Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Basic Clin Physiol Pharmacol ; 35(1-2): 53-60, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38484469

ABSTRACT

OBJECTIVES: Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy. METHODS: In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr495) expression were subsequently evaluated at the end of the treatments. RESULTS: We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement. CONCLUSIONS: Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Humans , Liraglutide/pharmacology , Liraglutide/metabolism , Myocytes, Cardiac/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Hypoxia/drug therapy , Hypoxia/metabolism
2.
Diabetologia ; 67(4): 738-754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236410

ABSTRACT

AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Humans , Female , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Metabolic Reprogramming , AMP-Activated Protein Kinases/metabolism , Sodium-Glucose Transporter 2/metabolism , Estivation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Kidney/metabolism , Fasting , TOR Serine-Threonine Kinases/metabolism , Glycine/metabolism , Mammals/metabolism
3.
Surgery ; 175(2): 265-270, 2024 02.
Article in English | MEDLINE | ID: mdl-37940431

ABSTRACT

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Subject(s)
Myocardial Ischemia , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Swine , Animals , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Canagliflozin/metabolism , Myocardium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Acetyl-CoA Carboxylase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Myocardial Ischemia/drug therapy , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Inflammation/metabolism , Glucose/metabolism , Symporters/metabolism , Fatty Acids/metabolism , Disease Models, Animal
4.
Cardiovasc Diabetol ; 22(1): 278, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848934

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have shown promise in reducing the risk of atrial fibrillation (AF). However, the results are controversial and the underlying metabolic mechanism remains unclear. Emerging evidence implied that SGLT2 inhibitors have extra beneficial metabolic effects on circulating metabolites beyond glucose control, which might play a role in reducing the risk of AF. Hence, our study aimed to investigate the effect of circulating metabolites mediating SGLT2 inhibition in AF by Mendelian randomization (MR). METHODS: A two-sample and two-step MR study was conducted to evaluate the association of SGLT2 inhibition with AF and the mediation effects of circulating metabolites linking SGLT2 inhibition with AF. Genetic instruments for SGLT2 inhibition were identified as genetic variants, which were both associated with the expression of SLC5A2 gene and glycated hemoglobin level (HbA1c). Positive control analysis on type 2 diabetes mellitus (T2DM) was conducted to validate the selection of genetic instruments. RESULTS: Genetically predicted SGLT2 inhibition (per 1 SD decrement in HbA1c) was associated with reduced risk of T2DM (odds ratio [OR] = 0.63 [95% CI 0.45, 0.88], P = 0.006) and AF (0.51 [0.27, 0.97], P = 0.039). Among 168 circulating metabolites, two metabolites were both associated with SGLT2 inhibition and AF. The effect of SGLT2 inhibition on AF through the total concentration of lipoprotein particles (0.88 [0.81, 0.96], P = 0.004) and the concentration of HDL particles (0.89 [0.82, 0.97], P = 0.005), with a mediated proportion of 8.03% (95% CI [1.20%, 14.34%], P = 0.010) and 7.59% ([1.09%, 13.34%], P = 0.011) of the total effect, respectively. CONCLUSIONS: This study supported the association of SGLT2 inhibition with a reduced risk of AF. The total concentration of lipoprotein particles and particularly the concentration of HDL particles might mediate this association. Further mechanistic and clinical studies research are needed to understand the mediation effects of circulating metabolites especially blood lipids in the association between SGLT2 inhibition and AF.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Atrial Fibrillation/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Genome-Wide Association Study/methods , Glycated Hemoglobin , Lipoproteins , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
5.
Inflamm Res ; 72(10-11): 1981-1997, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770568

