Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.938
Filter
1.
AAPS PharmSciTech ; 25(6): 180, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107558

ABSTRACT

In recent years, there has been a significant increase in the prevalence of thyroid diseases, particularly hypothyroidism. In this study, we investigated the impact and mechanisms of Chemical permeation enhancement(CPE) on transdermal permeation of levothyroxine sodium (L-T4) patches.We found that the combination of oleic acid (OA) and Azone (NZ) yielded the best transdermal permeation effect for L-T4.Subsequently, we also investigated the relevant propermeability mechanism.The results demonstrate that the combined application of OA and NZ significantly enhances the transdermal permeation of L-T4 compared to individual applications,it is attributed to two mechanisms: firstly, OA improves drug release by increasing the flowability of the pressure-sensitive adhesive (PSA) matrix; secondly, both OA and NZ act on the stratum corneum, especially facilitating L-T4 permeation through the hair follicle pathway. No skin irritation or cytotoxicity is observed with these final patches, which exhibit a remarkable therapeutic effect on hypothyroidism. this study contributes to the development of transdermal formulations of L-T4.


Subject(s)
Administration, Cutaneous , Oleic Acid , Skin Absorption , Thyroxine , Oleic Acid/chemistry , Thyroxine/administration & dosage , Thyroxine/pharmacology , Thyroxine/pharmacokinetics , Animals , Skin Absorption/drug effects , Transdermal Patch , Skin/metabolism , Skin/drug effects , Drug Liberation , Mice , Permeability , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Humans , Chemistry, Pharmaceutical/methods , Male
2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3706-3713, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099345

ABSTRACT

Acupoint drug delivery is a traditional external therapy of traditional Chinese medicine(TCM). Guided by the meridian and collateral theory in TCM, it applies medications to the skin at acupoints, exerting a dual therapeutic effect by stimulating the acupoints and the conduction of meridians. Acupoint drug delivery is widely used in clinical practice. Different from traditional oral admi-nistration and injection, it absorbs medications through the skin, effectively avoiding the first-pass effect of drugs and the toxic side effects caused by injection. Acupoint selection and transdermal drug absorption are pivotal factors affecting the efficacy of acupoint drug delivery. Recent research on acupoint drug delivery mainly focuses on the evaluation of clinical efficacy, yet the systematic investigations on acupoint selection and pharmacodynamic factors are scarce. This study reviews the mechanism, efficacy evaluation and application status of acupoint drug delivery. It integrates the theory of TCM with modern medicine to explore the mechanism of acupoint drug delivery, evaluate its clinical efficacy, and assess the transdermal penetration in vivo and in vitro. The application status of acupoint drug delivery is also summarized, including the selection of acupoints, application dosage form, application time and the absorption of acupoints. This review aims to offer insights and references for the research, development and clinical application of acupoint drug delivery products.


Subject(s)
Acupuncture Points , Drug Delivery Systems , Humans , Drug Delivery Systems/methods , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Skin Absorption/drug effects , Meridians , Medicine, Chinese Traditional , Administration, Cutaneous
3.
AAPS PharmSciTech ; 25(6): 184, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138693

ABSTRACT

Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Liposomes , Phospholipids , Skin Absorption , Skin , Phospholipids/chemistry , Humans , Drug Delivery Systems/methods , Skin/metabolism , Skin Absorption/physiology , Skin Absorption/drug effects , Liposomes/chemistry , Drug Carriers/chemistry , Animals , Nanoparticles/chemistry
4.
AAPS PharmSciTech ; 25(6): 186, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138712

