Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.135
Filter
1.
Food Chem ; 462: 140961, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208724

ABSTRACT

The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.


Subject(s)
Crassostrea , Microplastics , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Crassostrea/drug effects , Crassostrea/chemistry , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Oxidative Stress/drug effects , Polystyrenes/chemistry , Polystyrenes/metabolism , Metabolome/drug effects , Shellfish/analysis , Metabolomics , Food Contamination/analysis
2.
Food Chem ; 462: 140860, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213964

ABSTRACT

A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 µg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.


Subject(s)
Chitosan , Fishes , Microspheres , Tandem Mass Spectrometry , Veterinary Drugs , Animals , Chitosan/chemistry , Chromatography, High Pressure Liquid , Veterinary Drugs/analysis , Veterinary Drugs/isolation & purification , Food Contamination/analysis , Drug Residues/analysis , Drug Residues/isolation & purification , Drug Residues/chemistry , Pesticides/isolation & purification , Pesticides/analysis , Pesticides/chemistry , Pesticide Residues/isolation & purification , Pesticide Residues/analysis , Pesticide Residues/chemistry , Adsorption , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seafood/analysis , Shellfish/analysis , Liquid Chromatography-Mass Spectrometry
3.
Food Chem ; 462: 140995, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213970

ABSTRACT

The storage and processing of Litopenaeus vannamei are often challenged by the freeze-thaw (F-T) cycle phenomenon. This study delved into the influence of pretreatment with l-arginine (Arg) and l-lysine (Lys) on the myofibrillar proteins oxidation and quality of shrimp subjected to F-T cycles. Arg and Lys pretreatment notably improved water-holding capacity (WHC), textural integrity as well as the myofibrillar structure of the shrimps. A lesser reduction in the amounts of immobile and bound water was found in the amino acid-treated groups, and the oxidation of lipids and proteins were both decelerated. Molecular simulation results indicated that Arg and Lys could form hydrogen and salt-bridge bonds with myosin, enhancing the stability of Litopenaeus vannamei. The study concludes that Arg and Lys are effective in alleviating the adverse effects of F-T cycles on the quality of Litopenaeus vannamei, and provides a new solution for the quality maintenance during storage and processing.


Subject(s)
Arginine , Lysine , Muscle Proteins , Oxidation-Reduction , Penaeidae , Animals , Penaeidae/chemistry , Arginine/chemistry , Lysine/chemistry , Muscle Proteins/chemistry , Freezing , Food Preservation/methods , Shellfish/analysis , Myofibrils/chemistry
4.
Mar Pollut Bull ; 207: 116920, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39244889

ABSTRACT

Two burrowing clam species, namely Meretrix meretrix and Paphia undulata, were offered two sizes (small: 45-53 µm, and large: 106-125 µm) of fluorescent red polyethylene microbeads, and the ingestion (number of MPs in the body tissue and faeces) and rejection (number of MPs in pseudofaeces) of MPs investigated. Overall, MP beads ingested were 36 % more than those rejected. There was also a significant interaction between the size and fate of MPs. For both species, significantly more small beads were ingested than rejected, but there was no difference for the large beads. P. undulata ingested more MPs than M. meretrix and both species could depurate all the ingested MPs in 72 h, although a longer time was needed for the former species. The results can provide guidance on seafood selection and pre-treatment to minimize the number of MPs ingested by humans.


Subject(s)
Bivalvia , Shellfish , Animals , Microspheres , Microplastics/analysis , Seafood , Eating , Humans
5.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1485-1492, 2024 Sep 06.
Article in Chinese | MEDLINE | ID: mdl-39290035

ABSTRACT

Shellfish, being one of the eight major food allergens, affects approximately 3% of the global population. The occurrence of shellfish allergy is not only related to the individual's immune system sensitivity but is also influenced by geographical environment, food availability, and dietary habits. Although crustaceans (such as shrimp, crab, and lobster) and mollusks (such as oysters, mussels, and squid) are collectively referred to as shellfish, they exhibit significant differences in biological evolution and the spectrum of allergenic molecules they contain, leading to various allergic reactions. Accurate identification of allergenic proteins is crucial for the diagnosis and management of shellfish allergies, with key allergenic protein families including tropomyosin, arginine kinase, and hemocyanin. Furthermore, due to the diversity of shellfish allergens and their cross-reactivity with dust mite and insect allergens, diagnosing and managing shellfish allergies is complex, especially concerning tropomyosin and arginine kinase protein families. Currently, there are no specific immunotherapy treatments for shellfish allergies, and clinical management primarily relies on avoiding allergens and using anti-allergy medications. This article thoroughly interprets the " Molecular Allergology User's Guide 2.0 (MAUG 2.0)" published by the European Academy of Allergy and Clinical Immunology (EAACI) and the latest research on shellfish allergies both domestically and internationally. It highlights the significant role of allergen component diagnostics in optimizing the diagnostic and treatment processes for shellfish allergies, effectively assisting clinicians in accurately identifying common allergens and cross-reactions, thereby providing patients with more personalized diagnosis and treatment plans.


Subject(s)
Allergens , Shellfish Hypersensitivity , Humans , Shellfish Hypersensitivity/diagnosis , Shellfish Hypersensitivity/immunology , Allergens/immunology , Shellfish , Animals , Tropomyosin/immunology , Arginine Kinase/immunology
6.
Food Res Int ; 195: 114983, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277244

ABSTRACT

Astaxanthin (AST), the natural pigment in Litopenaeus vannamei, is susceptible to oxidation and isomerization, leading to the fading of the orange-red color in ready-to-eat (RTE) shrimps. This study specifically investigated the changes mechanism in AST content, including geometric and stereoisomers, as well as oxidation degradation, throughout the storage process of RTE shrimps. The results showed that the total amount of AST decreased by 46.76 % after 45 days of storage at 40 °C. The levels of geometric isomers (all-E, 9-Z, 13-Z) and stereoisomers (3S,3'S, 3S,3'R, 3R,3'R) gradually decreased over time. Notably, 9-Z and 3S,3'S isomers, known for their strong antioxidant activity, were reduced by 83.57 % and 61.64 % respectively. Additionally, AST underwent oxidative degradation, forming short-chain compounds (astaxanthinal or astaxanthinone), with the main products being Apo-14'-astaxanthinal and Apo-7-astaxanthinone DHA ester. These findings provide a theoretical foundation for further research on the degradation mechanism of AST, and offer valuable insights into the color protection of RTE shrimps.


Subject(s)
Food Storage , Oxidation-Reduction , Penaeidae , Xanthophylls , Xanthophylls/chemistry , Animals , Penaeidae/chemistry , Isomerism , Antioxidants/chemistry , Shellfish/analysis , Stereoisomerism
7.
PLoS One ; 19(9): e0310062, 2024.
Article in English | MEDLINE | ID: mdl-39240871

ABSTRACT

Shellfish aquaculture can provide important ecosystem services to coastal communities, yet these benefits are not typically considered within the aquaculture permit review process. Resource managers have expressed interest in easy-to-use tools, based on robust science, that produce location and operation-appropriate values for beneficial services. These values need to be produced in a format that aligns with existing regulatory processes to facilitate seamless integration with permit review. The removal of excess nitrogen from coastal waters by shellfish farms is well documented in the literature and has been incorporated into nutrient management in the USA. Shellfish assimilate nitrogen into their tissue and shell as they grow, and this nitrogen is removed from the environment upon harvest. We have assembled a dataset of nitrogen concentration and morphometric measurements from farmed eastern oysters across the US Northeast, and adapted methodology used by existing nutrient management programs to quantify harvest-associated removal of nitrogen. Variability in oyster tissue and shell nutrient concentration was low within the dataset, and an assessment of farm location, ploidy, and three common cultivation practices (floating gear, bottom gear, no gear) suggested that a simple regression-based calculation could be applied across all farms within the region. We designed the new, publicly available online Aquaculture Nutrient Removal Calculator tool https://connect.fisheries.noaa.gov/ANRC/ based on this analysis, which uses inputs related to oyster size and harvest number to predict harvest-based nitrogen removal from an eastern oyster farm located within the geographic range of North Carolina to Maine, USA. The tool also produces a report that has been designed to integrate with the US Army Corps of Engineers public interest review process, and similar state-level permitting processes, and provides a succinct summary of the ecological services associated with nutrient removal in eutrophic locations, project-specific values, and citations supporting the calculation of those values.


Subject(s)
Aquaculture , Nitrogen , Nitrogen/analysis , Nitrogen/metabolism , Animals , Aquaculture/methods , Shellfish , Ostreidae/growth & development , Ecosystem
8.
Food Chem ; 460(Pt 2): 140675, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39106806

ABSTRACT

A novel type of colorimetric/fluorescent nanopaper indicator has been developed from the melt-extruded poly (vinyl alcohol-co-ethylene) nanofibers with surface anchored metal-organic frameworks (MOFs) by an interfacial coordination strategy. Specifically, the fluorescein isothiocyanate molecules could be anchored to the nanofiber surface by nickel ions and co-assembled into a hydrophilic nanocoating via a dynamic water/alcohol solvent evaporation method. Interestingly, this hydrophilic surface enables fast adsorption of moistures and interaction with biological amine vapors, resulting a saffron cake-layer of MOF nanocrystals with ultra-sensitive colorimetric/fluorescent responses based on an alkaline pH/ammonia induced competitive coordination mechanism. Finally, these porous nanofibrous matrix and active nanocoating make the nano-paper an ultra-sensitive optical platform for in-situ monitoring of the shrimp freshness from mins to weeks. Therefore, this composite film shows great potential into advanced paper-based indicators for food quality control and safety in processing industry.


Subject(s)
Colorimetry , Fluorescein-5-isothiocyanate , Metal-Organic Frameworks , Nanofibers , Nickel , Paper , Colorimetry/methods , Nanofibers/chemistry , Animals , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/analogs & derivatives , Penaeidae/chemistry , Shellfish/analysis
9.
Food Chem ; 460(Pt 3): 140654, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39098219

ABSTRACT

Fried oyster is a popular aquatic food product in East Asia, but nutrient loss during thermal processing become a significant concern. The goal of this research was to examine the impact of distinct frying techniques, including deep frying (DF), air frying (AF), and vacuum frying (VF), on the nutritional, textural and flavor characteristics of oysters. The VF method demonstrated superior retention of beneficial properties and flavor, and reduced protein and lipid oxidation compared to the DF and AF methods. Furthermore, proteomic analysis of oysters was attempted to explain the molecular mechanisms governing the influence of key differential proteins. 20 major differential proteins, including actin-2 protein, tryptophan 2,3-dioxygenase and 1-alph, involved in oyster protein oxidation were identified, annotated and analyzed to elucidate their influence mechanisms. This research provides a deeper understanding of intricate interactions between frying techniques and oyster biochemistry, which offers valuable implications for enhancing food quality in seafood industry.


Subject(s)
Cooking , Hot Temperature , Proteomics , Shellfish , Animals , Shellfish/analysis , Ostreidae/chemistry , Ostreidae/metabolism , Taste , Seafood/analysis , Proteins/chemistry , Proteins/metabolism , Vacuum , Oxidation-Reduction , Ostrea/chemistry , Ostrea/metabolism
10.
Food Chem ; 460(Pt 3): 140652, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39151290

ABSTRACT

This study explored the efficacy of multi-elements combined with chemometrics to discriminate the geographical origins of oysters (Crassostrea ariakensi). We determined 52 elements in 166 samples from four regions along the southeast coast of China. Significant regional variations of 51 elements were revealed (P < 0.05), while the principal component analysis (PCA) provided no clear regional delineations. The training models (n = 117) established on linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), and random forest (RF) uniformly achieved 100% predictive accuracy. The cross-validation accuracies of the final models (n = 166) derived from LDA, PLS-DA, and RF were 100%, 100%, and 99.4%, respectively. Even with the models simplified to 8 elements (Zn, Al, K, Cd, Cu, Rb, B, and Ag), high predictive and cross-validation accuracies were maintained, underscoring the robustness and algorithm flexibility of elemental profiling for accurately identifying the geographical origins of oysters.


Subject(s)
Crassostrea , Animals , Crassostrea/chemistry , Crassostrea/classification , Discriminant Analysis , China , Shellfish/analysis , Chemometrics , Principal Component Analysis , Feasibility Studies , Geography
11.
Mar Pollut Bull ; 207: 116855, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151328

ABSTRACT

In this study, lipophilic marine algal toxins (LMATs)-producing microalgae were identified at 23 sites along the coasts of Korea, and distribution characteristics of LMATs in phytoplankton and mussels were investigated. The causative microalgae, including Gonyaulux spinifera, Dinophysis acuminata, D. caudata, and D. fortii, were observed in the study area, with notably higher densities during the summer. Significant correlations were found between the densities of these microalgae and the water temperature. Seasonal distribution patterns of LMATs in phytoplankton closely matched those observed in mussels. Notably, LMAT concentrations in mussels from the Yellow Sea were relatively high. PTX2 was detected predominantly in phytoplankton, and homo-yessotoxin was found mainly in mussels. Overall, LMAT concentrations were elevated in the summer, raising concerns about biotoxin contamination in shellfish. These results provide important insights into the dynamics of unmanaged marine biotoxins in Korea and offer baseline data for future safety management policies and inflow surveillance.


Subject(s)
Environmental Monitoring , Marine Toxins , Microalgae , Phytoplankton , Seasons , Shellfish , Republic of Korea , Marine Toxins/analysis , Animals , Bivalvia , Dinoflagellida
12.
Mar Pollut Bull ; 207: 116807, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128235

ABSTRACT

This study examined ten heavy metals in five species: Macrobrachium vollenhovenii, Penaeus monodon, P. notialis, Chloroscombrus chrysurus, and Pseudotolithus typus, from Makoko floating slum, Lagos Lagoon to discern their bioaccumulation potentials, sources of origin, and health implications. The concentrations were in this order: Fe (4.172-10.176) > Zn (1.310-5.754) > Mn (0.475-2.330) > Cu (0.238-1.735) > Pb (0.121-0.391) > Cd (0.055-0.283) > Co (0.056-0.144) > Ni (0.039-0.121) > Cr (0.022-0.095) > As (0.003-0.031) mg/kg. The MPDI denotes "low toxicity," and the BAF/BSAF revealed that benthic species had higher bioconcentration potentials. Multivariate analyses revealed that heavy metals exhibited mutual relationships during chemical transport, and their sources were both geogenic and human-induced. The HI values were below 1, and the TCR values were below the threshold of 1 × 10-4. This suggests that the probabilities of noncancer and carcinogenic risks in human populations due to long-term consumption of the evaluated species are unlikely.


Subject(s)
Environmental Monitoring , Metals, Heavy , Shellfish , Water Pollutants, Chemical , Metals, Heavy/analysis , Nigeria , Animals , Water Pollutants, Chemical/analysis , Bioaccumulation , Fishes , Poverty Areas , Risk Assessment , Carcinogens/analysis
13.
ACS Sens ; 9(8): 4295-4304, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39143674

ABSTRACT

Plasmonic Au-Ag nanostars are excellent surface-enhanced Raman scattering (SERS) probes due to bimetallic coupling and the tip effect. However, the existing preparation methods of AuAg nanostars cannot achieve controlled growth of the Ag layer on the branches of nanostars and so cannot display their SERS to the maximum extent, thus limiting its sensitivity in biosensing. Herein, a novel strategy "PEI (polyethylenimine)-guided Ag deposition method" is proposed for synthesizing AuAg core-shell nanostars (AuAg@Ag NS) with a tunable distribution of the Ag layer from the core to the tip, which offers an avenue for investigating the correlation between SERS efficiency and the extent of spread of the Ag layer. It is found that AuAg@Ag NS with a Ag layer coated the whole branch has the strongest SERS performance because the coupling between the tips and Ag layer is maximized. Meanwhile, as a completely closed core-shell structure, AuAg@Ag NS can confine and anchor 4-ATP inside the Ag layer to avoid an unstable SERS signal. By connecting the aptamer, a reliable internal standard nanoprobe with a SERS enhancement factor (EF) up to 1.86 × 108 is prepared. Okada acid is detected through competitive adsorption of this SERS probes, and the detection limit is 36.6 pM. The results gain fundamental insights into tailoring the nanoparticle morphologies and preparation of internal standard nanoprobes and also provide a promising avenue for marine toxin detection in food safety.


Subject(s)
Gold , Metal Nanoparticles , Okadaic Acid , Shellfish , Silver , Spectrum Analysis, Raman , Silver/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Okadaic Acid/analysis , Shellfish/analysis , Metal Nanoparticles/chemistry , Animals , Polyethyleneimine/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry , Food Contamination/analysis
14.
Food Res Int ; 192: 114789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147464

ABSTRACT

Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.


Subject(s)
Bivalvia , Real-Time Polymerase Chain Reaction , Yersinia enterocolitica , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Yersinia enterocolitica/classification , Animals , Real-Time Polymerase Chain Reaction/methods , Bivalvia/microbiology , Italy , Food Microbiology , Benzothiazoles , DNA, Bacterial/genetics , Organic Chemicals , Diamines , Reproducibility of Results , Food Contamination/analysis , Sensitivity and Specificity , Shellfish/microbiology , Quinolines
15.
Food Res Int ; 192: 114766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147487

ABSTRACT

Traditional ice is usually employed to preserve food freshness and extend shelf life. However, ice cannot bear repeated freeze - thaw cycles during the transportation and retailing process, resulting in microbial cross-contamination and spoilage of foods. Herein, succinoglycan riclin was oxidated (RO) and crosslinked with gelatin (Ge), the Ge-RO cryogels were prepared via Schiff base reaction and three freeze - thaw cycles. The Ge-RO cryogels showed improved storage modulus (G') and thermal stability compared with pure gelatin hydrogel. The polymer framework of Ge-RO gels exhibited stable properties against ice crystals destructions during nine freeze - thaw treatments. During the storage and repeated freeze - thaw treatments of shrimps, Ge-RO cryogels exhibited a remarkable preservation effect on shrimps, and their freshness was evaluated using an electronic nose technique equipped with ten sensors. The results demonstrated that the shrimp muscle preserved in ice generated off-odors and resulted in high sensor responses. The sensor responses were reduced sharply of shrimps preserved in cryogels. Moreover, 1H NMR-based metabolomics analysis revealed that shrimps in Ge-RO cryogels group reversed the metabolic perturbations compared with the traditional ice group, the metabolic pathways were related to energy metabolism, nucleotide metabolism, and amino acid metabolism, which provide new clues to the freshness of shrimps. Furthermore, RO exhibited superior antimicrobial activity against E. coli and S. aureus microorganisms. Thus, the crosslinked cryogels are potentially applicable to food preservation, offering sustainable and reusable solutions against traditional ice.


Subject(s)
Cryogels , Food Preservation , Gelatin , Animals , Gelatin/chemistry , Food Preservation/methods , Cryogels/chemistry , Ice , Penaeidae , Oxidation-Reduction , Shellfish/microbiology , Freezing , Electronic Nose , Food Storage/methods , Escherichia coli/drug effects
16.
J Agric Food Chem ; 72(32): 18181-18191, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087403

ABSTRACT

Tropomyosin (TM) is the main allergen in shrimp (Litopenaeus vannamei). In this study, the effects of allergenicity and structure of TM by glycosylation (GOS-TM), phosphate treatment (SP-TM), and glycosylation combined with phosphate treatment (GOS-SP-TM) were investigated. Compared to GOS-TM and SP-TM, the IgG/IgE binding capacity of GOS-SP-TM was significantly decreased with 63.9 ± 2.0 and 49.7 ± 2.7%, respectively. Meanwhile, the α-helix content reduced, surface hydrophobicity increased, and 10 specific amino acids (K30, K38, S39, K48, K66, K74, K128, K161, S210, and K251) were modified by glycosylation on six IgE linear epitopes of GOS-SP-TM. In the BALB/c mice allergy model, GOS-SP-TM could significantly reduce the levels of specific IgE, IgG1, and CD4+IL-4+, while the levels of IgG2a, CD4+CD25+Foxp3+, and CD4+IFN-γ+ were increased, which equilibrated Th1 and Th2 cells, thus alleviating allergic symptoms. These results indicated that glycosylation combined with phosphate treatment can provide a new insight into developing hypoallergenic shrimp food.


Subject(s)
Allergens , Immunoglobulin E , Penaeidae , Phosphates , Tropomyosin , Animals , Female , Humans , Mice , Allergens/immunology , Allergens/chemistry , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Food Hypersensitivity/immunology , Glycosylation , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Immunoglobulin G/chemistry , Mice, Inbred BALB C , Penaeidae/immunology , Penaeidae/chemistry , Phosphates/chemistry , Shellfish/analysis , Shellfish Hypersensitivity/immunology , Th2 Cells/immunology , Th2 Cells/drug effects , Tropomyosin/immunology , Tropomyosin/chemistry
17.
Sci Rep ; 14(1): 19424, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169175

ABSTRACT

Global climate change has generated an increasing number of environmental problems, especially in Mediterranean coastal areas, such as the Po Delta (PD), where shellfish production has undergone an overall decline because of strong environmental changes. The present study is centred on assessing the fundamental ecological aspects in one of the most crucial European shellfish production lagoons, Sacca degli Scardovari (SC), addressing phytoplankton community parameters directly affecting shellfish production, namely, chemotaxonomic composition, size fractions, and total biomass, in relation to the physicochemical properties of the water column and mussel filtering activity. Our findings suggest that the phytoplankton community structure, its role within the lagoon food web and its production cycles depend on two distinct allogenic inputs, which shape the community differently and exert substantial control on shellfish production. At the same time, the suspended mussel biomass strongly controls the phytoplankton size composition, as their growth is largely supported by nanophytoplankton. As the Po River collects the drainage waters of the Italian side of the entire Alpine Arch, the phytoplankton dynamics reported here represent a useful baseline for further addressing issues of climatic changes affecting lagoon ecology. We believe that our study presents an innovative tool for the planning and management of interventions aimed at enhancing national mussel production without neglecting aspects of environmental protection or the integrity of the coastal system, with significant scientific implications.


Subject(s)
Biomass , Climate Change , Phytoplankton , Shellfish , Phytoplankton/growth & development , Phytoplankton/metabolism , Animals , Bivalvia/growth & development , Bivalvia/physiology , Aquaculture/methods , Ecosystem , Food Chain , Rivers/chemistry
18.
Food Chem ; 460(Pt 2): 140408, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089035

ABSTRACT

Advanced glycation end products (AGEs) are complex and heterogeneous compounds closely associated with various chronic diseases. The changes in Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL), Nε-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), and fluorescent AGEs (F-AGEs) in fried shrimp during frying (170 °C, 0-210 s) were described by kinetic models. Besides,the correlations between AGEs contents and physicochemical indicators were analyzed to reveal their intrinsic relationship. Results showed that the changes of four AGEs contents followed the zero-order kinetic, and their rate constants were ranked as kCML < kCEL ≈ kMG-H1 < kF-AGEs. Oil content and lipid oxidation were critical factors that affected the AGEs levels of the surface layer. Protein content and Maillard reaction were major factors in enhancing the CML and CEL levels of the interior layer. Furthermore, the impact of temperature on the generation of CML and CEL was greater than that of MG-H1 and F-AGEs.


Subject(s)
Cooking , Glycation End Products, Advanced , Hot Temperature , Penaeidae , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/analysis , Kinetics , Animals , Penaeidae/chemistry , Shellfish/analysis , Maillard Reaction , Lysine/analysis , Lysine/analogs & derivatives , Lysine/chemistry
19.
Arch Razi Inst ; 79(1): 129-137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192960

ABSTRACT

Shellfishes are a significant economic and nutritious seafood amongst people in different countries. Seafood products, particularly shellfish, are potential reservoirs of enteric viruses. This research investigated the incidence of rotavirus (RoV), norovirus (NoV) GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in shellfish samples from the Persian Gulf, Iran. One hundred and fifty shellfish samples were collected. RNA extraction and cDNA synthesis were performed using commercial kits. The real-time polymerase chain reaction assessed the presence of enteric viruses in extracted cDNA samples. Thirty-two out of 150 (21.33%) shellfish samples were contaminated with enteric viruses. Prevalence rates of NoV GI, NoV GII, HAV, and RoV amongst shellfish samples were 8.00%, 11.33%, 1.33%, and 0.66%, respectively. There were no contaminated shellfish samples with HEV. Simultaneous prevalence of HAV and NoV GI, and HAV and NoV GII viruses were 0.66% and 0.66%, respectively. Examined viruses had a higher prevalence in shellfish samples collected in the winter season (P<0.05). Prevalence of HAV, RoV, NoV GI, and NoV GII amongst shellfish samples gathered in the winter season was 2.85%, 9.09%, 11.90%, and 20%, respectively. To the best of our knowledge, this was the first report of the incidence of enteric viruses, particularly HAV, NoV GI, NoV GII, and RoV, in shellfish samples from the Persian Gulf, Iran. Shellfish samples may serve as a potential source of enteric viruses for the human population. Therefore, routine viral assessments should be conducted. The consumption of fully cooked shellfish can significantly reduce the risk of HAV, RoV, NoV GI, and NoV GII infections. Furthermore, given the export value and importance of shellfish samples, their microbial quality and safety should be routinely monitored.


Subject(s)
Shellfish , Shellfish/virology , Iran/epidemiology , Indian Ocean/epidemiology , Animals , Enterovirus/isolation & purification , Enterovirus/classification , Hepatitis A virus/isolation & purification , Hepatitis A virus/genetics , Food Contamination/analysis , Prevalence , Norovirus/isolation & purification
20.
Toxins (Basel) ; 16(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39195751

ABSTRACT

Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method is of great significance. The objective of this research is to create a novel approach for identifying STX. Therefore, amplified luminescent proximity homogeneous assay (AlphaLISA) was established using a direct competition method based on the principles of fluorescence resonance energy transfer and antigen-antibody specific binding. This method is sensitive, rapid, performed without washing, easy to operate, and can detect 8-128 ng/mL of STX in only 10 min. The limit of detection achieved by this method is as low as 4.29 ng/mL with coefficients of variation for the intra-batch and inter-batch analyses ranging from 2.61% to 3.63% and from 7.67% to 8.30%, respectively. In conclusion, our study successfully establishes a simple yet sensitive, rapid, and accurate AlphaLISA method for the detection of STX which holds great potential in advancing research on marine biotoxins.


Subject(s)
Luminescent Measurements , Saxitoxin , Shellfish , Saxitoxin/analysis , Shellfish/analysis , Animals , Luminescent Measurements/methods , Limit of Detection , Food Contamination/analysis , Fluorescence Resonance Energy Transfer
SELECTION OF CITATIONS
SEARCH DETAIL