ABSTRACT

BACKGROUND: Classically activated M1 macrophages, characterized by aberrant glycolysis and secretion of inflammatory cytokines, play pivotal roles in inflammatory diseases, including inflammatory bowel disease (IBD). Recently, sodium-glucose co-transporter 2 (SGLT2) inhibitors were shown to suppress Na+/H+ exchanger 1 (NHE1) and Na+/Ca2+ exchanger 1 (NCX1) activity, regulating downstream intracellular Ca2+ concentrations in cardiomyocytes. However, whether SGLT2 inhibitors regulate M1 macrophage polarization by downregulating NHE1 and NCX1 remains unknown. METHODS: We analyzed cellular responses to SGLT2 inhibitors using mouse bone marrow-derived macrophages and peritoneal macrophages treated with lipopolysaccharide (LPS). To induce IBD, we used a dextran sulfate sodium salt-induced colitis mouse model. RESULTS: We observed that NHE1 and NCX1 were overexpressed in LPS-treated macrophages, leading to M1 macrophage polarization. Mechanistically, NHE1 and NCX1-mediated Ca2+ accumulation in the macrophage resulted in enhanced glycolysis by promoting PI3K/AKT/mTORC1 signaling. SGLT2 inhibitors suppressed both the expression levels and activities of NHE1 and NCX1, and consequently downregulated PI3K/AKT/mTORC1 signaling and glycolysis in LPS-treated macrophages. We observed inhibition of LPS-stimulated M1 polarization and cytokine production by SGLT2 inhibitors in vitro, ex vivo, and in an IBD mouse model. CONCLUSIONS: NHE1 promotes M1 macrophage polarization and SGLT2 inhibitors are a novel strategy to treat M1 macrophage-mediated inflammatory diseases, including IBD.


Subject(s)
Inflammatory Bowel Diseases , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Macrophages/metabolism , Disease Models, Animal , Mechanistic Target of Rapamycin Complex 1/metabolism
6.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373108

ABSTRACT

The kidneys and heart work together to balance the body's circulation, and although their physiology is based on strict inter dependence, their performance fulfills different aims. While the heart can rapidly increase its own oxygen consumption to comply with the wide changes in metabolic demand linked to body function, the kidneys physiology are primarily designed to maintain a stable metabolic rate and have a limited capacity to cope with any steep increase in renal metabolism. In the kidneys, glomerular population filters a large amount of blood and the tubular system has been programmed to reabsorb 99% of filtrate by reabsorbing sodium together with other filtered substances, including all glucose molecules. Glucose reabsorption involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane in the proximal tubular section; it also enhances bicarbonate formation so as to preserve the acid-base balance. The complex work of reabsorption in the kidney is the main factor in renal oxygen consumption; analysis of the renal glucose transport in disease states provides a better understanding of the renal physiology changes that occur when clinical conditions alter the neurohormonal response leading to an increase in glomerular filtration pressure. In this circumstance, glomerular hyperfiltration occurs, imposing a higher metabolic demand on kidney physiology and causing progressive renal impairment. Albumin urination is the warning signal of renal engagement over exertion and most frequently heralds heart failure development, regardless of disease etiology. The review analyzes the mechanisms linked to renal oxygen consumption, focusing on sodium-glucose management.


Subject(s)
Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Humans , Glucose/metabolism , Diabetic Nephropathies/metabolism , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Kidney/metabolism , Nephrons/metabolism , Sodium/metabolism , Oxygen/metabolism , Glomerular Filtration Rate/physiology
7.
Elife ; 122023 05 02.
Article in English | MEDLINE | ID: mdl-37129368

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Nephritis, Hereditary , Podocytes , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Podocytes/metabolism , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/metabolism , Diabetes Mellitus, Type 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Glucose/toxicity , Glucose/metabolism
8.
J Cardiovasc Transl Res ; 16(5): 999-1009, 2023 10.
Article in English | MEDLINE | ID: mdl-37126209

ABSTRACT

It has been shown that SGLT2 suppresses atherosclerosis (AS). Recent studies indicate that autophagy widely participates in atherogenesis. This study aimed to assess the effect of canagliflozin (CAN) on atherogenesis via autophagy. Macrophages and ApoE - / - mice were used in this study. In macrophages, the results showed that CAN promoted LC3II expression and autophagosome formation. Furthermore, the cholesterol efflux assay demonstrated that CAN enhanced cholesterol efflux from macrophages via autophagy, resulting in lower lipid droplet concentrations in macrophages. The western blot revealed that CAN regulated autophagy via the AMPK/ULK1/Beclin1 signaling pathway. CAN resulted in increased macrophage autophagy in atherosclerotic plaques of ApoE - / - mice, confirming that CAN could inhibit the progression of AS via promoting macrophage autophagy. The current study found that CAN reduced the production of atherosclerotic lesions, which adds to our understanding of how SGLT2 inhibitors function to delay the progression of AS.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Canagliflozin/pharmacology , Canagliflozin/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Macrophages/metabolism , Plaque, Atherosclerotic/pathology , Cholesterol , Autophagy , Apolipoproteins E/metabolism , Apolipoproteins E/pharmacology
9.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555751

ABSTRACT

Gliflozins are a new class of antidiabetic drugs with renoprotective properties. In cultures of primary human renal tubular epithelial cells (RPTECs) subjected to high-glucose conditions in the presence or absence of dapagliflozin, we evaluated cellular senescence pathways. High glucose increased sodium-glucose cotransporter-2 (SGLT-2) expression and glucose consumption, enhancing reactive oxygen species production. The latter induced DNA damage, ataxia telangiectasia mutated kinase (ATM), and p53 phosphorylation. Stabilized p53 increased the cell cycle inhibitor p21, resulting in cell cycle arrest and increasing the cellular senescence marker beta-galactosidase (GLB-1). RPTECs under high glucose acquired a senescence-associated secretory phenotype, which was detected by the production of IL-1ß, IL-8, and TGF-ß1. By decreasing SGLT-2 expression and glucose consumption, dapagliflozin inhibited the above pathway and prevented RPTEC senescence. In addition, dapagliflozin reduced the cell cycle inhibitor p16 independently of the glucose conditions. Neither glucose concentration nor dapagliflozin affected the epithelial-to-mesenchymal transition when assessed with α-smooth muscle actin (α-SMA). Thus, high glucose induces p21-dependent RPTEC senescence, whereas dapagliflozin prevents it. Since cellular senescence contributes to the pathogenesis of diabetic nephropathy, delineating the related molecular mechanisms and the effects of the widely used gliflozins on them is of particular interest and may lead to novel therapeutic approaches.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Glucose/metabolism , Cellular Senescence/physiology , Epithelial Cells/metabolism
10.
J Transl Med ; 20(1): 420, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104729

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds , Chromatography, Liquid , Diabetes Mellitus/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glucosides , Kidney/metabolism , Mice , Proteomics , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Tandem Mass Spectrometry
11.
Life Sci ; 307: 120862, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35934058

ABSTRACT

SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Heart Diseases , Insulin Resistance , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/pharmacology , Diabetes Complications/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Fibrosis , Fructose/toxicity , Glucose/metabolism , Glucosides , Heart Diseases/metabolism , Mitochondria/metabolism , Oxidative Stress , Palmitates/pharmacology , Palmitic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
12.
Int J Cardiol ; 367: 56-62, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35931206

ABSTRACT

OBJECTIVE: In recent years, some authoritative clinical studies have found that SGLT2 inhibitor can reduce cardiovascular risk in patients with diabetes, which may imply that SGLT2 inhibitor can play a role beyond lowering blood glucose. In this study, we explored the effect of empagliflozin on vascular atherosclerosis after removing the effect of diabetes. METHODS: The interaction between SGLT2 inhibitor and the AMPK(Adenosine 5'-monophosphate-activated protein kinase) signal pathway to attenuate atherosclerosis was studied in both spontaneously atherosclerotic mice in vivo and oxidized low-density lipoprotein(ox-LDL) induced macrophage inflammation model in vitro. In vivo experiment the aorta tree and aortic valve area were stained with oil red, and the level of inflammatory factors in the diseased tissue was evaluated by immunohistochemistry. Meanwhile, serum was collected to detect the levels of inflammatory factors. In vitro experiment, the RAW264.7 cell line was selected and ox-LDL was used to induce the release of proinflammatory factors, and different doses of empagliflozin were added. The phagocytosis of macrophages to ox-LDL density lipoprotein, and the expression of inflammatory factors at the protein and RNA levels were measured. RESULTS: Empagliflozin reduced the area of atherosclerotic plaque and macrophage infiltration in atherosclerotic plaques, decreased the expression of inflammatory factors in local plaque tissues and serum of APOE-/- mice fed with high-fat diet. Empagliflozin can improve the protein expression level of p-AMPK affected by ox-LDL in cell and reduce the gene expression level of inflammatory factors and protein expression level of NF-κB, thus playing an anti-atherosclerosis role. CONCLUSIONS: Empagliflozin improves energy metabolism and reduces the expression of inflammatory factors by activating AMPK. As empagliflozin inhibits atherosclerosis progression, it may be of use in prevention of cardiovascular diseases.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Sodium-Glucose Transporter 2 Inhibitors , AMP-Activated Protein Kinases/metabolism , Adenosine/pharmacology , Animals , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Benzhydryl Compounds , Blood Glucose/metabolism , Glucosides , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Plaque, Atherosclerotic/metabolism , RNA , Signal Transduction , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
13.
Pharmacol Rev ; 74(3): 462-505, 2022 07.
Article in English | MEDLINE | ID: mdl-35710133

ABSTRACT

The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.


Subject(s)
Angiotensinogen , Cardiovascular Diseases , Female , Humans , Male , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensinogen/metabolism , Cardiovascular Diseases/metabolism , Drug Delivery Systems , Kidney/blood supply , Kidney/metabolism , Renin/metabolism , Renin-Angiotensin System , Sodium-Glucose Transporter 2 Inhibitors/metabolism
14.
Acta Pharmacol Sin ; 43(10): 2636-2650, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35292769

ABSTRACT

Diabetes mellitus is associated with series of macrovascular and microvascular pathological changes that cause a wide range of complications. Diabetic patients are highly susceptible to hindlimb ischemia (HLI), which remains incurable. Evidence shows that skeletal muscle cells secrete a number of angiogenic factors to promote neovascularization and restore blood perfusion, this paracrine function is crucial for therapeutic angiogenesis in diabetic HLI. In this study we investigated whether sotagliflozin, an anti-hyperglycemia SGLT2 inhibitor, exerted therapeutic angiogenesis effects in diabetic HLI in vitro and in vivo. In C2C12 skeletal muscle cells, we showed that high glucose (HG, 25 mM) under hypoxia markedly inhibited cell viability, proliferation and migration potentials, which were dose-dependently reversed by pretreatment with sotagliflozin (5-20 µM). Sotagliflozin pretreatment enhanced expression levels of angiogenic factors HIF-1α, VEGF-A and PDGF-BB in HG-treated C2C12 cells under hypoxia as well as secreted amounts of VEGF-A and PDGF-BB in the medium; pretreatment with the HIF-1α inhibitor 2-methoxyestradiol (2-ME2, 10 µM) or HIF-1α knockdown abrogated sotagliflozin-induced increases in VEGF-A and PDGF-BB expression, as well as sotagliflozin-stimulated cell proliferation and migration potentials. Furthermore, the conditioned media from sotagliflozin-treated C2C12 cells in HG medium enhanced the migration and proliferation capabilities of vascular endothelial and smooth muscle cells, two types of cells necessary for forming functional blood vessels. In vivo study was conducted in diabetic mice subjected to excising the femoral artery of the left limb. After the surgery, sotagliflozin (10 mg/kg) was directly injected into gastrocnemius muscle of the left hindlimb once every 3 days for 3 weeks. We showed that intramuscular injection of sotagliflozin effectively promoted the formation of functional blood vessels, leading to significant recovery of blood perfusion in diabetic HLI mice. Together, our results highlight a new indication of SGLT2 inhibitor sotagliflozin as a potential therapeutic angiogenesis agent for diabetic HLI.


Subject(s)
Diabetes Mellitus, Experimental , Sodium-Glucose Transporter 2 Inhibitors , 2-Methoxyestradiol/metabolism , 2-Methoxyestradiol/pharmacology , 2-Methoxyestradiol/therapeutic use , Angiogenesis Inducing Agents/pharmacology , Animals , Becaplermin/pharmacology , Culture Media, Conditioned/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Glycosides , Hindlimb , Hypoxia/drug therapy , Injections, Intramuscular , Ischemia/drug therapy , Ischemia/pathology , Mice , Muscle, Skeletal/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
15.
Pediatr Nephrol ; 37(12): 2997-3008, 2022 12.
Article in English | MEDLINE | ID: mdl-35286452

ABSTRACT

Chronic kidney disease (CKD) is a global public healthcare concern in the pediatric population, where glomerulopathies represent the second most common cause. Although classification and diagnosis of glomerulopathies still rely mostly on histopathological patterns, patient stratification should complement information supplied by kidney biopsy with clinical data and etiological criteria. Genetic determinants of glomerular injury are particularly relevant in children, with important implications for prognosis and treatment. Targeted therapies addressing the primary cause of the disease are available for a limited number of glomerular diseases. Consequently, in the majority of cases, the treatment of glomerulopathies is actually the treatment of CKD. The efficacy of the currently available strategies is limited, but new prospects evolve. Although the exact mechanisms of action are still under investigation, accumulating data in adults demonstrate the efficacy of sodium-glucose transporter 2 inhibitors (SGLT2i) in slowing the progression of CKD due to diabetic and non-diabetic kidney disease. SGLT2i has proved effective on other comorbidities, such as obesity, glycemic control, and cardiovascular risk that frequently accompany CKD. The use of SGLT2i is not yet approved in children. However, no pathophysiological clues theoretically exclude their application. The hallmark of pediatric CKD is the inevitable imbalance between the metabolic needs of a growing child and the functional capacity of a failing kidney to handle those needs. In this view, developing better strategies to address any modifiable progressor in kidney disease is mandatory, especially considering the long lifespan typical of the pediatric population. By improving the hemodynamic adaptation of the kidney and providing additional beneficial effects on the overall complications of CKD, SGLT2i is a candidate as a potentially innovative drug for the treatment of CKD and glomerular diseases in children.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Child , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Motivation , Diabetes Mellitus, Type 2/complications , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/complications , Kidney
16.
J Diabetes Res ; 2022: 7520632, 2022.
Article in English | MEDLINE | ID: mdl-35224108

ABSTRACT

BACKGROUND: Several trials have assessed the antihyperglycemic effects of sodium/glucose cotransporter-2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM). We conducted a quantitative analysis to assess the impact of SGLT2is on serum uric acid (SUA) in patients with T2DM. METHODS: Placebo-controlled trials published before 13 August 2021 were identified by searching PubMed, Embase, Web of Science, and Scopus. The intervention group received SGLT2i as monotherapy or add-on treatment, and the control group received a placebo that was replaced with SGLT2i. Clinical trials providing changes in SUA were included. The mean change of SUA, glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), and body weight were calculated (PROSPERO CRD42021287019). RESULTS: After screening of 1172 papers, 59 papers were included in the systematic review. A total of 55 trials (122 groups) of 7 types of SGLT2i on patients with T2DM were eligible for meta-analysis. All SGLT2is significantly decreased SUA levels compared with the placebo groups: empagliflozin mean difference (MD) = -40.98 µmol/L, 95% CI [-47.63, -34.32], dapagliflozin MD = -35.17 µmol/L, 95% CI [-39.68, -30.66], canagliflozin MD = -36.27 µmol/L, 95% CI [-41.62, -30.93], luseogliflozin MD = -24.269 µmol/L, 95% CI [-33.31, -15.22], tofogliflozin MD = -19.47 µmol/L, 95% CI [-27.40, -11.55], and ipragliflozin MD = -18.85 µmol/L, 95% CI [-27.20, -10.49]. SGLT2i also decreased FPG, body weight, and HbA1c levels. SUA reduction persisted during long-term treatment with SGLT2i (except for empagliflozin), while the SUA reduction was affected by the duration of diabetes. CONCLUSIONS: SGLT2i can be a valid therapeutic strategy for patients with T2DM and comorbid hyperuricemia. Besides reducing FPG, body weight, and HbA1c, SGLT2i can significantly decrease SUA levels compared to placebo (Total MD = -34.07 µmol/L, 95% CI [-37.00, -31.14]).


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Uric Acid/metabolism , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/pharmacology , Canagliflozin/metabolism , Canagliflozin/pharmacology , Glucosides/metabolism , Glucosides/pharmacology , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Thiophenes/metabolism , Thiophenes/pharmacology
17.
Acta Pharmacol Sin ; 43(10): 2624-2635, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35217813

ABSTRACT

Obesity is an important independent risk factor for cardiovascular diseases, remaining an important health concern worldwide. Evidence shows that saturated fatty acid-induced inflammation in cardiomyocytes contributes to obesity-related cardiomyopathy. Dapagliflozin (Dapa), a selective SGLT2 inhibitor, exerts a favorable preventive activity in heart failure. In this study, we investigated the protective effect of Dapa against cardiomyopathy caused by high fat diet-induced obesity in vitro and in vivo. Cultured rat cardiomyocyte H9c2 cells were pretreated with Dapa (1, 2.5 µM) for 1.5 h, followed by treatment with palmitic acid (PA, 200 µM) for 24 h. We showed that Dapa pretreatment concentration-dependently attenuated PA-induced cell hypertrophy, fibrosis and apoptosis. Transcriptome analysis revealed that inhibition of PA-activated MAPK/AP-1 pathway contributed to the protective effect of Dapa in H9c2 cells, and this was confirmed by anti-p-cJUN fluorescence staining assay. Using surface plasmon resonance analysis we found the direct binding of Dapa with NHE1. Gain and loss of function experiments further demonstrated the role of NHE1 in the protection of Dapa. In vivo experiments were conducted in mice fed a high fat diet for 5 months. The mice were administered Dapa (1 mg·kg-1·d-1, i.g.) in the last 2 months. Dapa administration significantly reduced the body weight and improved the serum lipid profiles. Dapa administration also alleviated HFD-induced cardiac dysfunction and cardiac aberrant remodeling via inhibiting MAPK/AP-1 pathway and ameliorating cardiac inflammation. In conclusion, Dapa exerts a direct protective effect against saturated fatty acid-induced cardiomyocyte injury in addition to the lowering effect on serum lipids. The protective effect results from negative regulating MAPK/AP-1 pathway in a NHE1-dependent way. The current study highlights the potential of clinical use of Dapa in the prevention of obesity-related cardiac dysfunction.


Subject(s)
Cardiomyopathies , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Cardiomyopathies/drug therapy , Glucosides , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , Myocytes, Cardiac , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Palmitic Acid/pharmacology , Rats , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/pharmacology
18.
Acta Pharmacol Sin ; 43(10): 2651-2665, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35217814