ABSTRACT

Winlevi® (clascoterone) topical cream (1%, w/w) was approved by the U.S. FDA for the treatment of acne vulgaris in patients 12 years of age and older. The active ingredient, clascoterone, is not stable in physiological solutions and can hydrolyze to cortexolone at body temperature. Instability of clascoterone poses a significant challenge in accurately assessing the rate and extent of clascoterone permeation in vitro. Therefore, the purpose of this study was to develop an in vitro skin permeation test (IVPT) method, and a robust analytical method, that can minimize hydrolyzation of clascoterone during the study for quantification of clascoterone. Two IVPT methods, using either vertical diffusion cells or flow-through cells, were developed and compared to evaluate in vitro permeation of clascoterone from Winlevi. A liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was developed to monitor the level of clascoterone and cortexolone in the IVPT samples. The analytical method features a 2-min high-throughput analysis with good linearity, selectivity, and showed a lower limit of quantitation (LLOQ) of 0.5 ng/mL for both clascoterone and cortexolone. The in vitro skin permeation of clascoterone and cortexolone was observed as early as 2 h in both IVPT methods. A substantive amount of clascoterone was found to hydrolyze to cortexolone when using the vertical static diffusion cells with aliquot sampling. Conversely, degradation of clascoterone was significantly minimized when using the flow-through diffusion cells with fractional sampling. The data enhanced our understanding of in vitro permeation of clascoterone following topical application of the Winlevi topical cream, 1% and underscores the importance of IVPT method development and optimization during product development.


Subject(s)
Cortodoxone , Skin Absorption , Skin Cream , Tandem Mass Spectrometry , Skin Absorption/drug effects , Skin Absorption/physiology , Skin Cream/pharmacokinetics , Skin Cream/administration & dosage , Cortodoxone/administration & dosage , Cortodoxone/pharmacokinetics , Cortodoxone/metabolism , Cortodoxone/analogs & derivatives , Tandem Mass Spectrometry/methods , Skin/metabolism , Administration, Cutaneous , Chromatography, Liquid/methods , Animals , Permeability , Swine , Humans , Propionates
5.
Eur J Pharm Biopharm ; 202: 114423, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39038523

ABSTRACT

Inflammatory skin diseases are typically managed with semi-solid formulations such as creams and ointments. These treatments often fail to remain on the skin for long, as they can be easily wiped off by clothing, necessitating frequent reapplication throughout the day and resulting in poor patient adherence. Therefore, this study sought to fabricate an electrospun dressing as an alternative dosage form that provides a sustained release of the anti-inflammatory agent tofacitinib over three days. In this study, three types of electrospun fiber dressings - uniaxial, coaxial, and layer-by-layer - were produced and examined for their morphological, mechanical, and release characteristics. In addition to a comprehensive characterization, another objective was to analyze the drug permeation behavior from these fiber dressings on porcine skin, comparing their performance to that of a tofacitinib cream. The layer-by-layer system notably exhibited a delayed drug release, while the uniaxial and coaxial systems demonstrated an initial burst release. However, the permeation studies revealed no significant differences between these systems, underscoring the necessity of conducting such studies - a crucial aspect often overlooked in research on electrospun fiber dressings. Overall, this study highlights the potential of electrospun, drug-loaded dressings for the treatment of inflammatory skin diseases.


Subject(s)
Bandages , Delayed-Action Preparations , Drug Liberation , Piperidines , Pyrimidines , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Piperidines/chemistry , Animals , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Swine , Delayed-Action Preparations/administration & dosage , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Skin Absorption , Skin Diseases/drug therapy , Inflammation/drug therapy , Pyrroles/administration & dosage , Pyrroles/chemistry , Pyrroles/pharmacokinetics
6.
Int J Biol Macromol ; 275(Pt 2): 133611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969039

ABSTRACT

In this study, berberine hydrochloride (Ber) was used as model drug to prepare a sustained-release cold sol using hydroxypropyl methyl cellulose (HPMC) to achieve superior drug dissolution and transdermal absorption effects. For comparison, a Ber cold sol without HPMC was also prepared using the same method. The preparation process was optimized based on the in vitro release and transdermal permeability of the drug. The results indicated that 1.67 wt% Carbomer 940 and 1.33 wt% HPMC K100M were selected as matrix components with the best sustained-release effect, and drug dissolution of cold sol prepared by combination of these two matrices was significantly slower than the cold sol without HPMC. In addition, transdermal absorption result demonstrated that 0.67 wt% glycerin and 1.33 wt% peppermint oil were the best osmotic enhancers for the optimization of Ber sustained-release cold sol. Herein, HPMC K100M performed important functions in the external application of Ber.


Subject(s)
Berberine , Delayed-Action Preparations , Drug Liberation , Hypromellose Derivatives , Skin Absorption , Solubility , Berberine/pharmacokinetics , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacology , Hypromellose Derivatives/chemistry , Skin Absorption/drug effects , Animals , Administration, Cutaneous
7.
J Hazard Mater ; 476: 135169, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39024769

ABSTRACT

Human dermal exposure to chlorinated paraffins (CPs) has not been well documented. Therefore, hand wipes were collected from four occupational populations to analyze short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in order to estimate dermal uptake and oral ingestion via hand-to-mouth contact. The total CP levels (∑SCCPs and ∑MCCPs) in wipes ranged from 71.4 to 2310 µg/m2 in security guards, 37.6 to 333 µg/m2 in taxi drivers, 20.8 to 559 µg/m2 in office workers, and 20.9 to 932 µg/m2 in undergraduates, respectively. Security guards exhibited the highest levels of ∑SCCPs among four populations (p < 0.01). In undergraduates engaged in outdoor activities, C13 emerged as the most dominant SCCPs homologue group, followed by C12, C11, and C10. The levels of ∑SCCPs and ∑MCCPs in males in light haze pollution were significantly higher than that in heavy haze pollution (p < 0.05). The median estimated dermal absorption dose of SCCPs and MCCPs via hand was 22.2 and 104 ng (kg of bw)-1 day-1, respectively, approximately 1.5 times the oral ingestion [12.3 and 74.4 ng (kg of bw)-1 day-1], suggesting that hand contact is a significant exposure source to humans.


Subject(s)
Occupational Exposure , Paraffin , Skin Absorption , Humans , Male , Paraffin/analysis , Female , Occupational Exposure/analysis , Adult , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/pharmacokinetics , Young Adult , Sex Factors , Skin/metabolism , Skin/drug effects
8.
AAPS PharmSciTech ; 25(6): 156, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981986

ABSTRACT

Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.


Subject(s)
Antifungal Agents , Candida albicans , Colloids , Itraconazole , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Itraconazole/pharmacology , Itraconazole/administration & dosage , Itraconazole/chemistry , Humans , Animals , Trichophyton/drug effects , Microbial Sensitivity Tests/methods , Chemistry, Pharmaceutical/methods , Particle Size , Skin/metabolism , Skin/drug effects , Skin/microbiology , Skin Absorption/drug effects , Cell Line , HaCaT Cells , Nails/drug effects , Nails/microbiology , Nails/metabolism , Arthrodermataceae
9.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2246-2257, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044588

ABSTRACT

The dramatic rise in the number of obese/overweight people is a global public health challenge that urgently requires novel and effective therapies. In this study, we designed a fast dissolving polymer microneedle array patch (SGN-PVP/PVA-MN) with sitagliptin as a model drug for treating obesity, focusing on the preparation process of the patch. We then characterized the morphology and dimensions of SGN-PVP/PVA-MN. Furthermore, we delved into the mechanical properties, solubility, skin-puncturing capability, and transdermal drug diffusion and release kinetics of SGN-PVP/PVA-MN. The results demonstrated that SGN-PVP/PVA-MN exhibited favorable morphology and mechanical properties, effectively penetrating the stratum corneum and creating microchannels for rapid transdermal drug diffusion. The in vitro transdermal diffusion assays revealed the release of 64.5% of the drug within 2 min and 95.7% within 10 min. With rapid dissolution and high drug diffusion efficiency, SGN-PVP/PVA-MN is poised to serve as an effective and safe treatment option for the individuals with obesity.


Subject(s)
Administration, Cutaneous , Needles , Sitagliptin Phosphate , Drug Delivery Systems , Solubility , Polymers/chemistry , Skin Absorption , Obesity , Animals , Transdermal Patch , Humans , Swine
10.
Int J Pharm ; 661: 124434, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972523

ABSTRACT

There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.


Subject(s)
Antioxidants , Drug Stability , Permeability , Phenylethyl Alcohol , Skin Absorption , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacokinetics , Phenylethyl Alcohol/administration & dosage , Animals , Swine , Skin Absorption/drug effects , Antioxidants/chemistry , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Skin/metabolism , Hydrogels/chemistry , Administration, Cutaneous , Swine, Miniature , Skin Cream/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid , Ascorbic Acid/chemistry
11.
Int J Pharm ; 661: 124419, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972522

ABSTRACT

This paper studies the transport of monoclonal antibodies through skin tissue and initial lymphatics, which impacts the pharmacokinetics of monoclonal antibodies. Our model integrates a macroscale representation of the entire skin tissue with a mesoscale model that focuses on the papillary dermis layer. Our results indicate that it takes hours for the drugs to disperse from the injection site to the papillary dermis before entering the initial lymphatics. Additionally, we observe an inhomogeneous drug distribution in the interstitial space of the papillary dermis, with higher drug concentrations near initial lymphatics and lower concentrations near blood capillaries. To validate our model, we compare our numerical simulation results with experimental data, finding a good alignment. Our parametric studies on the drug molecule properties and injection parameters suggest that a higher diffusion coefficient increases the transport and uptake rate while binding slows down these processes. Furthermore, shallower injection depths lead to faster lymphatic uptake, whereas the size of the injection plume has a minor effect on the uptake rate. These findings advance our understanding of drug transport and lymphatic absorption after subcutaneous injection, offering valuable insights for optimizing drug delivery strategies and the design of biotherapeutics.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Injections, Subcutaneous , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Skin Absorption , Skin/metabolism , Lymphatic System/metabolism , Biological Transport , Humans , Computer Simulation , Animals
12.
Int J Pharm ; 661: 124435, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986965

ABSTRACT

RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Skin Absorption , Humans , Animals , Drug Delivery Systems/methods , Skin/metabolism , Skin Diseases/drug therapy , RNA/administration & dosage , Oligonucleotides/administration & dosage
13.
Int J Pharm ; 661: 124451, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38992735

ABSTRACT

We extended a mechanistic, physics-based framework of the dry down process, previously developed for liquids and electrolytes, to solids and coded it into the latest UB/UC/P&G skin permeation model, herein renamed DigiSkin. The framework accounts for the phase change of the permeant from dissolved in a solvent (liquid) to precipitated on the skin surface (solid). The evaporation rate for the solid is reduced due to lower vapor pressure for the solid state versus subcooled liquid. These vapor pressures may differ by two orders of magnitude. The solid may gradually redissolve and penetrate the skin. The framework was tested by simulating the in vitro human skin permeation of the 38 cosmetically relevant solid compounds reported by Hewitt et al., J. Appl. Toxicol. 2019, 1-13. The more detailed handling of the evaporation process greatly improved DigiSkin evaporation predictions (r2 = 0.89). Further, we developed a model reliability prediction score classification using diverse protein reactivity data and identified that 15 of 38 compounds are out of model scope. Dermal delivery predictions for the remaining chemicals have excellent agreement with experimental data. The analysis highlighted the sensitivity of water solubility and equilibrium vapor pressure values on the DigiSkin predictions outcomes influencing agreement with the experimental observations.


Subject(s)
Cosmetics , Keratins , Skin Absorption , Skin , Solvents , Solvents/chemistry , Humans , Hydrogen-Ion Concentration , Skin/metabolism , Keratins/chemistry , Cosmetics/chemistry , Cosmetics/pharmacokinetics , Administration, Cutaneous , Solubility , Models, Biological , Pharmaceutical Vehicles/chemistry , Phase Transition
14.
Int J Pharm ; 661: 124446, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38996825

ABSTRACT

The pharmaceutical industry has experienced a remarkable increase in the use of subcutaneous injection of monoclonal antibodies (mAbs), attributed mainly to its advantages in reducing healthcare-related costs and enhancing patient compliance. Despite this growth, there is a limited understanding of how tissue mechanics, physiological parameters, and different injection devices and techniques influence the transport and absorption of the drug. In this work, we propose a high-fidelity computational model to study drug transport and absorption during and after subcutaneous injection of mAbs. Our numerical model includes large-deformation mechanics, fluid flow, drug transport, and blood and lymphatic uptake. Through this computational framework, we analyze the tissue material responses, plume dynamics, and drug absorption. We analyze different devices, injection techniques, and physiological parameters such as BMI, flow rate, and injection depth. Finally, we compare our numerical results against the experimental data from the literature.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Injections, Subcutaneous , Humans , Biological Transport , Computer Simulation , Skin Absorption
15.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
16.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000538

ABSTRACT

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Subject(s)
Administration, Cutaneous , Diclofenac , Emulsions , Skin Absorption , Skin , Diclofenac/pharmacokinetics , Diclofenac/administration & dosage , Diclofenac/chemistry , Humans , Skin Absorption/drug effects , Emulsions/chemistry , Skin/metabolism , Skin/drug effects , Rheology , Gels/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Administration, Topical , Emollients/chemistry , Emollients/pharmacokinetics , Emollients/administration & dosage
17.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998948

ABSTRACT

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Subject(s)
Administration, Cutaneous , Antigens , Immunization , Ionic Liquids , Ovalbumin , Transdermal Patch , Ionic Liquids/chemistry , Animals , Mice , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigens/immunology , Antigens/administration & dosage , Antigens/chemistry , Swine , Skin/metabolism , Skin/immunology , Drug Delivery Systems , Mice, Inbred C57BL , Female , Skin Absorption
18.
Sci Data ; 11(1): 755, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987285

ABSTRACT

Whether from environmental and occupational hazards or from topical pharmaceuticals, the human skin comes into contact with various chemicals every day. In vivo experiments not only require large investments of both time and money, but in vivo experiments can also be unethical due to the need to intentionally or incidentally expose humans or animals to toxic chemicals. Comparatively, in vitro experiments offer ethical and financial advantages when combined with the opportunity to selectively choose chemicals for experimentation. With in vivo experimentation being so infeasible, many scientists have chosen to make their in vitro data available publicly. Using these data, a detailed database containing 73 chemicals was created with a robust set of descriptors to be used in connection with mathematical modeling to predict diffusion, permeability, and partition coefficients. This resulting database is tailored to be easily used in various coding languages.


Subject(s)
Skin Absorption , Skin , Humans , Skin/metabolism , Databases, Factual , Models, Biological , Models, Theoretical
19.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992299

ABSTRACT

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Subject(s)
Skin Absorption , Solubility , Tolterodine Tartrate , Animals , Rats , Humans , Skin Absorption/drug effects , Skin Absorption/physiology , Tolterodine Tartrate/administration & dosage , Tolterodine Tartrate/pharmacokinetics , Thermodynamics , Solvents/chemistry , Skin/metabolism , Hydrogen-Ion Concentration , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacokinetics , Administration, Cutaneous , Limonene/administration & dosage , Limonene/pharmacokinetics , Limonene/chemistry , Male , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/administration & dosage , Rats, Sprague-Dawley
20.
Int J Pharm ; 661: 124409, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38955241

ABSTRACT

Lipid-based nanocarriers have been extensively utilized for the solubilization and cutaneous delivery of water-insoluble active ingredients in skincare formulations. However, their practical application is often limited by structural instability, leading to premature release and degradation of actives. Here we present highly robust multilamellar nanovesicles, prepared by the polyionic self-assembly of unilamellar vesicles with hydrolyzed collagen peptides, to stabilize all-trans-retinol and enhance its cutaneous delivery. Our results reveal that the reinforced multilayer structure substantially enhances dispersion stability under extremely harsh conditions, like freeze-thaw cycles, and stabilizes the encapsulated retinol. Interestingly, these multilamellar vesicles exhibit significantly lower cytotoxicity to human dermal fibroblasts than their unilamellar counterparts, likely due to their smaller particle number per weight, minimizing potential disruptions to cellular membranes. In artificial skin models, retinol-loaded multilamellar vesicles effectively upregulate collagen-related gene expression while suppressing the synthesis of metalloproteinases. These findings suggest that the robust multilamellar vesicles can serve as effective nanocarriers for the efficient delivery and stabilization of bioactive compounds in cutaneous applications.


Subject(s)
Administration, Cutaneous , Collagen , Fibroblasts , Lipids , Nanoparticles , Vitamin A , Vitamin A/administration & dosage , Vitamin A/chemistry , Humans , Collagen/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Fibroblasts/drug effects , Drug Stability , Skin/metabolism , Drug Carriers/chemistry , Cell Survival/drug effects , Skin Absorption , Skin, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL