Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.692
Filter
1.
Theranostics ; 14(9): 3760-3776, 2024.
Article in English | MEDLINE | ID: mdl-38948060

ABSTRACT

Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Metabolomics , Primary Ovarian Insufficiency , Sleep Deprivation , Animals , Female , Primary Ovarian Insufficiency/metabolism , Mice , Dysbiosis/microbiology , Dysbiosis/metabolism , Metabolomics/methods , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Fecal Microbiota Transplantation , Disease Models, Animal , Apoptosis
2.
Pharmacol Biochem Behav ; 241: 173793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823543

ABSTRACT

OBJECTIVE: Caffeine and modafinil are used to reverse effects of sleep deprivation. Nicotinic alpha-7 receptor and AMPA receptor positive allosteric modulators (PAM) are also potential substances in this context. Our objective is to evaluate the effects of caffeine, modafinil, AVL-3288 (nicotinic alpha-7 PAM) and CX516 (AMPA receptor PAM) on cognition and mood in a model of sleep deprivation. METHOD: Modified multiple platform model is used to sleep-deprive mice for 24 days, for 8 h/day. Vehicle, Modafinil (40 mg/kg), Caffeine (5 mg/kg), CX516 (10 mg/kg), and AVL3288 (1 mg/kg) were administered intraperitoneally daily. A cognitive test battery was applied every six days for four times. The battery that included elevated plus maze, novel object recognition, and sucrose preference tests was administered on consecutive days. RESULTS: Sleep deprivation decreased novel object recognition skill, but no significant difference was found in anxiety and depressive mood. Caffeine administration decreased anxiety-like behavior in short term, but this effect disappeared in chronic administration. Caffeine administration increased memory performance in chronic period. AVL group showed better memory performance in short term, but this effect disappeared in the rest of experiment. Although, in the modafinil group, no significant change in mood and memory was observed, anhedonia was observed in the chronic period in vehicle, caffeine and modafinil groups, but not in AVL-3288 and CX-516 groups. CONCLUSION: Caffeine has anxiolytic effect in acute administration. The improvement of memory in chronic period may be associated with the neuroprotective effects of caffeine. AVL-3288 had a short-term positive effect on memory, but tolerance to these effects developed over time. Furthermore, no anhedonia was observed in AVL-3288 and CX516 groups in contrast to vehicle, caffeine and modafinil groups. This indicates that AVL-3288 and CX516 may show protective effect against depression.


Subject(s)
Affect , Caffeine , Cognition , Modafinil , Sleep Deprivation , Animals , Sleep Deprivation/psychology , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Modafinil/pharmacology , Modafinil/administration & dosage , Mice , Male , Cognition/drug effects , Caffeine/pharmacology , Caffeine/administration & dosage , Affect/drug effects , Disease Models, Animal , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/administration & dosage , Time Factors , Anxiety/drug therapy
3.
Brain Behav ; 14(7): e3610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945806

ABSTRACT

INTRODUCTION: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Hippocampus , Isoflurane , Neuroinflammatory Diseases , Prenatal Exposure Delayed Effects , Sleep Deprivation , Animals , Isoflurane/adverse effects , Isoflurane/pharmacology , Isoflurane/administration & dosage , Female , Cognitive Dysfunction/etiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Pregnancy , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Synapses/drug effects , Male , Mice, Inbred C57BL , Maternal Deprivation , Brain-Derived Neurotrophic Factor/metabolism
4.
Mol Biomed ; 5(1): 23, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38871861

ABSTRACT

Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.


Subject(s)
3' Untranslated Regions , AMP-Activated Protein Kinases , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Signal Transduction , Sleep Deprivation , Animals , Male , Mice , 3' Untranslated Regions/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Sleep Deprivation/genetics , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Troponin I/metabolism , Troponin I/genetics
5.
BMC Ophthalmol ; 24(1): 268, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907352

ABSTRACT

BACKGROUND: Sleep deprivation (SD) is a common public health problem that contributes to various physiological disorders and increases the risk of ocular diseases. However, whether sleep loss can damage corneal endothelial function remains unclear. This study aimed to determine the effect and possible mechanism of SD on the corneal endothelium. METHODS: Male C57BL/6J mice were subjected to establish SD models. After 10 days, quantitative RT-PCR (qRT-PCR) and western blot or immunostaining for the expression levels of zonula occludens-1 (ZO-1), ATPase Na+/K + transporting subunit alpha 1 (Atp1a1), and core clock genes in the corneal endothelium were evaluated. Reactive oxygen species staining and mitochondrial abundance characterized the mitochondrial function. The regulatory role of Bmal1 was confirmed by specifically knocking down or overexpressing basic helix-loop-helix ARNT like 1 protein (Bmal1) in vivo. In vitro, a mitochondrial stress test was conducted on cultured human corneal endothelial cells upon Bmal1 knockdown. RESULTS: SD damaged the barrier and pump functions of mouse corneal endothelium, accompanied by mitochondrial dysfunction. Interestingly, SD dramatically downregulated the core clock gene Bmal1 expression level. Bmal1 knockdown disrupted corneal endothelial function, while overexpression of Bmal1 ameliorated the dysfunction induced by SD. Mitochondrial bioenergetic deficiency mediated by Bmal1 was an underlying mechanism for SD induced corneal endothelial dysfunction. CONCLUSION: The downregulation of Bmal1 expression caused by SD led to corneal endothelial dysfunction via impairing mitochondrial bioenergetics. Our findings offered insight into how SD impairs the physiological function of the corneal endothelium and expanded the understanding of sleep loss leading to ocular diseases.


Subject(s)
ARNTL Transcription Factors , Down-Regulation , Endothelium, Corneal , Mice, Inbred C57BL , Sleep Deprivation , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Animals , Male , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Disease Models, Animal , Cells, Cultured , Mitochondria/metabolism , Blotting, Western , Gene Expression Regulation
6.
Curr Opin Pediatr ; 36(4): 375-381, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38747197

ABSTRACT

PURPOSE OF REVIEW: Sleep deprivation is known to affect multiple aspects of mental health, physical health, and daily functioning. With increasing reports of sleep disturbances and increasing mental health needs in adolescents, it is imperative that healthcare providers have a strong understanding of the relationship between sleep and mental health, the impact of poor sleep on the school experience, and an understanding of behavioral interventions targeting sleep practices. RECENT FINDINGS: Recent studies have shown that the relationship between sleep and mental health is complex and multifaceted. While mental health diagnoses and symptoms can negatively influence sleep quality and quantity, so too does poor sleep increase the risk of mental health diagnoses, symptom severity, and suicide risk. Sleep likewise affects the school experience, both positively and negatively. Targeted interventions and prevention programs may be effective in treatment of sleep disturbances for adolescents. SUMMARY: Clinicians must be aware of the above associations and their clinical implications. Patients with either mental health or sleep concerns should be screened for potential co-morbid conditions. Improving sleep hygiene practices can improve the sleep experience in adolescents, however, there remains a gap in understanding the best method to improve sleep hygiene practices in this population.


Subject(s)
Mental Disorders , Mental Health , Sleep Wake Disorders , Humans , Adolescent , Sleep Wake Disorders/therapy , Sleep Wake Disorders/psychology , Mental Disorders/therapy , Mental Disorders/psychology , Sleep Hygiene , Sleep Deprivation/psychology , Sleep Deprivation/complications , Sleep Quality , Sleep/physiology
7.
CNS Neurosci Ther ; 30(5): e14783, 2024 May.
Article in English | MEDLINE | ID: mdl-38797980

