Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.263
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126029

ABSTRACT

During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), ß-cyclocitral, a ß-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or ß-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.


Subject(s)
Chlamydomonas reinhardtii , Photosynthesis , Signal Transduction , Singlet Oxygen , Singlet Oxygen/metabolism , Photosynthesis/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Light , Reactive Oxygen Species/metabolism
2.
Physiol Plant ; 176(4): e14468, 2024.
Article in English | MEDLINE | ID: mdl-39140254

ABSTRACT

Singlet oxygen (1O2) is an important reactive oxygen species whose formation by the type-II, light-dependent, photodynamic reaction is inevitable during photosynthetic processes. In the last decades, the recognition that 1O2 is not only a damaging agent, but can also affect gene expression and participates in signal transduction pathways has received increasing attention. However, contrary to several other taxa, 1O2-responsive genes have not been identified in the important cyanobacterial model organism Synechocystis PCC 6803. By using global transcript analysis we have identified a large set of Synechocystis genes, whose transcript levels were either enhanced or repressed in the presence of 1O2. Characteristic 1O2 responses were observed in several light-inducible genes of Synechocystis, especially in the hli (or scp) family encoding HLIP/SCP proteins involved in photoprotection. Other important 1O2-induced genes include components of the Photosystem II repair machinery (psbA2 and ftsH2, ftsH3), iron homeostasis genes isiA and idiA, the group 2 sigma factor sigD, some components of the transcriptomes induced by salt-, hyperosmotic and cold-stress, as well as several genes of unknown function. The most pronounced 1O2-induced upregulation was observed for the hliB and the co-transcribed lilA genes, whose deletion induced enhanced sensitivity against 1O2-mediated light damage. A bioreporter Synechocystis strain was created by fusing the hliB promoter to the bacterial luciferase (lux), which showed its utility for continuous monitoring of 1O2 concentrations inside the cell.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Photosystem II Protein Complex , Singlet Oxygen , Synechocystis , Synechocystis/genetics , Synechocystis/metabolism , Singlet Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Light , Photosynthesis/genetics
3.
Inorg Chem ; 63(30): 13972-13979, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38996005

ABSTRACT

Here, we report a photodynamic therapy (PDT) photosensitizer of N∧C∧N-coordinated Pt(II) complexes: [Pt(L)(solv)]+ (HL = 1,3-(2-dipyridyl)benzene) and [Pt(L)]+@HSA, which is the Pt(II) complex encapsulated in human serum albumin (HSA). The quantum yield of singlet oxygen production for [Pt(L)(solv)]+ is more than 50%, while that for [Pt(L)]+@HSA is much lower. Photoimages of human umbilical vein endothelial cells (HUVECs) treated with the Pt(II) complexes suggest that [Pt(L)(solv)]+ is delocalized in the entire cell after the fast uptake by diffusion and [Pt(L)]+@HSA is taken up by endocytosis and localized on organelles and the cell membrane. [Pt(L)(solv)]+ shows high photocytotoxicity for HUVECs, while [Pt(L)]+@HSA does not show photocytotoxicity.


Subject(s)
Human Umbilical Vein Endothelial Cells , Photochemotherapy , Photosensitizing Agents , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Cell Survival/drug effects , Molecular Structure , Singlet Oxygen/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Platinum/chemistry , Platinum/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
4.
J Agric Food Chem ; 72(28): 15755-15764, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954802

ABSTRACT

Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (kr + kq) of squalene was 3.8 × 107 M-1 s-1, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by ß-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hot Temperature , Oxidation-Reduction , Singlet Oxygen , Squalene , Squalene/chemistry , Singlet Oxygen/chemistry , Kinetics , Antioxidants/chemistry , Plant Oils/chemistry , Molecular Structure
5.
Methods Mol Biol ; 2833: 51-56, 2024.
Article in English | MEDLINE | ID: mdl-38949700

ABSTRACT

Photodynamic therapy (PDT) is an established therapy used for the treatment of cutaneous skin cancers and other non-infective ailments. There has been recent interest in the opportunity to use aPDT (antimicrobial PDT) to treat skin and soft tissue infections. PDT utilizes photosensitizers that infiltrate all cells and "sensitize" them to a given wavelength of light. The photosensitizer is simply highly absorbent to a given wavelength of light and when excited will produce, in the presence of oxygen, damaging oxygen radicals and singlet oxygen. Bacterial cells are comparatively poor at combatting oxidative stress when compared with human cells therefore a degree of selective toxicity can be achieved with aPDT.In this chapter, we outline methodologies for testing aPDT in vitro using standard lab equipment.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Humans , Singlet Oxygen/metabolism , Anti-Infective Agents/pharmacology
6.
Environ Sci Technol ; 58(31): 14005-14012, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39039842

ABSTRACT

Significant efforts have recently been exerted toward construction of singlet oxygen (1O2)-dominated catalytic oxidation systems for selective removal of organic contaminants from wastewater, with peroxides serving as the chemical source. However, the relevance of 1O2 in the removal of pollutants remains ambiguous and requires elucidation. In this study, we scrupulously exclude the significant role of 1O2 in contaminant degradation in various peroxymonosulfate (PMS) activation systems. Multiple experimental results indicate that the activation of PMS catalyzed by CuO, MnO2, Fe-doped g-C3N4 (Fe-CN), or N-doped graphite does not predominantly follow the 1O2 pathway. More importantly, the reactivity of 1O2 is remarkably overestimated in the literature, given its inferior capacity in degradation of a range of heterocyclic contaminants and aromatic compounds possessing electron-withdrawing groups. In addition, the strong physical quenching effect of water, coupled with the low oxidizing ability of 1O2, would notably reduce the utilization efficiency of peroxide, which is particularly apparent in the degradation of micropollutants. We reckon that this study is expected to end the long-running dispute associated with the relevance of 1O2 in pollutant removal.


Subject(s)
Oxidation-Reduction , Singlet Oxygen , Singlet Oxygen/chemistry , Peroxides/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Wastewater/chemistry
7.
ACS Appl Mater Interfaces ; 16(31): 40428-40443, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042585

ABSTRACT

The spin-orbit charge transfer intersystem crossing (SOCT-ISC) photophysical process has shown great potential for constructing heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) of tumors. However, for almost all such PSs reported to date, the SOCT-ISC is driven by the acceptor-excited photoinduced electron transfer (a-PeT). In this work, for the first time the donor-excited photoinduced electron transfer (d-PeT)-driven SOCT-ISC mechanism is utilized to construct the heavy-atom-free PSs for PDT of tumors by directly installing the electron-deficient N-alkylquinolinium unit (as an electron acceptor) into the meso-position of the near-infrared (NIR) distyryl Bodipy chromophore (as an electron donor). In the less polar environment, the PSs exist as the monomer and promote the production of singlet oxygen (1O2) (Type-II) relying on the d-PeT-driven population of the triplet excited state via SOCT-ISC, whereas in the aqueous environment, they exist as nanoaggregates and induce the generation of superoxides (O2-•) and hydroxyl radicals (HO•) (Type-I) via the d-PeT-driven formation of the delocalized charge-separated state. The PSs could rapidly be internalized into cancer cells and induce the simultaneous production of intracellular 1O2, O2-•, and HO• upon NIR light irradiation, endowing the PSs with superb photocytotoxicity with IC50 values up to submicromolar levels whether under normoxia or under hypoxia. Based on the PSs platform, a tumor-targetable PS is developed, and its abilities in killing cancer cells and in ablating tumors without damage to normal cells/tissues under NIR light irradiation are verified in vitro and in vivo. The study expands the design scope of PSs by introducing the d-PeT conception, thus being highly valuable for achieving novel PSs in the realm of tumor PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/radiation effects , Humans , Mice , Animals , Electron Transport/drug effects , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Cell Line, Tumor , Infrared Rays , Cell Survival/drug effects , Tumor Hypoxia/drug effects , Mice, Inbred BALB C
8.
J Med Chem ; 67(15): 13383-13391, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39057921

ABSTRACT

Photodynamic therapy (PDT) is a promising anticancer method due to its noninvasive features, high efficiency, and superior accuracy. The activated near-infrared upconversion photosensitizer has a high tissue penetration depth and could be explicitly released with minimal side effects. Therefore, we designed and synthesized a series of Br-substituted compounds (NFh-Br) based on the near-infrared upconversion hemicyanine dye. The heavy atomic effect improves the generation of 1O2 and upconversion luminous efficiency. Especially, NFh-Br11 exhibited an excellent 1O2 generation rate under 808 nm excitation and effectively killed tumor cells in vitro, and the alkaline phosphatase (ALP)-activatable photosensitizer (NFh-ALP) was obtained by modifying the NFh-Br11. NFh-ALP could be activated by ALP and release NFh-Br11, which induces apoptosis of tumor cells and has outstanding anticancer effects in vitro and in vivo. This work could provide a strategy for designing activatable upconversion photosensitizers.


Subject(s)
Alkaline Phosphatase , Infrared Rays , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/therapeutic use , Humans , Alkaline Phosphatase/metabolism , Animals , Mice , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude , Singlet Oxygen/metabolism
9.
Chem Commun (Camb) ; 60(62): 8111-8114, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38994648

ABSTRACT

1,4-Dimethylphenazine endoperoxide releases singlet oxygen with a half-life of 89 hours at 37 °C. The thermal cycloreversion reaction is accompanied by a strong increase in the emission intensity with a peak at 490 nm, due to the formation of the phenazine core. The endoperoxide is effective against cancer cells in culture medium and tumor spheroids, with singlet oxygen-mediated cytotoxicity.


Subject(s)
Phenazines , Singlet Oxygen , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Humans , Phenazines/chemistry , Phenazines/pharmacology , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Molecular Structure
10.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000219

ABSTRACT

Chlorin e6 is a well-known photosensitizer used in photodynamic diagnosis and therapy. A method for identifying and purifying a novel process-related impurity during the synthesis of chlorin e6 has been developed. Its structure was elucidated using NMR and HRMS. This new impurity is formed from chlorophyll b rather than chlorophyll a, which is the source of chlorin e6. The intermediates formed during chlorin e6 synthesis were monitored using HPLC-mass spectrometry. This new impurity was identified as rhodin g7 71-ethyl ester, the structure of which remains unknown to date. The cytotoxic effects of this novel compound in both dark and light conditions were studied against five cancer cell lines (HT29, MIA-PaCa-2, PANC-1, AsPC-1, and B16F10) and a normal cell line (RAW264.7) and compared to those of chlorin e6. Upon irradiation using a laser at 0.5 J/cm2, rhodin g7 71-ethyl ester demonstrated higher cytotoxicity (2-fold) compared to chlorin e6 in the majority of the cancer cell lines. Furthermore, this new compound exhibited higher dark cytotoxicity compared to chlorin e6. Studies on singlet oxygen generation, the accumulation in highly vascular liver tissue, and the production of reactive oxygen species in MIA-PaCa-2 cancer cells via rhodin g7 71-ethyl ester correspond to its higher cytotoxicity as a newly developed photosensitizer. Therefore, rhodin g7 71-ethyl ester could be employed as an alternative or complementary agent to chlorin e6 in the photodynamic therapy for treating cancer cells.


Subject(s)
Chlorophyllides , Photosensitizing Agents , Porphyrins , Porphyrins/chemistry , Porphyrins/pharmacology , Humans , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Line, Tumor , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Photochemotherapy/methods , Singlet Oxygen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124529, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824758

ABSTRACT

Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.


Subject(s)
Anti-Bacterial Agents , Photochemotherapy , Photosensitizing Agents , Porphyrins , Singlet Oxygen , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Microbial Sensitivity Tests , Light , Bacteria/drug effects , Drug Design
12.
ACS Appl Mater Interfaces ; 16(24): 30833-30846, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38842123

ABSTRACT

Dental caries is a widespread bacterial infectious disease that imposes a significant public health burden globally. The primary culprits in caries development are cariogenic bacteria, notably Streptococcus mutans (S. mutans), due to their robust biofilm-forming capabilities. To address this issue, a series of cationic pyridinium-substituted photosensitizers with aggregation-induced emission have been designed. All of these aggregation-induced emission luminogens (AIEgens) exhibit outstanding microbial visualization and photodynamic killing of S. mutans, thanks to their luminous fluorescence and efficient singlet oxygen generation ability. Notably, one of the membrane-anchored AIEgens (TDTPY) can inactivate planktic S. mutans and its biofilm without causing significant cytotoxicity. Importantly, application of TDTPY-mediated photodynamic treatment on in vivo rodent models has yielded commendable imaging results and effectively slowed down caries progression with assured biosafety. Unlike traditional single-mode anticaries materials, AIEgens integrate the dual functions of detecting and removing S. mutans and are expected to build a new caries management diagnosis and treatment platform. To the best of our knowledge, this is also the first report on the use of AIEgens for anticaries studies both in vitro and in vivo.


Subject(s)
Biofilms , Dental Caries , Photochemotherapy , Photosensitizing Agents , Streptococcus mutans , Streptococcus mutans/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Dental Caries/microbiology , Dental Caries/drug therapy , Animals , Biofilms/drug effects , Mice , Singlet Oxygen/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
13.
Org Biomol Chem ; 22(27): 5569-5577, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38887040

ABSTRACT

In this paper, two near-infrared BODIPY photosensitizers, Id-BDPI and Cz-BDPI, were obtained by modifying the indole and carbazole aromatic heterocycles in the core of BODIPY. The maximum absorption wavelengths of Id-BDPI and Cz-BDPI were 694 nm and 722 nm, and their singlet oxygen yields were 48% and 48.4%, respectively. In the simulated tumor cell photodynamic therapy, Id-BDPI and Cz-BDPI could effectively inhibit the growth of A549 tumor cells under near-infrared light. Meanwhile, the lysosomal co-localization coefficients of Id-BDPI and Cz-BDPI with A549 tumor cells were 0.94 and 0.89, respectively, showing high lysosomal targeting ability and biocompatibility. The two-photon absorption cross sections measured at 1050 nm by the Z-scanning method were 661.8 GM and 715.6 GM, respectively, and Cz-BDPI was further successfully applied to two-photon fluorescence imaging and two-photon excited singlet oxygen generation in zebrafish. The above results indicate that the introduction of aromatic heterocycles can effectively enhance the photodynamic efficacy of BODIPY photosensitizers, and the larger two-photon absorption cross section also brings potential for two-photon photodynamic therapy applications.


Subject(s)
Boron Compounds , Infrared Rays , Photochemotherapy , Photons , Photosensitizing Agents , Singlet Oxygen , Zebrafish , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Singlet Oxygen/metabolism , Humans , Animals , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
14.
Environ Sci Technol ; 58(26): 11470-11481, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864425

ABSTRACT

Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.


Subject(s)
Oxidation-Reduction , Singlet Oxygen , Singlet Oxygen/chemistry , Antimony/chemistry , Iron/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry
15.
Food Chem ; 456: 140082, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878532

ABSTRACT

Establishing a moderate elimination strategy for mycotoxins with the maintained food nutrition is significant to food safety. Herein, the Au-NPs decorated defective Bi2WO6 (Au-BWO-OV) with modulated ROS generation was successfully synthesized, integrating the merits of defect-engineering and Au-NPs induced LSPR-effect. The Au-BWO-OV exhibited modified photoelectrochemical property and O2-adsorption capacity, supporting the selective generation of •O2- and 1O2 with moderate oxidizing ability. As a result, >90% of AFB1 and ZEN were eliminated within 100 and 50 min, along with the maintained nutrition in vegetable oil. Moreover, the reasonable degradation mechanism triggered by •O2- and 1O2 was proposed based on the trapping experiments, DFT calculations and LC-MS analysis for intermediate products, including the steps of hydrolysis, oxidative dissociation, cis-trans isomerization, and dehydroxylation. This work not only paved the way for balancing the contradiction between detoxification and nutrient retention, but also casted new insights into the ROS-mediated degradation mechanism.


Subject(s)
Mycotoxins , Plant Oils , Singlet Oxygen , Superoxides , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Mycotoxins/chemistry , Mycotoxins/metabolism , Plant Oils/chemistry , Plant Oils/metabolism , Superoxides/chemistry , Superoxides/metabolism , Food Contamination/analysis , Food Contamination/prevention & control , Gold/chemistry , Oxidation-Reduction
16.
J Am Chem Soc ; 146(25): 17393-17403, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860693

ABSTRACT

Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.


Subject(s)
Optical Imaging , Singlet Oxygen , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Humans , Fluorescent Dyes/chemistry , Animals , Mice , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Neoplasms/diagnostic imaging
17.
Food Res Int ; 188: 114492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823875

ABSTRACT

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Subject(s)
Curcumin , Food Preservation , Perciformes , Silicon Dioxide , Curcumin/pharmacology , Curcumin/chemistry , Animals , Silicon Dioxide/chemistry , Food Preservation/methods , Nanoparticles , Seafood , Solubility , Singlet Oxygen , Photolysis , Humans
18.
Nat Commun ; 15(1): 4943, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858372

ABSTRACT

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O2-•). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O2 to O2-• by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.


Subject(s)
Benzoquinones , Photochemotherapy , Photosensitizing Agents , Staphylococcus aureus , Benzoquinones/chemistry , Benzoquinones/pharmacology , Benzoquinones/metabolism , Photosensitizing Agents/pharmacology , Animals , Mice , Female , Photochemotherapy/methods , Electron Transport/drug effects , Staphylococcus aureus/drug effects , Cymenes/pharmacology , Cymenes/chemistry , Anti-Bacterial Agents/pharmacology , Singlet Oxygen/metabolism , Superoxides/metabolism , Staphylococcal Infections/drug therapy , Humans , Light , Mice, Inbred BALB C
19.
Inorg Chem ; 63(24): 11450-11458, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38823006

ABSTRACT

Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 µs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.


Subject(s)
Coordination Complexes , DNA , Photochemotherapy , Photosensitizing Agents , Plasmids , Ruthenium , Singlet Oxygen , DNA/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Ruthenium/chemistry , Ruthenium/pharmacology , Plasmids/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Molecular Structure , DNA Cleavage/drug effects , DNA Cleavage/radiation effects
20.
J Colloid Interface Sci ; 673: 679-689, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38901358

ABSTRACT

Photodynamic therapy (PDT) is an emerging treatment but often restricted by the availability of oxygen. Enhancing the lifespan of singlet oxygen (1O2) by fractionated generation is an effective approach to improve the efficacy of PDT. Herein, an imine-based nanoscale COF (TpDa-COF) has been synthesized and functionalized with a pyridone-derived structure (Py) to create a 1O2-storing nanoplatform TpDa-COF@Py, which can reversibly capture and release 1O2. Under 660 nm laser exposure, Py interacts with 1O2 produced by the porphyrin motif in COF backbones to generate 1O2-enriched COF (TpDa-COF@Py + hv), followed by the release of 1O2 through retro-Diels-Alder reactions at physiological temperatures. The continuous producing and releasing of 1O2 upon laser exposure leads to an "afterglow" effect and a prolonged 1O2 lifespan. In vitro cytotoxicity assays demonstrates that TpDa-COF@Py + hv exhibits an extremely low half-maximal inhibitory concentration (IC50) of 0.54 µg/mL on 4T1 cells. Remarkably, the Py-mediated TpDa-COF@Py nanoplatform demonstrates enhanced cell-killing capability under laser exposure, attributed to the sustained 1O2 cycling, compared to TpDa-COF alone. Further in vivo assessment highlights the potential of TpDa-COF@Py + hv as a promising strategy to enhance phototheronostics and achieve effective tumor regression. Accordingly, the study supplies a generalized 1O2 "afterglow" nanoplatform to improve the effectiveness of PDT.


Subject(s)
Cell Survival , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Singlet Oxygen , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Animals , Mice , Cell Survival/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Surface Properties , Humans , Cell Proliferation/drug effects , Female , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL