bacteria in Proteobacteria and Actinobacteriota, and reduced the abundance of beneficial bacteria such as Lachnospiraceae and Rikenellaceae. In the later stage of the patent period, the abundance of harmful bacteria in the intestine decreased, the abundance of beneficial bacteria which could produce anti-inflammatory substances began to increase, and the abundance and diversity of intestinal flora also tended to parallel with the control group. Coccidia infection could lead to the increase of differential metabolites and metabolic pathways between infected and control group, but the difference decreased with time. During the peak period of excrete oocysts, although the antimicrobial metabolites such as Lividamine were up-regulated, the excess of these metabolites could still induce the production of endotoxin, while Butanoic acid and other anti-inflammatory metabolites decreased significantly. A metabolomics analysis showed that E. ovinoidalis infection altered metabolites and metabolic pathways, with biosynthesis of unsaturated fatty acids, Teichoic acid biosynthesis and Butanoate metabolism as the major disrupted metabolic pathways. Details of the gut microbiota and the metabolome after infection with E. ovinoidalis may aid in the discovery of specific diagnostic markers and help us understand the changes in parasite metabolic pathways.


Subject(s)
Coccidiosis , Eimeria , Feces , Gastrointestinal Microbiome , Sheep Diseases , Animals , Eimeria/physiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Sheep , Sheep Diseases/parasitology , Sheep Diseases/microbiology , Feces/parasitology , Feces/microbiology
19.
Proc Biol Sci ; 291(2027): 20240636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39013423

ABSTRACT

Though far less obvious than direct effects (clinical disease or mortality), the indirect influences of pathogens are difficult to estimate but may hold fitness consequences. Here, we disentangle the directional relationships between infection and energetic reserves, evaluating the hypotheses that energetic reserves influence infection status of the host and that infection elicits costs to energetic reserves. Using repeated measures of fat reserves and infection status in individual bighorn sheep (Ovis canadensis) in the Greater Yellowstone Ecosystem, we documented that fat influenced ability to clear pathogens (Mycoplasma ovipneumoniae) and infection with respiratory pathogens was costly to fat reserves. Costs of infection approached, and in some instances exceeded, costs of rearing offspring to independence in terms of reductions to fat reserves. Fat influenced probability of clearing pathogens, pregnancy and over-winter survival; from an energetic perspective, an animal could survive for up to 23 days on the amount of fat that was lost to high levels of infection. Cost of pathogens may amplify trade-offs between reproduction and survival. In the absence of an active outbreak, the influence of resident pathogens often is overlooked. Nevertheless, the energetic burden of pathogens likely has consequences for fitness and population dynamics, especially when food resources are insufficient.


Subject(s)
Sheep, Bighorn , Animals , Female , Sheep, Bighorn/physiology , Adipose Tissue , Energy Metabolism , Sheep Diseases , Male , Pregnancy , Animal Nutritional Physiological Phenomena
20.
Vet Parasitol ; 330: 110243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944892

ABSTRACT

Gastrointestinal helminth infection, particularly by Haemonchus contortus, poses significant challenges to sheep farming worldwide. While anthelmintic drugs have been traditional control measures, the emergence of resistance calls for alternative strategies. Understanding the interaction between parasites, host, and their microbiome is crucial for management of helminth infection. This study intricately explores the interactions between microbial communities in Kashmir Merino sheep infected with H. contortus, to understand the complex interplay between host, parasite, and their microbiome. Sheep abomasal contents and H. contortus were collected from infected and control groups, processed for DNA extraction, and subjected to metagenomic sequencing of the 16 S rRNA gene. Downstream analysis unveils distinct microbial patterns, where Proteobacteria were dominant in H. contortus, while Bacteroidota and Firmicutes prevailed in the sheep abomasum. The revelation of unique genera and shifts in diversity indices underscored helminth-induced disruptions in the host. Beta diversity analysis further showed significant variations in bacterial profiles, providing insights into the intricate host, parasite, and microbiome dynamics. Additionally, this study elucidated the presence of pathogenic bacteria within H. contortus, accentuating their potential role in exacerbating sheep health issues. This finding underscores the complexity of the host-parasite-microbiome interaction showing helminth-induced microbiome alterations of the host.


Subject(s)
Abomasum , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Sheep , Haemonchus/physiology , Sheep Diseases/parasitology , Sheep Diseases/microbiology , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Abomasum/parasitology , Abomasum/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota , Host-Parasite Interactions , India , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...