ABSTRACT

AIMS: The molecular mechanism of short-sleep conditions on cognition remains largely unknown. This research aimed to investigate associations between short sleep, inflammatory biomarkers and cognitive function in the US population (NHANES data 2011-2014) and explore cellular mechanisms in mice. METHODS: Systemic immune-inflammation index (SII) was calculated using blood-cell based biomarkers. Further, we employed integrated bioinformatics and single-cell transcriptomics (GSE137665) to examine how short sleep exposure influenced the molecular pathways associated with inflammation in the brain. To explore the signaling pathways and biological processes of sleep deprivation, we carried out enrichment analyses utilizing the GO and KEGG databases. RESULTS: Population results showed that, compared with normal sleep group, severe short sleep was associated with lower cognitive ability in all the four tests. Moreover, a higher SII level was correlated with lower scores of cognitive tests. In mice study, elevated activation of the inflammatory pathway was observed in cell subgroups of neurons within the sleep deprivation and recovery sleep cohorts. Additionally, heightened expression of oxidative stress and integrated stress response pathways was noted in GABAergic neurons during sleep deprivation. CONCLUSION: This study contributed to the understanding of the influence of short sleep on cognitive function and its cellular mechanisms.


Subject(s)
Biomarkers , Cognition , Inflammation , Sleep Deprivation , Animals , Mice , Male , Sleep Deprivation/complications , Sleep Deprivation/psychology , Female , Humans , Cognition/physiology , Adult , Inflammation/metabolism , Middle Aged , Mice, Inbred C57BL , Young Adult , Cognitive Dysfunction/metabolism , Sleep/physiology
8.
Psychoneuroendocrinology ; 166: 107065, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718616

ABSTRACT

Sleep deprivation and insulin resistance (IR) are two risk factors for Alzheimer's disease. As the population of people with IR increases and sleep restriction (SR) due to staying up late becomes the "new normal", it is necessary to investigate the effects and molecular pathogenesis of chronic SR on cognitive function in insulin resistance. In this study, 4-week-old mice were fed a high-fat diet (HFD) for 8 weeks to establish IR model, and then the mice were subjected to SR for 21 days, and related indicators were assessed, including cognitive capacity, apoptosis, oxidative stress, glial cell activation, inflammation, blood-brain barrier (BBB) permeability and adiponectin levels, for exploring the potential regulatory mechanisms. Compared with control group, IR mice showed impaired cognitive capacity, meanwhile, SR not only promoted Bax/Bcl2-induced hippocampal neuronal cell apoptosis and Nrf2/HO1- induced oxidative stress, but also increased microglia activation and inflammatory factor levels and BBB permeability, thus aggravating the cognitive impairment in IR mice. Consequently, changing bad living habits and ensuring sufficient sleep are important intervention strategies to moderate the aggravation of IR-induced cognitive impairment.


Subject(s)
Blood-Brain Barrier , Brain , Cognitive Dysfunction , Diet, High-Fat , Inflammation , Insulin Resistance , Oxidative Stress , Sleep Deprivation , Animals , Oxidative Stress/physiology , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Insulin Resistance/physiology , Mice , Blood-Brain Barrier/metabolism , Inflammation/metabolism , Male , Diet, High-Fat/adverse effects , Brain/metabolism , Apoptosis/physiology , Disease Models, Animal , Hippocampus/metabolism , Microglia/metabolism , Mice, Inbred C57BL
9.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38772181

ABSTRACT

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Subject(s)
Cognitive Dysfunction , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Salvia miltiorrhiza , Sleep Deprivation , Animals , Salvia miltiorrhiza/chemistry , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Cognitive Dysfunction/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Rats , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , NF-kappa B/metabolism , Morris Water Maze Test/drug effects , Maze Learning/drug effects
10.
Behav Brain Res ; 470: 115067, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38795845

ABSTRACT

BACKGROUND: Sleep disorders, depression, and Alzheimer's disease (AD) are extensively reported as comorbidity. Although neuroinflammation triggered by microglial phenotype M1 activation, leading to neurotransmitter dysfunction and Aß aggregation, is considered as the leading cause of depression and AD, whether and how sub-chronic or chronic sleep deprivation (SD) contribute to the onset and development of these diseases remains unclear. METHODS: Memory and depression-like behaviors were evaluated in both SDs, and then circadian markers, glial cell phenotype polarization, cytokines, depression-related neurotransmitters, and AD-related gene/protein expressions were measured by qRT-PCR, enzyme-linked immunosorbent assay, high-performance liquid chromatography, and western-blotting respectively. RESULTS: Both SDs induced give-up behavior and anhedonia and increased circadian marker period circadian regulator 2 (PER2) expression, which were much worse in chronic than in the sub-chronic SD group, while brain and muscle ARNT-like protein-1 only decreased in the chronic-SD. Furthermore, increased microglial M1 and astrocyte A1 expression and proinflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α was observed in both SDs, which were more significant in chronic SD. Similarly, decreased norepinephrine and 5-hydroxytryptamine/5-hydroxyindoleacetic acid ratio were more significant, which corresponds to the worse depression-like behavior in chronic than sub-chronic-SD. With regard to AD, increased amyloid precursor protein (APP) and soluble (s)-APPß and decreased sAPPα in both SDs were more significant in the chronic. However, sAPPα/sAPPß ratio was only decreased in chronic SD. CONCLUSION: These findings suggest that both SDs induce depression-like changes by increasing PER2, leading to neuroinflammation and neurotransmitter dysfunction. However, only chronic SD induced memory impairment likely due to severer circadian disruption, higher neuroinflammation, and dysregulation of APP metabolism.


Subject(s)
Depression , Sleep Deprivation , Animals , Male , Mice , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Depression/metabolism , Behavior, Animal/physiology , Neuroglia/metabolism , Phenotype , Neuroinflammatory Diseases/metabolism , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Alzheimer Disease/metabolism , Microglia/metabolism , Anhedonia/physiology , Astrocytes/metabolism
11.
Sleep Med ; 119: 499-504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796979

ABSTRACT

BACKGROUND: The association between shift/night work and the risk of stroke is not supported by strong evidence. OBJECTIVE: This study aimed to obtain evidence of a potential relationship between shift/night shift work and the risk of stroke. METHODS: We searched PubMed, Embase, the Cochrane Library and Web of science databases for eligible studies from inception to January 19, 2024. We followed the statement in the Preferred Reporting Items for Systematic Evaluations and Meta-Analysis (PRISMA). STATA 14.0 software was used for meta-analysis. RESULTS: A total of five studies involving 700,742 subjects were included in this meta-analysis. We found that shift/night workers had a 1.08 times higher risk of stroke than non-shift/night workers (RR: 1.08; 95 % CI: 1.05-1.10; P < 0.001). CONCLUSION: Shift/night work may be a risk factor for stroke. More objective prospective studies are needed to further support this result.


Subject(s)
Shift Work Schedule , Stroke , Humans , Stroke/epidemiology , Stroke/etiology , Shift Work Schedule/adverse effects , Risk Factors , Work Schedule Tolerance , Sleep Deprivation/complications
12.
Brain Behav ; 14(5): e3515, 2024 May.
Article in English | MEDLINE | ID: mdl-38702895

ABSTRACT

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Subject(s)
Hippocampus , Melatonin , Memory Disorders , Neuronal Plasticity , Sleep Deprivation , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/physiopathology , Mice , Male , Hippocampus/metabolism , Hippocampus/drug effects , Female , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Pregnancy , Maternal Deprivation , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases/drug therapy
14.
Nat Commun ; 15(1): 3834, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714741

ABSTRACT

Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.


Subject(s)
Apoptosis , Copper , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Myocytes, Cardiac , Sleep Deprivation , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Copper/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Mice , Sleep Deprivation/physiopathology , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Copper-Transporting ATPases/metabolism , Copper-Transporting ATPases/genetics , Norepinephrine/metabolism , Norepinephrine/pharmacology , Myocardium/metabolism , Myocardium/pathology , Sympathetic Nervous System/metabolism , Disease Models, Animal
15.
BMC Med ; 22(1): 189, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715017

ABSTRACT

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Subject(s)
Endothelial Cells , Glucose , Hyperalgesia , Sleep Deprivation , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Glucose/metabolism , Endothelial Cells/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Male , Sleep Deprivation/complications , Glycolysis/physiology , Disease Models, Animal , Mice, Inbred C57BL
16.
Brain Res ; 1834: 148915, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582414

ABSTRACT

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.


Subject(s)
Anoctamin-1 , Bestrophins , Ganglia, Spinal , Hyperalgesia , Sleep Deprivation , Spinal Cord , Animals , Female , Male , Rats , Anoctamin-1/metabolism , Bestrophins/metabolism , Calcium Channels, L-Type , Chloride Channels/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/genetics , Hyperalgesia/metabolism , Rats, Wistar , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Sleep, REM/physiology , Spinal Cord/metabolism
17.
Article in Russian | MEDLINE | ID: mdl-38676671

ABSTRACT

Modern research raises the question of the potentially significant role of glymphatic dysfunction in the development of neurodegeneration and pathological aging. The exact molecular mechanisms are not yet fully understood, but there is ample evidence of a link between sleep deprivation and decreased clearance of ß-amyloid and other neurotoxin proteins that are associated with the development of neurodegenerative diseases, particularly Alzheimer's disease. The review analyzes current scientific information in this area of research, describes the latest scientific discoveries of the features of the glymphatic system, and also illustrates studies of markers that presumably indicate a deterioration in the glymphatic system. The relationship between sleep deprivation and pathophysiological mechanisms associated with neurodegenerative diseases is considered, and potential targets that can be used to treat or delay the development of these disorders are noted.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Glymphatic System , Sleep Wake Disorders , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/metabolism , Glymphatic System/physiopathology , Glymphatic System/metabolism , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/metabolism , Amyloid beta-Peptides/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Sleep Deprivation/metabolism
18.
Nutrients ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674791

ABSTRACT

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Subject(s)
Dysbiosis , Faecalibacterium prausnitzii , Gastrointestinal Microbiome , Intestinal Mucosa , Probiotics , Sleep Deprivation , Animals , Sleep Deprivation/complications , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Feces/microbiology , Mice, Inbred C57BL , Dietary Supplements , Disease Models, Animal , Mucin-2/metabolism , Butyrates/metabolism , Colon/microbiology , Colon/metabolism
19.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608544

ABSTRACT

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Subject(s)
CA1 Region, Hippocampal , Delta Rhythm , Postoperative Cognitive Complications , Sleep Deprivation , Theta Rhythm , Animals , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Mice , Theta Rhythm/physiology , Male , Delta Rhythm/physiology , CA1 Region, Hippocampal/physiopathology , Mice, Inbred C57BL , Electroencephalography/methods , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Sleep/physiology , Aging/physiology
20.
Brain Behav ; 14(5): e3508, 2024 May.
Article in English | MEDLINE | ID: mdl-38688894

ABSTRACT

BACKGROUND: The inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS-31), a novel mitochondrion-targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS-31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown. METHODS: Adult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS-31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus-dependent cognitive function. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS-31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme-linked immunosorbent assays were used to examine the levels of proinflammatory cytokines. RESULTS: SS-31 could improve the cognitive impairment induced by CSD. In particular, SS-31 treatment restored the CSD-induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa-B and inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha. Furthermore, SS-31 significantly increased the levels of brain-derived neurotrophic factor, postsynaptic density protein-95, and synaptophysin in CSD mice. CONCLUSION: Taken together, these results suggest that SS-31 could improve CSD-induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.


Subject(s)
Antioxidants , Mice, Inbred C57BL , Mitochondria , Oligopeptides , Sleep Deprivation , Animals , Mice , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Oligopeptides/pharmacology , Oligopeptides/administration & dosage , Male , Mitochondria/drug effects , Mitochondria/metabolism , Antioxidants/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Memory Disorders/drug therapy , Memory Disorders/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Sirtuin 1/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...