ABSTRACT

Canagliflozin is an antidiabetic medicine that inhibits sodium-glucose cotransporter 2 (SGLT2) in proximal tubules. Recently, it was reported to have several noncanonical effects other than SGLT2 inhibiting. However, the effects of canagliflozin on skeletal muscle regeneration remain largely unexplored. Thus, in vivo muscle contractile properties recovery in mice ischemic lower limbs following gliflozins treatment was evaluated. The C2C12 myoblast differentiation after gliflozins treatment was also assessed in vitro. As a result, both in vivo and in vitro data indicate that canagliflozin impairs intrinsic myogenic regeneration, thus hindering ischemic limb muscle contractile properties, fatigue resistance recovery, and tissue regeneration. Mitochondrial structure and activity are both disrupted by canagliflozin in myoblasts. Single-cell RNA sequencing of ischemic tibialis anterior reveals a decrease in leucyl-tRNA synthetase 2 (LARS2) in muscle stem cells attributable to canagliflozin. Further investigation explicates the noncanonical function of LARS2, which plays pivotal roles in regulating myoblast differentiation and muscle regeneration by affecting mitochondrial structure and activity. Enhanced expression of LARS2 restores the differentiation of canagliflozin-treated myoblasts, and accelerates ischemic skeletal muscle regeneration in canagliflozin-treated mice. Our data suggest that canagliflozin directly impairs ischemic skeletal muscle recovery in mice by downregulating LARS2 expression in muscle stem cells, and that LARS2 may be a promising therapeutic target for injured skeletal muscle regeneration.


Subject(s)
Amino Acyl-tRNA Synthetases , Sodium-Glucose Transporter 2 Inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/pharmacology , Animals , Canagliflozin/metabolism , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Cell Differentiation , Glucose/metabolism , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Ischemia/drug therapy , Ischemia/metabolism , Mice , Muscle, Skeletal/metabolism , Sodium/metabolism , Sodium/pharmacology , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
19.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163285

ABSTRACT

We investigated the effect of tofogliflozin, a sodium-dependent glucose cotransporter 2 inhibitor (SGLT2i), on retinal blood flow dysregulation, neural retinal dysfunction, and the impaired neurovascular coupling in type 2 diabetic mice. Tofogliflozin was added to mouse chow to deliver 5 mg/kg/day and 6-week-old mice were fed for 8 weeks. The longitudinal changes in the retinal neuronal function and blood flow responses to systemic hyperoxia and flicker stimulation were evaluated every 2 weeks in diabetic db/db mice that received tofogliflozin (n =6) or placebo (n = 6) from 8 to 14 weeks of age. We also evaluated glial activation and vascular endothelial growth factor (VEGF) expression by immunofluorescence. Tofogliflozin treatment caused a sustained decrease in blood glucose in db/db mice from 8 weeks of the treatment. In tofogliflozin-treated db/db mice, both responses improved from 8 to 14 weeks of age, compared with vehicle-treated diabetic mice. Subsequently, the electroretinography implicit time for the oscillatory potential was significantly improved in SGLT2i-treated db/db mice. The systemic tofogliflozin treatment prevented the activation of glial fibrillary acidic protein and VEGF protein expression, as detected by immunofluorescence. Our results suggest that glycemic control with tofogliflozin significantly improved the impaired retinal neurovascular coupling in type 2 diabetic mice with the inhibition of retinal glial activation.


Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Neurovascular Coupling/physiology , Sodium-Glucose Transporter 2/metabolism , Animals , Benzhydryl Compounds/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetic Retinopathy/prevention & control , Glucosides/metabolism , Hypoglycemic Agents/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurovascular Coupling/drug effects , Retina/drug effects , Retina/metabolism , Sodium-Glucose Transport Proteins/antagonists & inhibitors , Sodium-Glucose Transport Proteins/metabolism , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
J Lipid Res ; 63(3): 100176, 2022 03.
Article in English | MEDLINE | ID: mdl-35120993

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kß-ox) and flux (Rß-ox) of FFA into ß-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to ß-oxidation, with increased Kß-ox, Rß-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma ß-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward ß-oxidation.


Subject(s)
Diabetes Mellitus, Type 2 , Ketosis , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified , Glucosides , Humans , Insulin/metabolism , Ketone Bodies/metabolism , Ketosis/chemically induced , Ketosis/metabolism , Liver/metabolism , Rats , Rats, Zucker , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL