Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.774
Filter
1.
Food Res Int ; 190: 114585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945605

ABSTRACT

Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid-liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 µg/kg), being able to work in a range that includes the provisional ingestion limit (30 µg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).


Subject(s)
Acrylamides , Cnidarian Venoms , Food Contamination , Fresh Water , Seafood , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Brazil , Acrylamides/analysis , Animals , Chromatography, Liquid/methods , Seafood/analysis , Fresh Water/chemistry , Food Contamination/analysis , Fishes , Reproducibility of Results , Solid Phase Extraction/methods , Limit of Detection , Liquid Chromatography-Mass Spectrometry , Polyether Toxins
2.
Rapid Commun Mass Spectrom ; 38(17): e9856, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38945695

ABSTRACT

RATIONALE: To uphold the integrity of horseracing and equestrian sports, it is critical for an equine doping control laboratory to develop a comprehensive screening method to cover a wide range of target substances at the required detection levels in equine urine. METHODS: The procedure involved the enzymatic hydrolysis of 3 mL urine samples followed by solid-phase extraction using HF Bond Elut C18 cartridge. The resulting extracts were then separated on a C18 reversed-phase column and analyzed using liquid chromatography/high-resolution mass spectrometry (LC/HRMS) in both electrospray ionization positive and negative modes in two separate injections. The analytical data were obtained in full scan and product ion scan (PIS) modes in an 11 min LC run. RESULTS: The method can detect 1011 compounds (in both positive and negative ion modes). Over 95% of the target compounds have limits of detections (LODs) ≤10 ng/mL, and more than 50% of the LODs are ≤0.5 ng/mL. The lowest LOD can reach down to 0.01 ng/mL. The applicability of the method was demonstrated by the successful detection of prohibited substances in overseas and domestic equine urine samples. CONCLUSIONS: We have successfully developed a regular screening method for equine urine samples that can detect more than 1000 compounds at sub-ppb levels in both positive and negative ion modes with full scan and PIS using LC/HRMS. Furthermore, this method can theoretically be expanded to accommodate an unlimited number of prohibited substances in full-scan mode.


Subject(s)
Doping in Sports , Limit of Detection , Animals , Horses/urine , Doping in Sports/prevention & control , Chromatography, Liquid/methods , Substance Abuse Detection/methods , Substance Abuse Detection/veterinary , Mass Spectrometry/methods , Solid Phase Extraction/methods , Reproducibility of Results
3.
Sci Rep ; 14(1): 14479, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914553

ABSTRACT

Nucleic acid amplification testing has great potential for point-of-need diagnostic testing with high detection sensitivity and specificity. Current sample preparation is limited by a tedious workflow requiring multiple steps, reagents and instrumentation, hampering nucleic acid testing at point of need. In this study, we present the use of mixed cellulose ester (MCE) paper for DNA binding by ionic interaction under molecular crowding conditions and fluid transport by wicking. The poly(ethylene) glycol-based (PEG) reagent simultaneously provides the high pH for alkaline lysis and crowding effects for ionic binding of the DNA under high salt conditions. In this study, we introduce Paper-based Abridged Solid-Phase Extraction with Alkaline Poly(ethylene) Glycol Lysis (PASAP). The anionic mixed cellulose ester (MCE) paper is used as solid phase and allows for fluid transport by wicking, eliminating the need for pipetting skills and the use of a magnet to retain beads. Following the release of DNA from the cells due to the lytic activity of the PASAP solution, the DNA binds to the anionic surface of the MCE paper, concentrating at the bottom while the sample matrix is transported towards the top by wicking. The paper was washed by dipping it in 40% isopropanol for 10 s. After air-drying for 30 s, the bottom section of the paper (3 mm × 4 mm) was snapped off using the cap of a PCR tube and immersed in the colourimetric loop-mediated isothermal amplification (cLAMP) solution for direct amplification and colourimetric detection. The total sample processing was completed in 15 min and ready for amplification. cLAMP enabled the detection of 102 CFU/mL of Escherichia coli (E. coli) from culture media and the detection of E. coli in milk < 103 CFU/mL (10 CFU) after incubation at 68 °C for 60 min, demonstrating applicability of the method to complex biological samples.


Subject(s)
Nucleic Acid Amplification Techniques , Paper , Nucleic Acid Amplification Techniques/methods , Colorimetry/methods , DNA , Solid Phase Extraction/methods , Polyethylene Glycols/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/genetics , Molecular Diagnostic Techniques
4.
Anal Methods ; 16(25): 4104-4115, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855940

ABSTRACT

Fluoroquinolone (FQ) antibiotics, one of the leading environmental pollutants, have ecotoxic effects that can accumulate through ecosystems and harm human health. The determination of FQs is still difficult due to the complex matrix, many interfering factors, and low concentration. Hence, a magnetic microporous organic network (MON) composite denoted as Fe3O4@MON-NH2@CM-ß-CD with excellent FQ adsorption performance was prepared by ß-CD covalent modification of a MON. Based on the existence of π-π packing, hydrophobic interaction, and hydrogen bonding between Fe3O4@MON-NH2@CM-ß-CD and FQs, a new magnetic solid phase extraction (MSPE) method for the enrichment of FQs was developed. Under optimized MSPE conditions, five FQs were detected by HPLC-UV with good linearity (R2 ≥ 0.9989) in the range of 0.02-1 µg mL-1, and detection limits (S/N = 3) in the range of 0.0014-0.0023 µg mL-1. The satisfactory recoveries ranged from 93.1 to 116.2% with RSDs lower than 8.39% when applied to actual environmental water samples. These results revealed that Fe3O4@MON-NH2@CM-ß-CD as an adsorbent for MSPE had excellent performance for FQ extraction from real samples, and the MON material types were expanded through the functionalization of MONs, which would have great potential for further application in various analytical methods.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Solid Phase Extraction , Water Pollutants, Chemical , beta-Cyclodextrins , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Fluoroquinolones/analysis , Fluoroquinolones/chemistry , Fluoroquinolones/isolation & purification , Solid Phase Extraction/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , beta-Cyclodextrins/chemistry , Porosity , Adsorption , Chromatography, High Pressure Liquid/methods , Limit of Detection
5.
Article in English | MEDLINE | ID: mdl-38880057

ABSTRACT

A reliable liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (LC-Q-Orbitrap HRMS) method was developed for the simultaneous identification and quantification of 13 ß-agonist residues in bovine liver, meat, milk, kidney, poultry, and egg. Dispersive-solid phase extraction (d-SPE) using acetonitrile (ACN) was used to prepare the samples. The analyte in the extracts was separated on a reversed-phase Accucore aQ (50 mm × 2.1 mm, 2.6 µm) using a mobile phase of an aqueous solution containing 2 mM ammonium acetate and acetonitrile (ACN) 0.1 % formic acid. The method was validated in accordance with Commission Implementing Regulation (CIR) EU 2021/808 at six different concentrations ranging from 0.1 to 5 µg/kg. The mean recoveries ranged from 65 to 94 %, while repeatability and reproducibility values were all below 13 %. The linearity, as correlation coefficients (R2) ranged from 0.9955 to 0.9999. The decision limit (CCα) and detection capability (CCß) ranges were 0.11-0.13 µg/kg and 0.12-0.15 µg/kg, respectively. The limits of detection (LOD) and limits of quantification (LOQ) were in the range of 0.004-0.048 µg/kg and 0.010-0.075 µg/kg, respectively. Of the 180 samples that were collected from local markets in Egypt, 21.11 % had ß-agonist residues. The mean concentration (µg/kg) and detection frequency (%) of the most frequently found ß-agonist in the samples were as follows: terbutaline (2.63 µg/kg and 90 %), ractopamine (5.14 µg/kg and 23.3 %). The method's applicability was verified by successfully completing two rounds of proficiency testing (PT).


Subject(s)
Drug Residues , Limit of Detection , Meat , Milk , Solid Phase Extraction , Animals , Cattle , Solid Phase Extraction/methods , Milk/chemistry , Drug Residues/analysis , Reproducibility of Results , Meat/analysis , Linear Models , Adrenergic beta-Agonists/analysis , Adrenergic beta-Agonists/isolation & purification , Eggs/analysis , Liver/chemistry , Kidney/chemistry , Poultry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods
6.
Analyst ; 149(14): 3739-3746, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828890

ABSTRACT

The study aimed to analyze nusinersen metabolites in the cerebrospinal fluid samples using ion-pair reversed-phase ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Three different sample preparation methods were tested for extraction and purification, but solid phase extraction appeared to be the most suitable, allowing a significant sample enrichment (40-fold). This step was necessary to detect and identify metabolites of nusinersen in the cerebrospinal fluid. The developed and applied analytical procedure enabled the identification of nusinersen metabolites: sequences shorter by several nucleotides from the 3' end; shorter by several nucleotides from both the 3' and 5' ends; and some depurination products. To the best of our knowledge, this is the first report on the analysis and identification of nusinersen metabolites in cerebrospinal fluid samples taken from children with spinal muscular atrophy treated with Spinraza.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides , Humans , Oligonucleotides/chemistry , Chromatography, High Pressure Liquid/methods , Muscular Atrophy, Spinal/cerebrospinal fluid , Muscular Atrophy, Spinal/drug therapy , Child , Mass Spectrometry/methods , Solid Phase Extraction/methods , Child, Preschool
7.
J Sep Sci ; 47(11): e2300915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847294

ABSTRACT

In this work, core-shell material with a special structure was designed and applied in solid-phase extraction (SPE) for non-steroidal anti-inflammatory drugs (NSAIDs) combined with high-performance liquid chromatography. Based on the advantages of core-shell ZIF-8@ZIF-67 (Zeolite imidazole ester framework materials [ZIFs]), effective derivatization treatment was carried out to partially vulcanize the original ZIFs, resulting in a special and new double-core-shell structural material CoS/ZIF-67/ZnS/ZIF-8 (ZIFs@ZnS@CoS) with porous surface and center hollow. The multiple forces caused by the rich chemical structure, the large specific surface area caused by the special pore structure, and the effective protection of the ZIFs core by sulfide shell make the designed material have higher extraction efficiency and longer service life, compared with ZIF-8@ZIF-67 and ZIF-8. At the same time, the established analytical method for non-steroidal drugs had a high recovery rate (98.93%-102.10%), low detection limit (0.11-0.27 µg/L), and wide linear range (1-200 µg/L) within a good correlation coefficient R2 (0.9978-0.9993). Satisfactory results were also obtained from the extraction of NSAIDs from the Yellow River water samples. These results indicate that the designed double-core-shell structure material can effectively exert its structural advantages and become a promising extraction material.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/analysis , Particle Size , Metal-Organic Frameworks/chemistry , Molecular Structure , Porosity , Zeolites/chemistry , Adsorption , Imidazoles/chemistry
8.
Molecules ; 29(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893376

ABSTRACT

Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.


Subject(s)
Ellagic Acid , Molecular Imprinting , Solid Phase Extraction , Ellagic Acid/chemistry , Solid Phase Extraction/methods , Molecular Imprinting/methods , Boronic Acids/chemistry , Molecularly Imprinted Polymers/chemistry , Food Analysis/methods , Nanostructures/chemistry
9.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891955

ABSTRACT

There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression products with a high potential for abuse in horseracing. As these substances are not covered by most routine anti-doping analytical approaches, they represent an entire class of compounds that are not readily detectable. The nucleotide sequence for each oligonucleotide is highly specific, which makes targeted analysis for these agents problematic. Accordingly, we have developed a non-targeted approach to detect the presence of specific product ions that are not naturally present in ribonucleic acids. Briefly, serum samples were extracted using solid-phase extraction with a mixed-mode cartridge following the disruption of protein interactions to isolate the oligonucleotides. Following the elution and concentration steps, chromatographic separation was achieved utilizing reversed-phase liquid chromatography. Following an introduction to a Thermo Q Exactive HF mass spectrometer using electrospray ionization, analytes were detected utilizing a combination of full-scan, parallel reaction monitoring and all ion fragmentation scan modes. The limits of detection were determined along with the accuracy, precision, stability, recovery, and matrix effects using a representative 13mer oligonucleotide. Following method optimization using the 13mer oligonucleotide, the method was applied to successfully detect the presence of specific product ions in three unique oligonucleotide sequences targeting equine-specific transcripts.


Subject(s)
Oligonucleotides , Animals , Horses/blood , Oligonucleotides/blood , Doping in Sports/prevention & control , Chromatography, Liquid/methods , Mass Spectrometry/methods , Solid Phase Extraction/methods , Limit of Detection
10.
Anal Methods ; 16(24): 3968-3982, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38853581

ABSTRACT

Concerns have been raised about synthetic cannabinoids (SCs), which are among the most often trafficked and used illegal substances. An analytical method that holds promise for determining illicit drug use in the general population is wastewater-based epidemiology (WBE). Unfortunately, the concentration of SCs in wastewater is often extremely low on account of their hydrophobic nature, thus presenting a significant obstacle to the accurate detection and quantification of SCs using WBE. In this study, we present novel magnetic nanomaterials as amphiphilic adsorbents for pretreatment of wastewater using magnetic solid phase extraction (MSPE). Polydopamine-modified Fe3O4 nanoparticles were used as the magnetic core and further functionalized with poly(divinylbenzene-N-vinylpyrrolidone). Coupled with UHPLC-MS/MS analysis, an analytical method to simultaneously detect nine SCs at trace-levels in wastewater was developed and validated, enriching 50 mL wastewater to 100 µL with limits of detection (LOD) being 0.005-0.5 ng L-1, limits of quantification (LOQ) being 0.01-1.0 ng L-1, recoveries ranging from 73.99 to 110.72%, and the intra- and inter-day precision's relative standard deviations less than 15%. In comparison to the time-consuming conventional column-based solid phase extraction, the entire MSPE procedure from sample pre-treatment to data acquisition could be finished in one hour, thus largely facilitating the WBE method for drug surveillance and control.


Subject(s)
Cannabinoids , Indoles , Limit of Detection , Polymers , Solid Phase Extraction , Tandem Mass Spectrometry , Wastewater , Water Pollutants, Chemical , Indoles/chemistry , Polymers/chemistry , Wastewater/chemistry , Wastewater/analysis , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Tandem Mass Spectrometry/methods , Cannabinoids/analysis , Cannabinoids/chemistry , Magnetite Nanoparticles/chemistry , Chromatography, High Pressure Liquid/methods , Pyrrolidinones/chemistry , Pyrrolidinones/analysis , Adsorption
11.
Anal Methods ; 16(24): 3810-3814, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38855885

ABSTRACT

A cysteine-based fluorous trapping reagent, Rf8CYS, was developed. Rf8CYS formed adducts with soft and hard electrophilic reactive metabolites. These fluorous-tagged adducts were purified via both fluorous solid-phase extraction and the direct injection method. The highly sensitive mass spectrometric detection of an unprecedented adduct of the ticlopidine metabolite was realized.


Subject(s)
Cysteine , Solid Phase Extraction , Cysteine/chemistry , Cysteine/metabolism , Cysteine/analysis , Solid Phase Extraction/methods , Indicators and Reagents/chemistry , Mass Spectrometry/methods , Humans
12.
Wei Sheng Yan Jiu ; 53(3): 447-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839587

ABSTRACT

OBJECTIVE: To develop and validate a solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry method for the determination of six bisphenols(bisphenol S, bisphenol F, bisphenol A, 2, 2'-methylenediphenol, bisphenol AF, bisphenol AP) in urine. METHODS: After enzymolysis of urine sample, the target substances were quickly purified and extracted by WAX solid phase extraction column. On ACQUITY BEH C_(18) column(2.1 mm×100 mm, 1.7 µm), the mobile phase of water and methanol was used to separate. Finally, multi-reaction detection was carried out under electrospray negative ion scanning, and quantification was carried out by internal standard method. RESULTS: The correlation coefficients(r) of the target compounds were all more than 0.998 in the range of 0.1-50.0 ng/mL, the linearity was good, and the detection limits were all lower than 0.1 ng/mL. The recoveries of the three standard concentrations(0.5, 5.0 and 50.0 ng/mL) were all between 80% and 120%, and the relative standard deviation was less than 20%(n=5). The standard reference material was detected and the concentration was within the reference range. CONCLUSION: This method can be used to detect six bisphenols in urine quickly and accurately, is suitable for the trace analysis of bisphenol compounds in human urine.


Subject(s)
Benzhydryl Compounds , Phenols , Tandem Mass Spectrometry , Humans , Phenols/urine , Phenols/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Benzhydryl Compounds/urine , Solid Phase Extraction/methods , Sulfones/urine
13.
Anal Chim Acta ; 1312: 342780, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834272

ABSTRACT

BACKGROUND: The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS: We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol µL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE: The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.


Subject(s)
Aptamers, Nucleotide , Thrombin , Triazines , Triazines/chemistry , Triazines/isolation & purification , Aptamers, Nucleotide/chemistry , Humans , Thrombin/analysis , Thrombin/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Solid Phase Extraction/methods
14.
Sci Rep ; 14(1): 13064, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844596

ABSTRACT

This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 µg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 µg kg-1) and LOQ (0.003-0.04 µg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.


Subject(s)
Carbamates , Fruit , Pesticide Residues , Phoeniceae , Tandem Mass Spectrometry , Phoeniceae/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Carbamates/analysis , Fruit/chemistry , Humans , Risk Assessment , Solid Phase Extraction/methods , Food Contamination/analysis
15.
Anal Methods ; 16(23): 3784-3797, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38828558

ABSTRACT

Newly designed micro-solid phase extraction cartridges are now available, reflecting the increasing shift towards laboratory automation, especially in the clean-up step for the analysis of pesticide residues in food and feed. In the present study, the introduction of different sorbents on the newly designed PAL µSPE CTC cartridges was investigated for the removal of matrix interferents and the recovery of pesticides. Eight cartridges containing different sorbent combinations and different amounts were used including EMR-lipid (not activated), Z-sep, chitin, C18, PSA, and GCB. The evaluation of co-extractive removal for each cartridge showed that the optimal choice for removing fatty acids was the cartridges containing PSA and Z-sep as clean-up sorbents. However, the presence of C18 and EMR-lipid was still required for the removal of sterols and tocopherols. Two grams of sample, fish feed (FF) and rapeseed cake (RSC) were extracted using QuEChERS citrate buffer, followed by a freeze-out step. The recoveries and repeatability of QuEChERS using µ-SPE clean-up were evaluated for 216 pesticide residues (112 compounds analyzed by GC-MS/MS and 143 compounds by LC-MS/MS, from which 39 compounds were analyzed using both techniques). The best results, with recovery between 70 and 120% and RSD <20%, were achieved when FF samples were cleaned-up with 15 mg EMR-lipid and 20 mg MgSO4. This was achieved for 94% of GC-amenable compounds and 86% of LC-amenable compounds. In the case of RSC, the best results were seen when samples were cleaned-up with the cartridge containing only 20 mg Z-sep and 20 mg MgSO4. This was achieved for 88% of GC-amenable compounds and 90% of LC-amenable compounds. Although these cartridges yielded optimal results in terms of recovery, their use could require more instrument maintenance, especially for GC-MS/MS, due to the lower removal of co-extractives.


Subject(s)
Animal Feed , Pesticide Residues , Solid Phase Microextraction , Pesticide Residues/analysis , Solid Phase Microextraction/methods , Animal Feed/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Food Contamination/analysis , Solid Phase Extraction/methods , Animals
16.
Se Pu ; 42(6): 508-523, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845512

ABSTRACT

Given continuous improvements in industrial production and living standards, the analysis and detection of complex biological sample systems has become increasingly important. Common complex biological samples include blood, serum, saliva, and urine. At present, the main methods used to separate and recognize target analytes in complex biological systems are electrophoresis, spectroscopy, and chromatography. However, because biological samples consist of complex components, they suffer from the matrix effect, which seriously affects the accuracy, sensitivity, and reliability of the selected separation analysis technique. In addition to the matrix effect, the detection of trace components is challenging because the content of the analyte in the sample is usually very low. Moreover, reasonable strategies for sample enrichment and signal amplification for easy analysis are lacking. In response to the various issues described above, researchers have focused their attention on immuno-affinity technology with the aim of achieving efficient sample separation based on the specific recognition effect between antigens and antibodies. Following a long period of development, this technology is now widely used in fields such as disease diagnosis, bioimaging, food testing, and recombinant protein purification. Common immuno-affinity technologies include solid-phase extraction (SPE) magnetic beads, affinity chromatography columns, and enzyme linked immunosorbent assay (ELISA) kits. Immuno-affinity techniques can successfully reduce or eliminate the matrix effect; however, their applications are limited by a number of disadvantages, such as high costs, tedious fabrication procedures, harsh operating conditions, and ligand leakage. Thus, developing an effective and reliable method that can address the matrix effect remains a challenging endeavor. Similar to the interactions between antigens and antibodies as well as enzymes and substrates, biomimetic molecularly imprinted polymers (MIPs) exhibit high specificity and affinity. Furthermore, compared with many other biomacromolecules such as antigens and aptamers, MIPs demonstrate higher stability, lower cost, and easier fabrication strategies, all of which are advantageous to their application. Therefore, molecular imprinting technology (MIT) is frequently used in SPE, chromatographic separation, and many other fields. With the development of MIT, researchers have engineered different types of imprinting strategies that can specifically extract the target analyte in complex biological samples while simultaneously avoiding the matrix effect. Some traditional separation technologies based on MIP technology have also been studied in depth; the most common of these technologies include stationary phases used for chromatography and adsorbents for SPE. Analytical methods that combine MIT with highly sensitive detection technologies have received wide interest in fields such as disease diagnosis and bioimaging. In this review, we highlight the new MIP strategies developed in recent years, and describe the applications of MIT-based separation analysis methods in fields including chromatographic separation, SPE, diagnosis, bioimaging, and proteomics. The drawbacks of these techniques as well as their future development prospects are also discussed.


Subject(s)
Molecular Imprinting , Humans , Chromatography, Affinity/methods , Solid Phase Extraction/methods , Enzyme-Linked Immunosorbent Assay
17.
J Chromatogr A ; 1729: 465030, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38838449

ABSTRACT

Exposure to tobacco smoke is highly correlated to the incidence of different types of cancer due to various carcinogenic compounds present in such smoke. Aromatic amines, such as 1-naphthylamine (1-NA) and 2-naphthylamine (2-NA), are produced in tobacco burning and are linked to bladder cancer. Miniaturized solid phase extraction techniques, such as microporous membrane solid phase extraction (MMSPE), have shown potential for the extraction of aromatic compounds. In this study, a bioanalytical method for the determination of 1-NA and 2-NA in human urine was developed using polypropylene microporous membranes as a sorptive phase for MMSPE. Urine samples were hydrolyzed with HCl for 1 h at 80 °C, after which pH was adjusted to 10. Ultrasound-assisted MMSPE procedure was optimized by factorial design as follows. To each sample, 750 µL of methanol was added, and ultrasound-assisted MMSPE was conducted for 1 h with four devices containing seven 2 mm polypropylene membrane segments. After extraction, the segments were transferred to 400 µL of hexane, and desorption was conducted for 30 min. Extracts were submitted to a simple and fast microwave-assisted derivatization procedure, by the addition of 10 µL of PFPA and heating at 480 W for 3 min, followed by clean-up with phosphate buffer pH 8.0 and GC-MS/MS analysis. Adequate linearity was obtained for both analytes in a range from 25 to 500 µg L-1, while the multiple reaction monitoring approach provided satisfactory selectivity and specificity. Intra-day (n = 6) and inter-day (n = 5) precision and accuracy were satisfactory, below 15 % and between 85 and 115 %, respectively. Recovery rates found were 91.9 and 58.4 % for 1-NA and 2-NA, respectively, with adequate precision. 1-NA was found in first-hand smokers' urine samples in a concentration range from 20.98 to 89.09 µg in 24 h, while it could be detected in second-hand smoker's urine samples, and 2-NA detected in all first and second-hand smokers' urine samples. The proposed method expands the applicability of low cost MMSPE devices to aromatic amines and biological fluids.


Subject(s)
Gas Chromatography-Mass Spectrometry , Limit of Detection , Polypropylenes , Solid Phase Extraction , Tandem Mass Spectrometry , Humans , Polypropylenes/chemistry , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Extraction/methods , Carcinogens/analysis , Carcinogens/isolation & purification , Reproducibility of Results , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/chemistry , Membranes, Artificial , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Porosity , Smokers
18.
J Chromatogr A ; 1729: 465040, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38838450

ABSTRACT

In this work, porous polyimide microfibers (PI-µF) were prepared by high-pressure wet spinning method, and successfully applied as adsorbents for solid phase extraction (SPE) of fluoroquinolones (FQs) in water and food samples. The PI-µFs of ∼10, 25, 50, 100 µm in diameter could be controlled by the inner diameter of quartz capillary nozzles. The flow resistance of SPE cartridges packed with 10 µm PI microfiber (10-PI-µF) and 25-PI-µF was comparable to or even lower than that of commercial SPE cartridges, while the flow resistance of 50-PI-µF and 100-PI-µF SPE cartridges was increased obviously due to tiny broken pieces. The 10-PI-µF and 25-PI-µF have a specific surface area of 102 m2 g-1 and 76 m2 g-1, mesopores of 22-32 nm, and large breakthrough volume of 110 mL/5 mg and 85 mL/5 mg for FQs, while the 50-PI-µF and 100-PI-µF had much lower specific surface area and hardly had retention for FQs. FQs from tap water, egg and milk samples were then extracted by PI-µF SPE, and analyzed by high performance liquid chromatography-fluorescence detector (HPLC-FLD). SPE parameters as type of elution solvent, elution solvent volume, pH value of sample solution, flow rate of sample solution, and breakthrough volume were first optimized in detail. Under the optimal conditions, the PI-µF SPE/HPLC-FLD method showed high recoveries (96.8%-107%), wide linearity (0.05-50 µg L-1, or 0.01-10 µg L-1), high determination coefficients (R2 ≥0.9992), and low limits of detection (LODs, 0.005-0.014 µg L-1). For the real tap water, egg and milk samples, the recoveries and RSDs were 81-119% and 0.8-9.8%, respectively. The results show that porous microfiber up to 25 µm in diameter is a promising solid-phase extraction adsorbent with the lowest flow resistance that can be used for trace organic pollutants in water and food samples.


Subject(s)
Fluoroquinolones , Limit of Detection , Milk , Solid Phase Extraction , Water Pollutants, Chemical , Solid Phase Extraction/methods , Fluoroquinolones/analysis , Fluoroquinolones/isolation & purification , Fluoroquinolones/chemistry , Porosity , Milk/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Chromatography, High Pressure Liquid/methods , Animals , Eggs/analysis , Adsorption , Pressure , Food Contamination/analysis , Resins, Synthetic/chemistry , Food Analysis/methods , Reproducibility of Results
19.
Article in English | MEDLINE | ID: mdl-38851151

ABSTRACT

In this study, a magnetic three-dimensional nano-composite based on Rubber-Fe3O4@Ni-Co Layered double hydroxide derived from ZIF-67 template was synthesized by a hydrothermal method. The proposed nano-composite was used as a sorbent for the enrichment of trace amounts of anti-cancer drugs (dasatinib and erlotinib hydrochloride) from plasma samples followed by determination using high-performance liquid chromatographic analysis (HPLC-UV). The synthesized nano-sorbent was characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating-sample magnetometer, Brunauer-Emmett-Teller surface analysis, Barrett-Joyner-Halenda pore size analysis and energy dispersive X-ray spectroscopy. Under optimal experimental conditions, factors affecting on extraction efficiency such as pH, ionic strength, extraction temperature and time, desorption solvent and time, the limit of detection (LODs) and the limit of quantification (LOQs) were obtained as 0.6, 2 µg/L for both of dasatinib and erlotinib, respectively. Also, linear range of the method were 2-500 and 2-1000 µg/L for dasatinib and erlotinib, respectively. Relative standard deviations (RSD%) for the repeatability of extraction on sorbent to sorbent were obtained as 3.59, 1.97 %, and one sorbent reusability were investigated and relative standard deviation values were obtained 5.35, 3.30 % for dasatinib and erlotinib, respectively.


Subject(s)
Antineoplastic Agents , Erlotinib Hydrochloride , Limit of Detection , Rubber , Rubber/chemistry , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Humans , Erlotinib Hydrochloride/blood , Erlotinib Hydrochloride/chemistry , Linear Models , Dasatinib/blood , Dasatinib/chemistry , Hydroxides/chemistry , Imidazoles/chemistry , Imidazoles/blood , Adsorption , Solid Phase Extraction/methods , Cobalt/chemistry , Cobalt/blood , Nanostructures/chemistry , Zeolites
20.
J Chromatogr A ; 1729: 465012, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852264

ABSTRACT

Acrylamide and N, N-methylene bis acrylamide are most commonly used monomer and crosslinker compounds employed in synthesis of super absorbent hydrogels. When applied as soil conditioners, there are apprehensions that these hydrogels degrade over time and thus may release the toxic monomers in the soil. A method was thus developed using Liquid Chromatography tandem mass spectrometry (LC-MS/MS) for the trace level quantification of acrylamide (AD), acrylic acid (AA) and N,N-methylene-bis-acrylamide (MBA) in sandy loam soil amended by two test hydrogels the Pusa Hydrogel and SPG 1118 hydrogel prepared using AD and MBA. The MRM (multiple reaction monitoring) transitions were optimized for both the compounds. Soil samples were extracted using dispersive solid-phase extraction (dSPE) with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique, employing acetonitrile. All analytes were quantified at trace levels within a five-minute run using UHPLC equipped with a C-18 column. Single laboratory validation of the developed method in soil matrix was conducted based on specificity, linearity, sensitivity, accuracy, precision, matrix effect and measurement of uncertainty. LC-MS/MS exhibited a linear response in the concentration range of 0.001 to 1 µg mL-1, with correlation coefficient >+0.99. Acceptable recovery (within 70-120 %) with repeatability (%RSD ≤20 %) was obtained at 0.01 to 1 µg g-1 fortification levels. LOQ (Limit of quantification) of the method for AD, AA and MBA in soil matrix were 0.05, 1 and 0.01 µg g-1, respectively. Both intra-laboratory repeatability and intermediate precision at LOQ suggested well acceptable precise (HorRat≈ 0.3) method for quantification. Matrix enhancement effect was observed in the order: AA>AD>MBA. The Expanded Uncertainty (EU) in soil matrix at LOQ was 21.64 %, 28 % and 19 % for AD, AA and MBA respectively. Groundnut and wheat grown with application of the hydrogels showed no detectable residues of monomers in soil samples (total n = 60) near the root zone at the time of crop harvesting.


Subject(s)
Acrylamide , Acrylamides , Acrylates , Soil Pollutants , Soil , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Acrylates/analysis , Acrylates/chemistry , Acrylamide/analysis , Soil/chemistry , Acrylamides/chemistry , Acrylamides/analysis , Soil Pollutants/analysis , Solid Phase Extraction/methods , Reproducibility of Results , Limit of Detection , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Hydrogels/chemistry , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...