Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.923
Filter
1.
Vet Res ; 55(1): 82, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937820

ABSTRACT

Respiratory diseases constitute a major health problem for ruminants, resulting in considerable economic losses throughout the world. Parainfluenza type 3 virus (PIV3) is one of the most important respiratory pathogens of ruminants. The pathogenicity and phylogenetic analyses of PIV3 virus have been reported in sheep and goats. However, there are no recent studies of the vaccination of sheep or goats against PIV3. Here, we developed a purified inactivated ovine parainfluenza virus type 3 (OPIV3) vaccine candidate. In addition, we immunized sheep with the inactivated OPIV3 vaccine and evaluated the immune response and pathological outcomes associated with OPIV3 TX01 infection. The vaccinated sheep demonstrated no obvious symptoms of respiratory tract infection, and there were no gross lesions or pathological changes in the lungs. The average body weight gain significantly differed between the vaccinated group and the control group (P < 0.01). The serum neutralization antibody levels rapidly increased in sheep post-vaccination and post-challenge with OPIV3. Furthermore, viral shedding in nasal swabs and viral loads in the lungs were reduced. The results of this study suggest that vaccination with this candidate vaccine induces the production of neutralizing antibodies and provides significant protection against OPIV3 infection. These results may be helpful for further studies on prevention and control strategies for OPIV3 infections.


Subject(s)
Respirovirus Infections , Sheep Diseases , Vaccines, Inactivated , Viral Vaccines , Animals , Sheep , Respirovirus Infections/veterinary , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Respirovirus Infections/immunology , Vaccines, Inactivated/immunology , Sheep Diseases/prevention & control , Sheep Diseases/virology , Sheep Diseases/immunology , Viral Vaccines/immunology , Respirovirus/immunology , Immunogenicity, Vaccine , Vaccination/veterinary
2.
Vet Parasitol Reg Stud Reports ; 52: 101049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880567

ABSTRACT

Fasciolosis is a worldwide zoonotic snail-borne infection that affects ruminants, it causes high economic losses among livestock. A participatory epidemiological survey was conducted on 204 sheep owners of Sejnane region (District of Bizerte, Northwest Tunisia) to assess their knowledge, attitude and practice regarding fasciolosis. All interviewed sheep owners are aware of this parasitic infection (100%, 204/204), among them, 81% (165/204) reported history of clinical cases in their sheep flocks. According to 33.73% (113/335) of them, sheep get infected by fasciolosis mainly by grazing in wet areas, 79.9% (163/204) of these farmers think that wet climate is the most favourable for the infection. Weight loss (28.40%, 121/426) and submandibular oedema (20.42%, 87/426) are the main clinical signs of fasciolosis cited by interviewed sheep owners and the majority of them (98.53%; 201/204) confirmed that fasciolosis causes significant economic losses. Fasciolosis infection persists in Sejnane region despite the use of antiparasitic drugs, this is due mainly to the fact that animals graze in moist grass (39.88%, 132/331). Treat animals (51.47%, 193/375), prohibit grazing on moist grass (15.20%, 57/357), prohibit grazing on wet soils (14.33%, 53/357) and avoid pastures (10.93%, 41/357) are the main prevention measures cited by interviewed sheep owners. Only 18,14% (37/204) of responders knew that fascioliasis is a zoonotic disease. These results could be considered by animal health decision makers and field veterinarians when implementing control programmes in order to increase breeders' knowledge of fasciolosis.


Subject(s)
Fascioliasis , Health Knowledge, Attitudes, Practice , Sheep Diseases , Animals , Fascioliasis/veterinary , Fascioliasis/epidemiology , Fascioliasis/prevention & control , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Tunisia/epidemiology , Humans , Animal Husbandry/methods , Female , Male , Surveys and Questionnaires , Farmers/psychology , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/prevention & control
3.
Prev Vet Med ; 229: 106236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850873

ABSTRACT

Livestock keepers who operate on a small scale in the United Kingdom are often described as either smallholders or hobby farmers; however, this is not always the case. There is another distinct population in Scotland. The crofting system promotes the preservation of a way of life that is significant to the cultural heritage of Scotland, whilst at the same time utilising and maintaining marginal land that could otherwise be deemed of very low productive value. We developed two cross-sectional questionnaire surveys to gather descriptive data about individuals from two populations (crofters and smallholders) who kept sheep and/or cattle. Our aim was to explore demographics, animal health, husbandry, and biosecurity practices of these two communities, including how they may interact with other livestock sectors. Most respondents in each population kept sheep, with far fewer keeping cattle. There was a distinct geographical difference in the approximate location of respondents' holdings. Movement of sheep was often local, temporary, and exempt from reporting to national databases. Visits from the vet were infrequent, but the vet remained an important source of animal health advice, alongside peer networks. The information from these surveys is valuable because policy decisions taken with predominantly larger, commercial-scale enterprises in mind also frequently apply to small-scale enterprises, even though these smaller enterprises may not have the same opportunity to influence those decisions or implement the requirements. Aspects of agricultural activity and food production at the scale explored in these surveys - including plurality of employment and diversification away from purely agricultural activities - are relevant to the United Nations Sustainable Development Goals of sustainable cities and communities, zero hunger and life on land. In this context, competent authorities should support this type of context-sensitive agriculture, alongside seeking to maintain animal health and welfare standards at the highest possible level on a national scale. Our surveys contribute to improved understanding of how these enterprises function and therefore will support policy makers when considering the breadth of keepers and circumstances affected by rules and regulations governing agriculture.


Subject(s)
Animal Husbandry , Sheep Diseases , Animals , Scotland , Cattle , Sheep , Animal Husbandry/methods , Cross-Sectional Studies , Sheep Diseases/prevention & control , Sheep Diseases/epidemiology , Surveys and Questionnaires , Cattle Diseases/prevention & control , Cattle Diseases/epidemiology , Demography , Female , Humans , Male
4.
Animal ; 18(6): 101156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718708

ABSTRACT

Gastrointestinal nematodes (GINs) are a significant threat to the sustainability of global sheep production. Periparturient ewes play a key role in GIN epidemiology, with increased GIN faecal egg counts (FECs) in these ewes resulting in heavy pasture contamination that facilitates parasitic gastroenteritis in immunologically naïve lambs later during the grazing period. Traditionally, blanket anthelmintic treatment would suppress GIN egg outputs in these ewes and subsequent pasture contamination. However, farmers are now advised to implement targeted selective treatment (TST) to reduce anthelmintic use and subsequent anthelmintic resistance development, yet, there is currently limited evidence to determine optimal TST strategies in ewes. In this study, the characteristics of 226 ewes on seven Welsh farms were assessed postlambing to identify factors associated with their individual strongyle FECs using negative binomial mixed model analysis. Nemabiome analysis was conducted on 34 ewes across two study farms using the Oxford Nanopore MinIon platform with an aim of identifying factors associated with variations in ewe nemabiome composition within flocks. The best-fitted model of ewe FEC incorporated ewe body condition score, dag score, breed, and an interaction effect between ewe age and litter size as fixed factors. The addition of a mean FEC value for ewes of a specific litter size on each farm further improved model fit and reduced between-farm variance in the model. Nemabiome analysis revealed significant variation in within flock nemabiome diversity on individual farms, with significantly reduced nemabiome diversity recorded in ewes exhibiting dags and in twin-bearing ewes on respective farms, whilst T. circumcincta was present as a significantly higher proportion of the nemabiome in Suffolk ewes and twin bearing ewes (P < 0.05) in respective flocks. Our data demonstrate that commonly recorded ewe characteristics can be exploited to predict individual periparturient ewe FEC and subsequently may be used as a guide for TST strategies on sheep farms once specific TST thresholds are identified to deliver the optimal balance between minimal pasture contamination and maximal GIN refugia. This study is the first to utilise Oxford Nanopore MinIon sequencing to evaluate the nemabiome of sheep, and to molecularly assess the nemabiome of individual ruminants within a flock/herd, with results indicating that significant within flock variations in nemabiome composition which may have implications for TST and flock management strategies.


Subject(s)
Feces , Nematode Infections , Parasite Egg Count , Sheep Diseases , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Female , Nematode Infections/veterinary , Feces/parasitology , Parasite Egg Count/veterinary , Anthelmintics/therapeutic use , Nematoda/drug effects , Peripartum Period , Animal Husbandry/methods , Pregnancy , Wales
5.
Trop Anim Health Prod ; 56(4): 152, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722369

ABSTRACT

Supplementing livestock grazing communal rangelands with leaf-meals from Acacia trees, which are currently considered as problematic invasive alien plants globally, may be a sustainable way of exploiting their desirable nutritional and anthelmintic properties. The current study evaluated worm burdens and growth performance of lambs grazing low-quality communal rangelands supplemented with leaf-meals prepared from the invasive alien plant species; Acacia mearnsii or A. dealbata. Forty, three-month-old ewe lambs weighing an average of 18.9 ± 0.60 kg were randomly allocated to four supplementary diets: (1) rangeland hay only (control), (2) commercial protein supplement plus rangeland hay, (3) A. mearnsii leaf-meal plus rangeland hay and (4) A. dealbata leaf-meal plus rangeland hay. All the supplementary diets were formulated to meet the lambs' minimum maintenance requirements for protein. All the lambs were grazed on communal rangelands daily from 0800 to 1400 after which they were penned to allow them access to their respective supplementary diets until 08:00 the following morning. The respective supplementary diets were offered at the rate of 400 g ewe- 1 day- 1 for 60 days. Lambs fed the commercial protein supplement had the highest dry matter intake followed by those fed the Acacia leaf-meals and the control diet, respectively (P ≤ 0.05). Relative to the other supplementary diets, lambs fed the commercial protein supplement and A. dealbata leaf-meal had higher (P ≤ 0.05) final body weight and average daily gains. Dietary supplementation did not affect lamb faecal worm egg counts over the study period (P > 0.05). There was no association between supplementary diets and lamb FAMACHA© scores (P > 0.05). It was concluded that supplementation of Acacia dealbata versus Acacia mearnsii has the potential to emulate commercial protein in maintaining growth performance of lambs grazing communal rangelands in the dry season.


Subject(s)
Acacia , Animal Feed , Diet , Dietary Supplements , Plant Leaves , Animals , Animal Feed/analysis , Plant Leaves/chemistry , Dietary Supplements/analysis , Female , South Africa , Diet/veterinary , Sheep, Domestic/growth & development , Sheep, Domestic/physiology , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Sheep/growth & development , Sheep/physiology , Feces , Random Allocation , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena
6.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38755066

ABSTRACT

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Subject(s)
Brucella melitensis , Brucellosis , Placenta , Animals , Brucella melitensis/pathogenicity , Brucella melitensis/immunology , Brucella melitensis/genetics , Female , Sheep , Brucellosis/prevention & control , Brucellosis/immunology , Brucellosis/veterinary , Pregnancy , Placenta/microbiology , Mice , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Sheep Diseases/microbiology , Trophoblasts/immunology , Trophoblasts/microbiology , Brucella Vaccine/immunology , Brucella Vaccine/administration & dosage , Brucella Vaccine/genetics , Humans , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage
7.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726821

ABSTRACT

Disease cross-transmission between wild and domestic ungulates can negatively impact livelihoods and wildlife conservation. In Pin valley, migratory sheep and goats share pastures seasonally with the resident Asiatic ibex (Capra sibirica), leading to potential disease cross-transmission. Focussing on gastro-intestinal nematodes (GINs) as determinants of health in ungulates, we hypothesized that infection on pastures would increase over summer from contamination by migrating livestock. Consequently, interventions in livestock that are well-timed should reduce infection pressure for ibex. Using a parasite life-cycle model, that predicts infective larval availability, we investigated GIN transmission dynamics and evaluated potential interventions. Migratory livestock were predicted to contribute most infective larvae onto shared pastures due to higher density and parasite levels, driving infections in both livestock and ibex. The model predicted a c.30-day antiparasitic intervention towards the end of the livestock's time in Pin would be most effective at reducing GINs in both hosts. Albeit with the caveats of not being able to provide evidence of interspecific parasite transmission due to the inability to identify parasite species, this case demonstrates the usefulness of our predictive model for investigating parasite transmission in landscapes where domestic and wild ungulates share pastures. Additionally, it suggests management options for further investigation.


Subject(s)
Goats , Livestock , Animals , India/epidemiology , Goats/parasitology , Livestock/parasitology , Sheep/parasitology , Animal Migration , Goat Diseases/parasitology , Goat Diseases/transmission , Animals, Wild/parasitology , Sheep Diseases/parasitology , Sheep Diseases/transmission , Sheep Diseases/prevention & control , Nematode Infections/transmission , Nematode Infections/veterinary , Nematode Infections/prevention & control , Nematode Infections/parasitology , Nematode Infections/epidemiology , Seasons , Larva/parasitology , Nematoda/pathogenicity
8.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
9.
Vet Res ; 55(1): 53, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658996

ABSTRACT

Gene expression for Th1/Th2 cytokines (IL-4 and IFN-É£), regulatory cytokines (TGF-ß and IL-10) and the transcriptional factor FoxP3 was analyzed in the liver and hepatic lymph nodes (HLN) from sheep immunized with partially protective and non-protective vaccine candidates and challenged with Fasciola hepatica. FoxP3 T cells were also evaluated by immunohistochemistry (IHQ). The most remarkable difference between the partially protected vaccinated (V1) group and the non-protected vaccinated (V2) group was a more severe expansion of FoxP3 T cells recorded by IHQ in both the liver and HLN of the V2 group as compared to the V1 group, whereas no differences were found between the V2 group and the infected control (IC) group. Similar results were recorded for FoxP3 gene expression although significant differences among V1 and V2 groups were only significant in the HLN, while FoxP3 gene expression was very similar in the V2 and IC groups both in the liver and HLN. No significant differences for the remaining cytokines were recorded between the V1 and V2 groups, but in the liver the V2 group shows significant increases of IFN-É£ and IL-10 as compared to the uninfected control (UC) group whereas the V1 group did not. The lower expansion of FoxP3 T cells and lower increase of IFN-É£ and IL-10 in the partially protected vaccinated group may be related with lower hepatic lesions and fluke burdens recorded in this group as compared to the other two infected groups. The most relevant change in regulatory cytokine gene expression was the significant increase of TGF-ß in the liver of IC, V1 and V2 groups as compared to the UC group, which could be related to hepatic lesions.


Subject(s)
Cytokines , Fasciola hepatica , Fascioliasis , Forkhead Transcription Factors , Sheep Diseases , Animals , Fascioliasis/veterinary , Fascioliasis/prevention & control , Fascioliasis/immunology , Fasciola hepatica/immunology , Sheep , Forkhead Transcription Factors/metabolism , Sheep Diseases/prevention & control , Sheep Diseases/immunology , Sheep Diseases/parasitology , Cytokines/metabolism , Liver/parasitology , Liver/immunology , Vaccines/immunology , Vaccines/administration & dosage , Th1 Cells/immunology , Lymph Nodes/immunology , Female , Th2 Cells/immunology
10.
Prev Vet Med ; 227: 106194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583269

ABSTRACT

Sheep scab is endemic in Great Britain with an estimated national herd-level prevalence of 10.9% from a surveyed population of sheep farms. Previous studies have investigated how sheep farmers manage sheep scab on their farms in Great Britain, but there have not been any qualitative studies investigating sheep farmers perceptions on the roles different stakeholders have in the management of sheep scab. This qualitative study aims to explore how sheep farmers perceive their role and the different stakeholders' roles in the management of sheep scab, and how they would like sheep scab to be managed going forward. Semi-structured interviews were conducted with 43 sheep farmers from England, Scotland, and Wales. The data were analysed using reflexive thematic analysis, through the theoretical lens of Foucault's notion of 'biopower'. Two themes were generated: 'The feeling of powerlessness leads to a need of rules and regulations', with sub-themes: 'The need for governmental rules and regulations' and 'The need for rules and regulation at livestock markets', and 'An apparent lack of sheep scab surveillance', with sub-themes: 'The farmers perceive that the veterinarians have control over surveillance' and 'The farmers have control over surveillance on their farms'. In the first theme, the respondents suggested that more rules and regulations to control the management of sheep scab was required. This included reinstating of sheep scab as a notifiable disease in England and Wales, as well as more regulations at livestock markets to prevent the trading of infested sheep; both of which would subject the farmers to regulatory power mechanisms. The second theme centred around who has the control of surveillance on the farms. Most of the respondents perceived that the veterinarians had knowledge and expertise of the local area on sheep scab, which they were able to relay to the farmers. Thus, veterinarians exerted disciplinary power by creating 'docile' bodies. However, it also appeared that veterinarians were not regularly called onto farms. Although disciplinary power flows through the interactions between the farmer and veterinarian, the techniques currently used are not always having their desired effect. The study demonstrated that how sheep farmers want sheep scab to be managed is, at times, conflicting and contradictory, which highlights the complexity of sheep scab as a disease to manage.


Subject(s)
Animal Husbandry , Farmers , Sheep Diseases , Animals , Sheep , Sheep Diseases/psychology , Sheep Diseases/prevention & control , Sheep Diseases/epidemiology , Farmers/psychology , Animal Husbandry/methods , Mite Infestations/veterinary , Mite Infestations/psychology , Mite Infestations/prevention & control , Wales , United Kingdom , Health Knowledge, Attitudes, Practice , Humans , England
11.
Vet Rec ; 194(9): e4090, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38606941

ABSTRACT

BACKGROUND: Ovine psoroptic mange (sheep scab), caused by an infestation of the mite Psoroptes ovis, leads to clinical disease, economic loss and severely compromised animal welfare. Here, a community-based approach to the management of scab in three high-risk areas of England is described. METHODS: For each of the 254 farms included in the study, an initial survey of their clinical sheep scab history was followed up by a blood test (ELISA) to detect the presence of antibodies to P. ovis. This facilitated the coordination of treatment across groups of farms in each region. Blood testing was then repeated at the end of the treatment programme. RESULTS: On the first blood test in 2021/2022, 25.6% (±5.5%) of the flocks were positive for sheep scab. On the second test in 2022/2023, 9% (±3.94%) of the flocks tested were positive, showing a highly statistically significant reduction in prevalence overall, but with strong regional variation. LIMITATIONS: generating an understanding of the flock-level nature of the blood test and confidence in its detection of scab where clinical signs were not apparent provided ongoing challenges. CONCLUSIONS: The programme demonstrated that a focused community-based approach can be used to significantly reduce the prevalence of sheep scab in high-risk areas of England. The use of the blood test on all farms allowed the identification of subclinical sheep scab. The programme provides an effective model for sheep scab management on a national scale.


Subject(s)
Animal Husbandry , Mite Infestations , Sheep Diseases , Sheep , Psoroptidae , Mite Infestations/diagnosis , Mite Infestations/epidemiology , Mite Infestations/prevention & control , Mite Infestations/veterinary , England , Sheep Diseases/diagnosis , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Antibodies/blood , Prevalence , Animal Husbandry/methods
12.
Prev Vet Med ; 226: 106169, 2024 May.
Article in English | MEDLINE | ID: mdl-38493571

ABSTRACT

Stewardship of antibiotics used in livestock production has come under increasing scrutiny, from both the animal welfare point of view and due to concerns that antibiotic use in livestock may pose a risk to human health through selection pressure to drive development of antibiotic resistant strains of bacteria. Despite this concern, however, antibiotic consumption in the sheep sector is currently poorly described. This study determines the range and quantities of antibiotics used in the Northern Irish (NI) sheep flock as well as exploring drivers for their use. A mixed-methods approach was utilised, with an anonymous online scoping survey, analysis of the medicine records from 52 NI sheep farms and semi-structured interviews undertaken with 27 farmers. Eighteen farmers contributed both records and participated in interviews. Veterinary medicine records were derived from two sources: on-farm medicine books (seven) or veterinary practice sales data (51). As six of these farmers provided information from both sources a total of 52 unique farms participated. Overall, antibiotic use in sheep on the 52 farms sampled was low, with a median value of 11.35 mgPCU-1 (mean 13.63 mgPCU-1, sd 10.7; range 0-45.29 mgPCU-1), with all farms below 50 mgkg-1. Critically important antibiotics accounted for 0.21% of all antibiotics purchased. Lameness was the main driver of antibiotic use identified by this study. Others included a range of prophylactic treatments such as oral antibiotics to prevent watery mouth, injectable antibiotics to prevent abortion and following assisted lambing. Farmers acknowledged some of these uses had become habitual over time. The veterinary medicine sales records demonstrated significant sales of antibiotics not authorised for use in sheep, on an ongoing, rather than case-by-case, basis. Farmers were positive about their veterinarian's ability and knowledge to improve flock welfare and productivity, but were unwilling to pay for this advice. However, veterinarians may have facilitated weak medicine stewardship through a failure to adequately challenge farmers seeking antibiotics. Farmers did not maintain accurate or up-to-date on farm medicine or production records in the majority of cases. Despite this lack of on-farm recording, veterinary sales records can be studied in consultation with farmers to provide veterinarians with a farm-specific insight into antibiotic use and related attitudes and behaviours. Farmers and veterinarians can then identify areas and behaviours to target collaboratively, improving antibiotic and wider medicine stewardship, whilst simultaneously improving flock health and productivity.


Subject(s)
Farmers , Sheep Diseases , Female , Pregnancy , Animals , Sheep , Humans , Anti-Bacterial Agents/therapeutic use , Abortion, Veterinary , Farms , Surveys and Questionnaires , Sheep Diseases/drug therapy , Sheep Diseases/prevention & control
13.
Viruses ; 16(3)2024 02 22.
Article in English | MEDLINE | ID: mdl-38543699

ABSTRACT

Peste des petits ruminants (PPR) presents economic challenges in enzootic countries impacting small ruminant productivity. The state of Karnataka, India, implemented a mass vaccination campaign in alignment with the PPR-Global Eradication Programme (GEP) and the National Strategic Plan for PPR eradication. This study was conducted from January to March 2023 to assess seroconversion in post-vaccinated goats and sheep at the epidemiological unit (epi-unit) level, aligning with the World Organisation for Animal Health (WOAH) and the Food and Agriculture Organization (FAO) guidelines in the PPR Global Control and Eradication Strategy (GCES). Before vaccination, 3466 random serum samples were collected from small ruminants of three age groups (6-12 months, 1-2 years, and >2 years) across 116 epi-units, spanning 82 taluks in 28 districts. Post-vaccination sero-monitoring included 1102 serum samples collected from small ruminants of the 6-12-month age group only, across 111 epi-units covering 64 taluks in 23 districts. The PPRV antibody status was determined using an indigenous hemagglutinin (H) protein monoclonal antibody-based competitive ELISA kit. Pre-vaccination, the PPR seropositivity rates were 55%, 62%, and 66% in the age groups of 6-12 months, 1-2 years, and >2 years, respectively, with a 61% PPRV antibody prevalence across all the age groups. Notably, 41% of the epi-units exhibited antibody prevalence rates of ≥70%, indicating a substantial population immunity, possibly attributed to the previous vaccination program in the state since 2011. In contrast, only 17% of the epi-units had below 30% seroprevalence rates, emphasizing the need for intensified vaccination. Statistical analysis of the data revealed significant correlations (p < 0.05) between the presence of PPRV antibodies and host factors such as species, breed, and sex. Post-vaccination seroprevalence in the 6-12 months age group was found to be 73.4%, indicating the use of an efficacious vaccine. On the evaluation of vaccination immunity in the 6-12 months age group, it was revealed that over 69% of the epi-units achieved a response surpassing ≥70%, indicating a significant improvement from 42% of the epi-units in pre-vaccination. For active PPR eradication, a mass vaccination campaign (>95% coverage) targeting small ruminant populations aged >4 months is advocated, aiming to achieve the desired herd immunity of >80%. This study offers crucial insights into PPR baseline seroprevalence/immunity status and vaccine efficacy, guiding national strategies towards a PPR-free India and further supporting the global eradication initiative.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Sheep , Animals , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/prevention & control , Goats , Seroepidemiologic Studies , India/epidemiology , Goat Diseases/epidemiology , Goat Diseases/prevention & control , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Vaccination/veterinary , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/veterinary
14.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338687

ABSTRACT

Gastrointestinal parasitic nematode (GIN) infections are the cause of severe losses to farmers in countries where small ruminants such as sheep and goat are the mainstay of livestock holdings. There is a need to develop effective and easy-to-administer anti-parasite vaccines in areas where anthelmintic resistance is rapidly rising due to the inefficient use of drugs currently available. In this review, we describe the most prevalent and economically significant group of GIN infections that infect small ruminants and the immune responses that occur in the host during infection with an emphasis on mucosal immunity. Furthermore, we outline the different prevention strategies that exist with a focus on whole and purified native parasite antigens as vaccine candidates and their possible oral-nasal administration as a part of an integrated parasite control toolbox in areas where drug resistance is on the rise.


Subject(s)
Anthelmintics , Communicable Diseases , Gastrointestinal Diseases , Nematoda , Nematode Infections , Sheep Diseases , Animals , Sheep , Immunity, Mucosal , Ruminants , Nematode Infections/prevention & control , Nematode Infections/veterinary , Gastrointestinal Diseases/drug therapy , Goats , Communicable Diseases/drug therapy , Anthelmintics/pharmacology , Sheep Diseases/prevention & control
15.
Prev Vet Med ; 225: 106143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387228

ABSTRACT

In Ethiopia, the use of veterinary vaccines to control animal diseases is an effective strategy. A study conducted in Southwest Ethiopia from October 2020 to October 2021 aimed to determine the adoption level of veterinary vaccines and factors affecting their use. The study used multistage random sampling to select districts and interviewed 476 farmers who had either adopted or not adopted the vaccines. The study found that certain diseases should be prioritized for vaccination to safeguard the health of cattle, sheep, goats, and poultry. These include anthrax (19.12 %), blackleg (17.65 %), foot and mouth disease (10.50 %), and lumpy skin disease (8.82 %) in cattle, and pasteurellosis (18.07 %), contagious caprine pleuropneumonia (15.97 %), peste des petits ruminants (14.15 %), and Orf (13.45 %) in sheep and goats. Newcastle disease (21.85 %), infectious bursal disease (19.33 %), and coccidiosis (17.02 %) were identified as high-priority diseases for flock health. Overall, 30.7 % of farmers were adopters of veterinary vaccines, while 69.3 % were non-adopters. The study identified several factors that influence the likelihood of adopting veterinary vaccines, including breed type (OR = 9.1, p < 0.0001), production size (OR = 9.7, p < 0.0001), production type (OR = 2.7, p < 0.0001), and farm location (OR = 9.8, p = 0.001). Common barriers to vaccination included a lack of disease knowledge, high vaccine costs, limited vaccine availability, and administration difficulties. Insights from the study can guide strategies for promoting veterinary vaccine adoption in Ethiopia. Stakeholders should pay attention to these findings since vaccine use is crucial for controlling animal diseases, enhancing animal health, and preventing economic losses. Further research is needed to investigate factors affecting enhanced veterinary vaccine adoption.


Subject(s)
Animal Diseases , Cattle Diseases , Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Viral Vaccines , Sheep , Animals , Cattle , Ethiopia/epidemiology , Livestock , Goats , Goat Diseases/epidemiology , Goat Diseases/prevention & control , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/prevention & control , Animal Diseases/epidemiology , Animal Diseases/prevention & control
16.
Vet J ; 303: 106066, 2024 02.
Article in English | MEDLINE | ID: mdl-38244671

ABSTRACT

Gastrointestinal nematode (GIN) infections impact small ruminant health, welfare, and production across farming systems. Rising anthelmintic resistance and regulation of synthetic drug use in organic farming is driving research and development of sustainable alternatives for GIN control. One alternative is the feeding of plants that contain secondary metabolites (PSMs) e.g., proanthocyanidins (PA, syn. condensed tannins) that have shown anthelmintic potential. However, PSMs can potentially impair performance, arising from reduced palatability and thus intake, digestibility or even toxicity effects. In this study, we tested the trade-off between the antiparasitic and anti-nutritional effects of heather consumption by lambs. The impact of additional feeding of a nematophagous fungus (Duddingtonia flagrans) on larval development was also explored. Lambs infected with Teladorsagia circumcincta or uninfected controls, were offered ad libitum heather, or a control chopped hay for 22 days during the infection patent period. Eight days into the patent period, parasitised lambs were supplemented (or remained unsupplemented) with D. flagrans for a 5-day period. Performance and infection metrics were recorded, and polyphenol levels in the heather and control hay were measured to investigate their association with activity. The lambs consumed heather at approximately 20% of their dry matter intake, which was sufficient to exhibit significant anthelmintic effects via a reduction in total egg output (P = 0.007), compared to hay-fed lambs; the magnitude of the reduction over time in heather fed lambs was almost 10-fold compared to control lambs. Negative effects on production were shown, as heather-fed lambs weighed 6% less than hay-fed lambs (P < 0.001), even though dry matter intake (DMI) of heather increased over time. D. flagrans supplementation lowered larval recovery in the faeces of infected lambs by 31.8% (P = 0.003), although no interactions between feeding heather and D. flagrans were observed (P = 0.337). There was no significant correlation between PA, or other polyphenol subgroups in the diet and egg output, which suggests that any association between heather feeding and anthelmintic effect is not simply and directly attributable to the measured polyphenols. The level of heather intake in this study showed no antagonistic effects on D. flagrans, demonstrating the methods can be used in combination, but provide no additive effect on overall anthelmintic efficacies. In conclusion, heather feeding can assist to reduce egg outputs in infected sheep, but at 20% of DMI negative effects on lamb performance can be expected which may outweigh any antiparasitic benefits.


Subject(s)
Anthelmintics , Calluna , Gastrointestinal Diseases , Nematoda , Nematode Infections , Sheep Diseases , Animals , Sheep , Nematode Infections/prevention & control , Nematode Infections/veterinary , Nematode Infections/parasitology , Feces/parasitology , Gastrointestinal Diseases/veterinary , Polyphenols/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Antiparasitic Agents/therapeutic use , Sheep Diseases/drug therapy , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Parasite Egg Count/veterinary
17.
Vet Parasitol ; 327: 110120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266372

ABSTRACT

Parasites are known for their ability to rapidly adapt to changing conditions. For parasitic helminths, changes in climate, along with farming and management practices associated with the intensification of livestock farming, provide novel challenges which can impact on their epidemiology and control. The sustainability of livestock production partially relies on effective control of helminth infection. Therefore, understanding changes in parasite behaviour, and what drives these, is of great importance. Nematodirus battus is an economically important helminth in the UK and temperate regions. Its infective larvae typically overwinter in eggs on pasture and hatch synchronously in spring, causing acute disease in lambs. Attempts to control disease typically rely on whole-flock benzimidazole (BZ) treatments. In recent years, the emergence of BZ-resistance, alongside the hatching of eggs without the classical over-winter 'chill stimulus', have made N. battus more difficult to control. In three previous studies, after collecting a large number of N. battus populations alongside farm management data from commercial farms, we explored the prevalence of genetic mutations associated with BZ-resistance (n = 253 farms), the ability of eggs to hatch with and without a chill stimulus (n = 90 farms) and how farm management practices varied throughout the UK (n = 187 farms). In the present study, we identify factors which may be acting as drivers, or barriers, to either the development of resistance or the variable hatching behaviour of N. battus eggs. Generalised linear mixed effect models were applied to regress experimental hatching and genotyping data on farm management and additional environmental data. Both variable hatching and resistance development appeared associated with the maintenance of parasite refugia as well as grazing management, particularly reseeding of pasture routinely grazed by young lambs each spring and the practice of set-stocked grazing. Effective quarantine measures were identified as the main protective factor for the development of BZ-resistance whereas set stocked grazing and population bottlenecks, resulting from reseeding heavily contaminated pastures, were risk factors. Spring maximum temperature and other climatic factors were associated with 'typical' hatching of eggs following a chill stimulus whilst several management factors were linked with hatching without prior chilling. For example, practices which reduce parasite numbers on pasture (e.g. re-seeding) or restrict availability of hosts (e.g. resting fields), were found to increase the odds of non-chill hatching. Retention of the timing of lambing and infection level of the host within the fitted model indicated that requirement for a chill stimulus prior to hatching may be plastic, perhaps subject to change throughout the grazing season, in response to immune development or parasite density-dependence within the host. Further investigation of the influence of the factors retained within the fitted models, particularly the theme of parasite refugia which was highlighted in relation to both the presence of BZ-resistance alleles and alternative hatching, is required to establish robust, sustainable parasite control and farm management strategies.


Subject(s)
Nematodirus , Sheep Diseases , Strongylida Infections , Animals , Sheep , Nematodirus/genetics , Farms , Strongylida Infections/epidemiology , Strongylida Infections/veterinary , Strongylida Infections/parasitology , Refugium , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Sheep Diseases/parasitology , Ovum , Sheep, Domestic , Parasite Egg Count/veterinary , Feces/parasitology
18.
Vet Res Commun ; 48(1): 245-257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642819

ABSTRACT

Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.


Subject(s)
Mannheimia haemolytica , Sheep Diseases , Animals , Sheep , Gamma Rays , Bacterial Vaccines , Vaccination/veterinary , Immunoglobulin G , Sheep Diseases/prevention & control , Sheep Diseases/microbiology
19.
Vet Res Commun ; 48(1): 367-379, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37707655

ABSTRACT

This work discusses and demonstrates the novel use of multivariate analysis and data dimensionality reduction techniques to handle the variety and complexity of data generated in efficacy trials for the development of a prototype vaccine to protect sheep against the Teladorsagia circumcincta nematode. A curated collection of data dimension reduction and visualisation techniques, in conjunction with sensible statistical modelling and testing which explicitly model key features of the data, offers a synthetic view of the relationships between the multiple biological parameters measured. New biological insight is gained into the patterns and associations involving antigen-specific antibody levels, antibody avidity and parasitological parameters of efficacy that is not achievable by standard statistical practice in the field. This approach can therefore be used to guide vaccine refinement and simplification through identifying the most immunologically relevant antigens, and it can be analogously implemented for similar studies in other areas. To facilitate this, the associated data and computer codes written for the R open system for statistical computing are made freely available.


Subject(s)
Sheep Diseases , Trichostrongyloidea , Vaccines , Animals , Sheep , Sheep Diseases/prevention & control
20.
Aust Vet J ; 102(3): 60-66, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37960889

ABSTRACT

Border disease virus (BDV) is a member of the pestivirus genus that primarily affects sheep, causing reproductive losses through abortion, still births and the birth of weak lambs. The key characteristic of this disease is the birth of persistently infected (PI) lambs which, after surviving transplacental infection, are born antibody negative, yet virus positive, and thus shed the virus for their entire life and are the primary source of spread within a flock. The cornerstones of BDV control are detection and elimination of PI animals, biosecurity measures to prevent re-infection, and surveillance programs. Recommendations for the control of BDV in sheep are centred around the approach to bovine viral diarrhoea virus (BVDV), the prominent cattle pestivirus species, due to a lack of specific research into BDV control and elimination. In this study, two aspects of a BDV control program were investigated: the effectiveness of the BVDV vaccine, Pestigard®, and the rate of seroconversion in a flock deliberately exposed to known PI lambs. The vaccine appeared to be safe, and the optimal dose was the full cattle dose (2 mL). While vaccination induced high virus neutralising titres to BVDV when administered as either a quarter, half or full dose registered for cattle, the BDV titres achieved were low and unlikely to prevent transplacental infection. In a second study, after exposure of between 2 and 15 days exposure to two PI lambs in confined conditions, only 3 of 66 previously naïve sheep demonstrated seroconversion. This demonstrated a very low rate of transmission and suggested that deliberate exposure to PI lambs at low-risk times for less than 15 days was not likely to be an effective means of achieving seroconversion throughout a flock and, therefore, not provide protection against BDV challenge during gestation.


Subject(s)
Border Disease , Border disease virus , Cattle Diseases , Diarrhea Viruses, Bovine Viral , Pestivirus , Sheep Diseases , Vaccines , Pregnancy , Female , Cattle , Animals , Sheep , Border Disease/diagnosis , Border Disease/epidemiology , Abortion, Veterinary/prevention & control , Australia , Antibodies, Viral , Cattle Diseases/prevention & control , Sheep Diseases/prevention & control , Sheep Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...