Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.346
1.
Sci Rep ; 14(1): 12874, 2024 06 05.
Article En | MEDLINE | ID: mdl-38834629

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Dermatitis, Atopic , Dinitrochlorobenzene , Disease Models, Animal , Mice, Inbred BALB C , Sargassum , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Sargassum/chemistry , Mice , RAW 264.7 Cells , Humans , Ethanol/chemistry , Plant Extracts/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Skin/drug effects , Skin/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Cytokines/metabolism
2.
Arch Dermatol Res ; 316(6): 316, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822884

In the present study, we have formulated a methotrexate (MTX)-loaded microemulsion topical gel employing quality-by-design optimization. The optimized lipid-based microemulsion was incorporated into a 2% carbopol gel. The prepared formulation was characterized for micromeritics, surface charge, surface morphology, conductivity studies, rheology studies, texture analysis/spreadability, drug entrapment, and drug loading studies. The formulation was further evaluated for drug release and release kinetics, cytotoxicity assays, drug permeation and drug retention studies, and dermatokinetics. The developed nanosystem was not only rheologically acceptable but also offered substantial drug entrapment and loading. From drug release studies, it was observed that the nanogel showed higher drug release at pH 5.0 compared to plain MTX, plain gel, and plain microemulsion. The developed system with improved dermatokinetics, nanometric size, higher drug loading, and enhanced efficacy towards A314 squamous epithelial cells offers a huge promise in the topical delivery of methotrexate.


Drug Liberation , Emulsions , Gels , Methotrexate , Skin Absorption , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/pharmacokinetics , Humans , Skin Absorption/drug effects , Rheology , Lipids/chemistry , Administration, Cutaneous , Skin/metabolism , Skin/drug effects , Administration, Topical , Drug Delivery Systems/methods , Animals , Particle Size , Drug Carriers/chemistry , Nanogels/chemistry
3.
J Drugs Dermatol ; 23(6): 463-465, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38834213

BACKGROUND: Evaluating cleansers and moisturizers provides important information to guide clinicians in the recommendation of these products. This project was performed to visualize skin hydration via heatmap after the use of a gentle skin cleanser (GSC) and moisturizing lotion (ML). METHODS: Half-face, intra-individual open-label study in healthy volunteers. Cleanser was administered in a single application that was then wiped off the face. Moisturizing lotion was applied at least once-daily for one week. Hydration measurements were made at 30 pre-defined points on half of the face, at baseline, and 30 minutes post-application; an additional assessment at week 1 was made for the moisturizing lotion. Heatmaps were generated using Python programming software to interpolate hydration values to colors that were then superimposed onto the volunteer's facial image.  Results: Five subjects completed the cleanser assessments, and 5 subjects completed the 30-minute evaluation for the lotion, with 4 completing the week 1 assessment. There was a visible shift in skin hydration post-GSC application from values approximately in the 12-42 AU (arbitrary unit) range to 30-60 AU at 30 minutes. Similarly, there was a shift in hydration from baseline to 30 minutes that continued to increase through week 1 of ML use. CONCLUSIONS: This innovative heatmap data generation showed a clear, visual change in hydration over time. There was a visible shift in hydration values from baseline to 30 minutes after application of cleanser; hydration also improved after use of moisturizing lotion at 30 minutes and increased after week 1 application.  J Drugs Dermatol. 2024;23(6):463-465.     doi:10.36849/JDD.8221.


Face , Skin Cream , Humans , Skin Cream/administration & dosage , Skin Cream/chemistry , Adult , Female , Male , Software , Healthy Volunteers , Middle Aged , Emollients/administration & dosage , Emollients/chemistry , Skin/drug effects , Skin/metabolism , Young Adult , Skin Care/methods , Administration, Cutaneous
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 85-91, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836676

Skin photoaging is a skin degenerative disease that causes patients to develop malignant tumors. The existing clinical treatment of photoaging has limitations. This greatly reduces the recovery rate of photoaging patients. Studies have confirmed that Ligusticum wallichii Franch (LWF) monomer tetramethylpyrazine (TMP) alleviates various skin diseases. The combination of traditional Chinese medicine and Western medicine helps with this process. Our research aimed to explore the specific treatment mode and molecular mechanism of TMP in treating skin photoaging. CCK-8 assays were used to evaluate the activity and toxicity of HaCaT cells. ß-galactosidase aging, Carbonyl compound and nitrosylated tyrosine assays were used to analyze the aging of HaCaT cells. ROS assays and ELISA were used to analyze the enrichment of ROS. The molecular docking experiment analyzed the binding of TMP and HIF-1α. qRT-PCR and Western blot were used to detect the activation of skin aging-related pathways. HE staining was used to analyze the thickness of the stratum corneum skin on the back skin of mice. 200µg/L LWF alleviates cellular photoaging and mouse skin photoaging by reducing ROS enrichment. Its monomer TMP plays an important role in this process. The combination of TMP and HIF-1α accelerates the degradation of ROS by activating the Nrf2/ARE signaling pathway. This process reduces the apoptosis of cells damaged by light. In addition, we also found that the combination of TMP and retinoic acid (RA) is more beneficial for the treatment of skin damage caused by light in mice. The combination therapy of TMP and RA alleviates skin oxidative stress response through overexpression of HIF-1α. This plan is beneficial for the treatment of skin photoaging.


Hypoxia-Inducible Factor 1, alpha Subunit , Pyrazines , Reactive Oxygen Species , Signal Transduction , Skin Aging , Vitamin A , Pyrazines/pharmacology , Skin Aging/drug effects , Skin Aging/radiation effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Humans , Reactive Oxygen Species/metabolism , Mice , Signal Transduction/drug effects , Vitamin A/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin/radiation effects , HaCaT Cells , Molecular Docking Simulation
6.
AAPS PharmSciTech ; 25(5): 130, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844611

Naringenin (NRG) inhibits the fungal 17ß-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1ß and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.


Antifungal Agents , Candida albicans , Chitosan , Flavanones , Gels , Mice, Inbred BALB C , Nanocomposites , Zinc Oxide , Animals , Flavanones/administration & dosage , Flavanones/pharmacology , Mice , Candida albicans/drug effects , Chitosan/chemistry , Chitosan/administration & dosage , Nanocomposites/chemistry , Nanocomposites/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/pharmacokinetics , Zinc Oxide/administration & dosage , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Drug Delivery Systems/methods , Skin/metabolism , Skin/drug effects , Skin/microbiology , Candidiasis/drug therapy , Polymers/chemistry , Skin Absorption/drug effects , Particle Size , Administration, Cutaneous
7.
Photodermatol Photoimmunol Photomed ; 40(4): e12985, 2024 Jul.
Article En | MEDLINE | ID: mdl-38845468

BACKGROUND: Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS: A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS: Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION: Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.


Sunscreening Agents , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Sunscreening Agents/administration & dosage , Administration, Oral , Antioxidants/administration & dosage , Oxidative Stress/drug effects , Skin/metabolism , Skin/radiation effects , Skin/drug effects , Reactive Oxygen Species/metabolism , Sunlight/adverse effects
8.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709706

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Fibroblasts , Filaggrin Proteins , Matrix Metalloproteinase 1 , NF-E2-Related Factor 2 , Tumor Necrosis Factor-alpha , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , Matrix Metalloproteinase 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Sunscreening Agents/administration & dosage , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Amino Acids/administration & dosage , Amino Acids/pharmacology , Amino Acids/chemistry , Interleukin-1alpha/metabolism , Histamine/blood , Skin Cream/administration & dosage , Biomarkers/metabolism , Collagen Type I , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Pyrimidine Dimers , Cells, Cultured
9.
Sci Rep ; 14(1): 10193, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702361

Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.


Amphibians , Arsenic , Microbiota , Skin , Animals , Arsenic/metabolism , Arsenic/toxicity , Microbiota/drug effects , Skin/microbiology , Skin/drug effects , Skin/metabolism , Amphibians/microbiology , Bacteria/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Permeability/drug effects
10.
Skin Res Technol ; 30(5): e13727, 2024 May.
Article En | MEDLINE | ID: mdl-38711343

Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-ß1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.


Cuminum , Plant Extracts , Rats, Sprague-Dawley , Seeds , Wound Healing , Animals , Wound Healing/drug effects , Seeds/chemistry , Rats , Plant Extracts/pharmacology , Cuminum/chemistry , Male , Skin/injuries , Skin/drug effects , Skin/pathology , Transforming Growth Factor beta1/metabolism
11.
AAPS PharmSciTech ; 25(5): 101, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714629

BACKGROUND: Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. OBJECTIVE: This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. METHODS: NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. RESULTS: NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. CONCLUSION: NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.


Administration, Cutaneous , Drug Liberation , Niacin , Polysaccharides , Rats, Wistar , Skin Absorption , Skin , Animals , Rats , Niacin/administration & dosage , Niacin/chemistry , Niacin/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Skin/metabolism , Skin/drug effects , Skin Absorption/drug effects , Flushing/chemically induced , Tensile Strength , Male , Drug Delivery Systems/methods , Tamarindus/chemistry , Polymers/chemistry
12.
AAPS PharmSciTech ; 25(5): 112, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744715

This study aimed to develop a propellant-free topical spray formulation of Etodolac (BCS-II), a potent NSAID, which could be beneficial in the medical field for the effective treatment of pain and inflammation conditions. The developed novel propellant-free spray formulation is user-friendly, cost-effective, propellant-free, eco-friendly, enhances the penetration of Etodolac through the skin, and has a quick onset of action. Various formulations were developed by adjusting the concentrations of different components, including lecithin, buffering agents, film-forming agents, plasticizers, and permeation enhancers. The prepared propellant-free spray formulations were then extensively characterized and evaluated through various in vitro, ex vivo, and in vivo parameters. The optimized formulation exhibits an average shot weight of 0.24 ± 0.30 ml and an average drug content or content uniformity of 87.3 ± 1.01% per spray. Additionally, the optimized formulation exhibits an evaporation time of 3 ± 0.24 min. The skin permeation study demonstrated that the permeability coefficients of the optimized spray formulation were 21.42 cm/h for rat skin, 13.64 cm/h for mice skin, and 18.97 cm/h for the Strat-M membrane. When assessing its potential for drug deposition using rat skin, mice skin, and the Strat-M membrane, the enhancement ratios for the optimized formulation were 1.88, 2.46, and 1.92, respectively against pure drug solution. The findings from our study suggest that the propellant-free Etodolac spray is a reliable and safe topical formulation. It demonstrates enhanced skin deposition, and improved effectiveness, and is free from any skin irritation concerns.


Administration, Cutaneous , Etodolac , Skin Absorption , Skin , Animals , Etodolac/administration & dosage , Etodolac/pharmacokinetics , Etodolac/chemistry , Rats , Mice , Skin Absorption/physiology , Skin/metabolism , Skin/drug effects , Male , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Acute Pain/drug therapy , Chemistry, Pharmaceutical/methods , Permeability , Rats, Sprague-Dawley , Drug Compounding/methods
13.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731569

Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.


Cinnamomum , Oils, Volatile , Wound Healing , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Wound Healing/drug effects , Cinnamomum/chemistry , Animals , Mice , Cell Proliferation/drug effects , Cytokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Cell Movement/drug effects , Skin/drug effects , Humans
14.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731597

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Artemisia , Artemisinins , Fibroblasts , Fibrosis , Humans , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Actins/metabolism , Actins/genetics , Artesunate/pharmacology , Gene Expression Regulation/drug effects , Artemether/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology
15.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734619

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
16.
Int J Nanomedicine ; 19: 4061-4079, 2024.
Article En | MEDLINE | ID: mdl-38736651

Purpose: Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods: Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results: The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1ß compared with the methotrexate subcutaneous injection method. Conclusion: NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.


Administration, Cutaneous , Cannabidiol , Needles , Particle Size , Rats, Sprague-Dawley , Skin Absorption , Suspensions , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Skin Absorption/drug effects , Rats , Suspensions/chemistry , Male , Skin/metabolism , Skin/drug effects , Solubility , Drug Delivery Systems/methods , Transdermal Patch , Nanoparticles/chemistry , Microinjections/methods , Microinjections/instrumentation
17.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702742

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Antibodies, Monoclonal , Chemokine CX3CL1 , Disease Models, Animal , Graft vs Host Disease , Pulmonary Fibrosis , Scleroderma, Systemic , Skin , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Fibrosis , Female , Mice, Inbred C57BL , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology
18.
BMC Vet Res ; 20(1): 202, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755639

BACKGROUND: Gray horses are predisposed to equine malignant melanoma (EMM) with advancing age. Depending on the tumor's location and size, they can cause severe problems (e.g., defaecation, urination, feeding). A feasible therapy for EMM has not yet been established and surgical excision can be difficult depending on the location of the melanoma. Thus, an effective and safe therapy is needed. Naturally occurring betulinic acid (BA), a pentacyclic triterpene and its synthetic derivate, NVX-207 (3-acetyl-betulinic acid-2-amino-3-hydroxy-2-hydroxymethyl-propanoate) are known for their cytotoxic properties against melanomas and other tumors and have already shown good safety and tolerability in vivo. In this study, BA and NVX-207 were tested for their permeation potential into equine skin in vitro in Franz-type diffusion cell (FDC) experiments after incubation of 5 min, 30 min and 24 h, aiming to use these formulations for prospective in vivo studies as a treatment for early melanoma stages. Potent permeation was defined as reaching or exceeding the half maximal inhibitory concentrations (IC50) of BA or NVX-207 for equine melanoma cells in equine skin samples. The active ingredients were either dissolved in a microemulsion (ME) or in a microemulsion gel (MEG). All of the formulations were transdermally applied but the oil-in-water microemulsion was administered with a novel oxygen flow-assisted (OFA) applicator (DERMADROP TDA). RESULTS: All tested formulations exceeded the IC50 values for equine melanoma cells for BA and NVX-207 in equine skin samples, independently of the incubation time NVX-207 applied with the OFA applicator showed a significant time-dependent accumulation and depot-effect in the skin after 30 min and 24 h (P < 0.05). CONCLUSIONS: All tested substances showed promising results. Additionally, OFA administration showed a significant accumulation of NVX-207 after 30 min and 24 h of incubation. Further in vivo trials with OFA application are recommended.


Administration, Cutaneous , Betulinic Acid , Drug Delivery Systems , Emulsions , Pentacyclic Triterpenes , Skin , Triterpenes , Animals , Horses , Triterpenes/administration & dosage , Skin/metabolism , Skin/drug effects , Drug Delivery Systems/veterinary , Gels , Melanoma/drug therapy , Melanoma/veterinary , Oxygen/metabolism , Skin Absorption , Horse Diseases/drug therapy , Propanolamines
19.
Int J Nanomedicine ; 19: 4321-4337, 2024.
Article En | MEDLINE | ID: mdl-38770103

Purpose: Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods: A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results: In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion: CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.


Administration, Cutaneous , Biological Availability , Cannabidiol , Drug Carriers , Nanoparticles , Skin Absorption , Transdermal Patch , Cannabidiol/pharmacokinetics , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Animals , Skin Absorption/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley , Particle Size , Skin/metabolism , Skin/drug effects , Micelles
20.
J Nanobiotechnology ; 22(1): 272, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773580

BACKGROUND: Transdermal delivery of sparingly soluble drugs is challenging due to their low solubility and poor permeability. Deep eutectic solvent (DES)/or ionic liquid (IL)-mediated nanocarriers are attracting increasing attention. However, most of them require the addition of auxiliary materials (such as surfactants or organic solvents) to maintain the stability of formulations, which may cause skin irritation and potential toxicity. RESULTS: We fabricated an amphiphilic DES using natural oxymatrine and lauric acid and constructed a novel self-assembled reverse nanomicelle system (DES-RM) based on the features of this DES. Synthesized DESs showed the broad liquid window and significantly solubilized a series of sparingly soluble drugs, and quantitative structure-activity relationship (QSAR) models with good prediction ability were further built. The experimental and molecular dynamics simulation elucidated that the self-assembly of DES-RM was adjusted by noncovalent intermolecular forces. Choosing triamcinolone acetonide (TA) as a model drug, the skin penetration studies revealed that DES-RM significantly enhanced TA penetration and retention in comparison with their corresponding DES and oil. Furthermore, in vivo animal experiments demonstrated that TA@DES-RM exhibited good anti-psoriasis therapeutic efficacy as well as biocompatibility. CONCLUSIONS: The present study offers innovative insights into the optimal design of micellar nanodelivery system based on DES combining experiments and computational simulations and provides a promising strategy for developing efficient transdermal delivery systems for sparingly soluble drugs.


Administration, Cutaneous , Micelles , Skin Absorption , Solubility , Solvents , Animals , Solvents/chemistry , Skin/metabolism , Skin/drug effects , Mice , Drug Delivery Systems/methods , Nanoparticles/chemistry , Quantitative Structure-Activity Relationship , Male , Molecular Dynamics Simulation , Drug Carriers/chemistry
...