Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.328
Filter
1.
AAPS PharmSciTech ; 25(6): 165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009915

ABSTRACT

CaCO3 nanoparticles (nano-CaCO3) as nano-templates were prepared using CaCl2 and Na2CO3 solutions under controlled sonication (19.5 kHz). Using the same ultrasonic device, subsequently, hollow mesoporous silica nanoparticles (HMSNs) were obtained by the hard template of nano-CaCO3. HMSNs were selected as carriers for the antifungal drug voriconazole (VOR) loading to overcome poor water solubility. Three-dimensional CaCO3 nanosheets HMSNs were obtained under gentle sonication. Three-dimensional CaCO3 nanosheets of 24.5 nm (hydrodynamic diameter) were obtained under 17.6 W for 3 min. HMSNs were synthesized by double-template method with nano-CaCO3 as the hard template. Transmission electron microscopy measurements showed that the prepared HMSNs possess hollow structures with particle size between 110 and 120 nm. Nitrogen physisorption at -196 °C revealed that the HMSNs had high surface area (401.57 m2/g), high pore volume (0.11 cm3/g), and uniform pore size (2.22 nm) that facilitated the effective encapsulation of VOR in the HMSNs. The loading capacity of VOR (wt%) on the HMSNs was 7.96%, and the total VOR release amount of VOR-HMSNs material was 71.40% at 480 min. The kinetic model confirmed that the release mechanism of HMSNs nanoparticles followed Fickian diffusion at pH = 7.4 and 37 °C. Moreover, the cumulative VOR release at 42 °C (86.05%) was higher than that at 37 °C (71.40%). The cumulative release amount of VOR from the VOR-HMSNs material was 92.37% at pH = 5.8 at the same temperature. Both nano-CaCO3 templates and HMSNs were prepared by sonication at 19.5 kHz. The as-prepared HMSNs can effectively encapsulate VOR and released drug by Fickian diffusion.


Subject(s)
Antifungal Agents , Calcium Carbonate , Nanoparticles , Particle Size , Silicon Dioxide , Voriconazole , Nanoparticles/chemistry , Calcium Carbonate/chemistry , Silicon Dioxide/chemistry , Voriconazole/chemistry , Voriconazole/administration & dosage , Porosity , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Drug Carriers/chemistry , Solubility , Drug Liberation , Sonication/methods
2.
J Environ Sci (China) ; 146: 15-27, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969444

ABSTRACT

A large amount of sludge is inevitably produced during sewage treatment. Ultrasonication (US) as anaerobic digestion (AD) pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated. US was effective in sludge SCOD increase, size decrease, and CH4 production in the subsequent AD, and these effects were enhanced with an elevated specific energy input. As indicated by semi-continuous AD experiments, the mean daily CH4 production of US-pretreated A2O-, A2O-MBR-, and AO-AO-sludge were 176.9, 119.8, and 141.7 NmL/g-VSadded, which were 35.1%, 32.1% and 78.2% higher than methane production of their respective raw sludge. The US of A2O-sludge achieved preferable US effects and CH4 production due to its high organic content and weak sludge structure stability. In response to US-pretreated sludge, a more diverse microbial community was observed in AD. The US-AD system showed negative net energy; however, it exhibited other positive effects, e.g., lower required sludge retention time and less residual total solids for disposal. US is a feasible option prior to AD to improve anaerobic bioconversion and CH4 yield although further studies are necessary to advance it in practice.


Subject(s)
Bioreactors , Methane , Sewage , Waste Disposal, Fluid , Methane/metabolism , Methane/analysis , Anaerobiosis , Waste Disposal, Fluid/methods , Sonication
3.
Food Res Int ; 191: 114662, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059935

ABSTRACT

This work explored the impact of ultrasound (US) on the activity, stability, and macrostructural conformation of cyclodextrin glycosyltransferase (CGTase) and how these changes could maximize the production of ß-cyclodextrins (ß-CDs). The results showed that ultrasonic pretreatment (20 kHz and 38 W/L) at pH 6.0 promoted increased enzymatic activity. Specifically, after sonication at 25 °C/30 min, there was a maximum activity increase of 93 % and 68 % when biocatalysis was carried out at 25 and 55 °C, respectively. For activity measured at 80 °C, maximum increase (31 %) was observed after sonication at 25 °C/60 min. Comparatively, US pretreatment at low pH (pH = 4.0) resulted in a lower activity increase (max. 28 %). These activation levels were maintained after 24 h of storage at 8 °C, suggesting that changes on CGTase after ultrasonic pretreatment were not transitory. These pretreatments altered the conformational structure of CGTase, revealed by an up to 11 % increase in intrinsic fluorescence intensity, and resulted in macrostructural modifications, such as a decrease in particle size and polydispersion index (up to 85 % and 45.8 %, respectively). Therefore, the sonication of CGTase under specific conditions of pH, time, and temperature (especially at pH 6.0/ 30 min/ 25 °C) promotes macrostructural changes in CGTase that induce enzyme activation and, consequently, higher production of ß-CDs.


Subject(s)
Enzyme Stability , Glucosyltransferases , beta-Cyclodextrins , Glucosyltransferases/metabolism , beta-Cyclodextrins/chemistry , Hydrogen-Ion Concentration , Sonication , Temperature , Ultrasonics
4.
Food Res Int ; 191: 114711, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059957

ABSTRACT

The complexation of physically modified starch with fatty acids is favorable for the production of resistant starch. However, there is a lack of information on the effect of ultrasonication (UC) on the structure and properties of starch complexes and the molecular mechanism of the stabilization. Here, the multi-scale structure and in vitro digestive properties of starch-fatty acid complexes before and after UC were investigated, and the stabilization mechanisms of starch and fatty acids were explored. The results showed that the physicochemical properties and multi-scale structure of the starch-fatty acid complexes significantly changed with the type of fatty acids. The solubility and swelling power of the starch-fatty acid complexes were significantly decreased after UC (P < 0.05), which facilitated the binding of starch with fatty acids. The XRD results revealed that after the addition of fatty acids, the starch-fatty acid complexes showed typical V-shaped complexes. In addition, the starch-fatty acid complexes showed a significant increase in complexing index, improved short-range ordering and enhanced thermal stability. However, the differences in the structure and properties of the fatty acids themselves resulted in no significant improvement in the multi-scale structure of maize starch-palmitic acid by UC. In terms of digestibility, especially the complexes after UC were more compact in structure, which increased the difficulty of enzymatic digestion and thus slowed down the digestion process. DFT calculations and combined with FT-IR analysis showed that non-covalent interactions such as hydrogen bonding and hydrophobic interactions were the main driving force for the formation of the complexes, with binding energies (lauric acid, myristic acid and palmitic acid) of -30.50, -22.14 and -14.10 kcal/mol, respectively. Molecular dynamics simulations further confirmed the molecular mechanism of inclusion complex formation and stabilization. This study is important for the regulation of starchy foods by controlling processing conditions, and provides important information on the role of fatty acids in the regulation of starch complexes and the binding mechanism.


Subject(s)
Digestion , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Sonication , Palmitic Acid/chemistry , Zea mays/chemistry , X-Ray Diffraction
5.
Ultrason Sonochem ; 108: 106949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003930

ABSTRACT

Investigating the extraction of bioactive compounds represents a hopeful direction for maximizing the value of longan fruit byproducts. This study explored the influence of ultrasonic-assisted extraction (UAE) parameters-specifically ultrasonic power ratios, temperatures, and exposure times-utilizing water as a green solvent on several properties of the longan seeds extract (LSE). These properties encompassed the energy consumption of the UAE process (EC), extraction yield (EY), total phenolic contents (TPC), total flavonoid contents (TFC), and antioxidant activity (DPPH). Additionally, the study sought to optimize the conditions of UAE process and examine its thermodynamic properties. A three-level, three-factor full factorial design was utilized to assess the effects of different factors on LSE properties. Results indicated that EC, EY, TPC, TFC, and DPPH were significantly influenced by power ratios, temperatures, and exposure time. Moreover, the proposed models effectively characterized the variations in different properties during the extraction process. The optimized extraction conditions, aimed at minimizing EC while maximizing EY, TPC, TFC, and DPPH radical scavenging activity, were demonstrated as an ultrasonic power ratio of 44.4 %, a temperature of 60 °C, and an extraction time of 17.7 min. Optimization led to 563 kJ for EC, 7.85 % for EY, 47.21 mg GAE/mL for TPC, 96.8 mg QE/mL for TFC, and 50.15 % for DPPH radical scavenging activity. The results emphasized that the UAE process exhibited characteristics of endothermicity and spontaneity. The results provide valuable insights that could inform the enhancement of extraction processes, potentially benefiting industrial utilization and pharmaceutical formulations.


Subject(s)
Antioxidants , Chemical Fractionation , Powders , Seeds , Ultrasonic Waves , Seeds/chemistry , Kinetics , Chemical Fractionation/methods , Antioxidants/isolation & purification , Antioxidants/chemistry , Temperature , Phenols/isolation & purification , Phenols/chemistry , Flavonoids/isolation & purification , Flavonoids/chemistry , Sonication/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification
6.
Molecules ; 29(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064860

ABSTRACT

Lonicera similis Hemsl. (L. similis) is a promising industrial crop with flowers rich in phenolic compounds. In this study, an ultrasound-assisted extraction (UAE) was designed to extract phenolic compounds from L. similis flowers (LSFs). A contrastive analysis on the phenolic compounds' yield and characterization and the antioxidant activity of the extracts at three harvest stages (PGS I, PGS II, and PGS III) are reported. The results indicate that the optimal conditions are a sonication intensity of 205.9 W, ethanol concentration of 46.4%, SLR of 1 g: 31.7 mL, and sonication time of 20.1 min. Under these optimized conditions, the TPC values at PGS I, PGS II, and PGS III were 117.22 ± 0.55, 112.73 ± 1.68, and 107.33 ± 1.39 mg GAE/g, respectively, whereas the extract of PGS I had the highest TFC (68.48 ± 2.01 mg RE/g). The HPLC analysis showed that chlorogenic acid, rutin, quercetin, isoquercitrin, and ferulic acid are the main components in the phenolic compounds from LSFs, and their contents are closely corrected with the harvest periods. LSF extracts exhibited a better antioxidant activity, and the activity at PGS I was significantly higher than those at PGS II and PGS III. The correlation analysis showed that kaempferol and ferulic acid, among the eight phenolic compounds, have a significant positive correlation with the antioxidant activity, while the remaining compounds have a negative correlation. Minor differences in extracts at the three harvest stages were found through SEM and FTIR. These findings may provide useful references for the optimal extraction method of phenolic compounds from LSFs at three different harvest periods, which will help to achieve a higher phytochemical yield at the optimal harvest stage (PGS I).


Subject(s)
Antioxidants , Flowers , Lonicera , Phenols , Plant Extracts , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Flowers/chemistry , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lonicera/chemistry , Chromatography, High Pressure Liquid , Ultrasonic Waves , Sonication
7.
Ultrason Sonochem ; 108: 106981, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981339

ABSTRACT

This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 µm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.


Subject(s)
Alginates , Diglycerides , Emulsions , Soybean Proteins , Alginates/chemistry , Soybean Proteins/chemistry , Diglycerides/chemistry , Sonication , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves
8.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893365

ABSTRACT

The use of z-drugs has increased worldwide since its introduction. Although the prescribing patterns of hypnotics differ among countries, zolpidem is the most widely used z-drug in the world. Zolpidem may be involved in poisoning and deaths. A simple and fast HPLC-PDA method was developed and validated. Zolpidem and the internal standard chloramphenicol were extracted from plasma using a sonication-assisted dispersive liquid-liquid microextraction procedure. The method was validated including selectivity, linearity, precision, accuracy, and recovery. The calibration range (0.15-0.6 µg/mL) covers therapeutic and toxic levels of zolpidem in plasma. The limit of quantification was set at 0.15 µg/mL. Intra- and interday accuracy and precision values were lower than 15% at the concentration levels studied. Excellent recovery results were obtained for all concentrations. The proposed method was successfully applied to ten real postmortem plasma samples. In our series, multiple substances (alcohol and/or other drugs) were detected in most cases of death involving zolpidem. Our analytical method is suitable for routine toxicological analysis.


Subject(s)
Liquid Phase Microextraction , Zolpidem , Zolpidem/blood , Humans , Liquid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Sonication/methods , Reproducibility of Results , Hypnotics and Sedatives/blood , Limit of Detection , Pyridines/blood
9.
Food Res Int ; 190: 114562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945563

ABSTRACT

The structural and functional properties of whey-quercetin and whey hydrolysate-quercetin conjugates synthesized using alkaline and free radical-mediated methods (AM and FRM) coupled with sonication were studied. FTIR showed new peaks at 3000-3500 cm-1 (N-H stretching regions) and the 1000-1100 cm-1 region with the conjugates. Conjugation increased the random coils and α-helix content while decreasing the ß-sheets and turns. It also increased the particle size and surface hydrophobicity which was significantly (p < 0.05) higher in AM than FRM conjugates. AM conjugates had higher radical scavenging activity but lower quercetin content than FRM conjugates. Overall, the functional properties of whey-quercetin conjugates were better than whey hydrolysate-quercetin conjugates. However, hydrolysate conjugates had significantly higher denaturation temperatures irrespective of the method of production. Sonication improved the radical scavenging activity and quercetin content of FRM conjugates while it decreased both for AM conjugates. This study suggested that whey-quercetin conjugates generally had better quality than whey hydrolysate conjugates and sonication tended to further improve these properties. This study highlights the potential for using camel whey or whey hydrolysate-quercetin conjugates to enhance the functional properties of food products in the food industry.


Subject(s)
Camelus , Hydrophobic and Hydrophilic Interactions , Quercetin , Sonication , Quercetin/chemistry , Animals , Protein Hydrolysates/chemistry , Whey/chemistry , Antioxidants/chemistry , Whey Proteins/chemistry , Free Radical Scavengers/chemistry , Spectroscopy, Fourier Transform Infrared , Free Radicals/chemistry , Particle Size , Hydrogen-Ion Concentration
10.
Ultrason Sonochem ; 107: 106941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861817

ABSTRACT

Synbiotics are a combination of probiotic cells and prebiotic components and this harmonious association has numerous health benefits. Conventional processing technologies use high temperatures for processing which reduces the viability and the final quality of synbiotic beverages. Sonication is a rapidly growing technology in the food processing sector and can be employed for the formulation of synbiotic beverages with improved functionalities. The cavitation events generated during the sonication result in beneficial effects like increased viability of probiotic cells, enhanced bifidogenic characteristics of prebiotic components, less processing time, and high-quality products. The sonication process does not affect the sensory attributes of synbiotic beverages however, it alters the structure of prebiotics thus increasing the access by the probiotics. These positive effects are solely dependent on the type of ultrasound process and the ultrasound operating parameters. The review aims to provide information on the technological aspects of ultrasound, a brief about synbiotics, details on the ultrasound process used for the formulation of synbiotics, the influence of ultrasound operating parameters, and a focus on the research gap.


Subject(s)
Beverages , Sonication , Synbiotics , Beverages/analysis
11.
Sci Rep ; 14(1): 13803, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877060

ABSTRACT

Topical consumer interest in natural, healthier, safer and nutritional juice, has inspired the search for innovative technologies that can minimize product degradation. In this regard, thermosonication has been proposed as a potential processing technology that can preserve and produce "fresh" products. Watermelon (Citrullus lanatus) juice is a nutrient-rich fruit juice that is desired by consumers due to its appealing color, pleasant odor, sweet taste and low-calorie content. This fruit juice is, however, highly perishable and prone to microorganisms, because of its neutral pH value and high amount of water activity. In addition, it is thermo-sensitive and therefore degrades quickly under thermal processing. This study aimed to identify the optimal thermosonication processing conditions for retaining the critical quality parameters (lycopene, ß-carotene, ascorbic acid and total polyphenolic content) of watermelon juice. Response surface methodology, employing a central composite design, was used to determine the effects of temperature (18-52 °C), processing time (2-13 min) and amplitude level (24-73 µm) at a constant frequency of 25 kHz. The highest quality parameters were obtained at 25 °C, 2 min, and 24 µm at a constant frequency of 25 kHz, which resulted in lycopene of 8.10 mg/100 g, ß-carotene of 0.19 mg/100 g, ascorbic acid of 3.11 mg/100 g and total polyphenolic content of 23.96 mg/GAE/g with a desirability of 0.81. The proposed model was adequate (p < 0.0001), with a satisfactory determination coefficient (R2) of less than 0.8 for all phytochemicals. Thermosonicated watermelon juice samples showed minimal changes in their phytochemical properties, when compared to fresh juices; the lycopene content showed a significant increase after thermosonication, and a significant retention of ß-carotene, ascorbic acid and total polyphenolic acid was observed. According to the findings, thermosonication could be a viable method for preserving watermelon juice, with minimal quality loss and improved functional attributes.


Subject(s)
Citrullus , Fruit and Vegetable Juices , Citrullus/chemistry , Fruit and Vegetable Juices/analysis , Lycopene/analysis , Ascorbic Acid/analysis , Sonication/methods , Food Handling/methods , Temperature , Hot Temperature , Polyphenols/analysis
12.
Ultrason Sonochem ; 107: 106926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823083

ABSTRACT

The consumption of ready-to-eat fresh produce raises the issue of food-borne pathogen infections; thus, disinfecting ready-to-eat produce for commercial use, such as in homes and restaurants, is important to ensure food safety. Chemical sanitizers are typically used for disinfection. Ultraviolet-light emitting diodes (UV-LEDs) are a novel non-thermal disinfection technology that consumes less energy and generates less heat than traditional UV lamps, making them more appealing to consumers. In this study, we combined ultrasonic (US) washing method with UV-LEDs (US-UV-LEDs) to develop a technique for disinfecting fresh produce without using chemical sanitizers and compared its efficacy with three common household sanitizers ("84" (sodium hypochlorite) disinfectant, kettle descaler (citric acid), and vinegar (acetic acid)). In addition, we investigated the efficacy of this method in controlling pathogen numbers in the water used to wash (washing water) the produce to prevent cross-contamination between water and produce. Cherry tomatoes and lettuce were selected as produce models and Salmonella Typhimurium and Escherichia coli O157:H7 were used as the bacterial models. The results showed that US-UV-LEDs reduced the numbers of S. Typhimurium and E. coli O157:H7 on produce by 2.1-2.2 log CFU/g, consistent with the results achieved by the three household sanitizers; however, kettle descaler and vinegar had a limited effect (2.6-3.5 log CFU/mL) on residual pathogens in the washing water. Furthermore, we created washing water with low (754 mg/L) and high (1425 mg/L) chemical oxygen demand (COD) levels and determined the disinfection efficacy of "84" disinfectant and US-UV-LEDs. The results showed that US-UV-LEDs reduced the number of S. Typhimurium and E. coli O157:H7 by 2.0-2.1 and 1.8-2.1 log CFU/g under low and high COD levels, respectively, which was similar a result to that of "84" disinfectant. However, the residual pathogen numbers in the washing water were reduced to 1.4-1.9 log CFU/mL after treatment with US-UV-LED under high COD, whereas the pathogens were undetected in the washing water disinfected with "84" disinfectant. These results suggest that US-UV-LEDs have better application potential than acidic household sanitizers, but chlorine sanitizer remains the most effective disinfecting method.


Subject(s)
Disinfection , Escherichia coli O157 , Ultraviolet Rays , Disinfection/methods , Escherichia coli O157/drug effects , Salmonella typhimurium/drug effects , Ultrasonic Waves , Food Microbiology , Lactuca/microbiology , Solanum lycopersicum/microbiology , Sonication
13.
Ultrason Sonochem ; 107: 106936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834000

ABSTRACT

This study focuses on developing a water-in-oil-in-water (W1/O/W2) double emulsion system using high-intensity ultrasound (HIU)-treated pea protein isolate (HIU-PPI) and pectin to encapsulate Lactobacillus plantarum (L. plantarum). The effects of ultrasound treatment on pea protein isolate (PPI) characteristics such as solubility, particle size, emulsification, surface hydrophobicity, and surface free sulfhydryl group were examined, determining optimal HIU processing conditions was 400 W for 10 min. The developed W1/O/W2 double emulsion system based on HIU-PPI demonstrated effective encapsulation and protection of L. plantarum, especially at the HIU-PPI concentration of 4 %, achieving an encapsulation efficiency of 52.65 %. Incorporating both HIU-PPI and pectin as emulsifiers increased the particle size and significantly enhanced the emulsion's viscosity. The highest bacterial encapsulation efficiency of the emulsion, 59.94 %, was attained at a HIU to pectin concentration ratio of 3:1. These emulsions effectively encapsulate and protect L. plantarum, with the concentration of HIU-PPI being a critical factor in enhancing probiotic survival under simulated gastrointestinal digestion. However, the concurrent utilization of pectin and HIU-PPI as emulsifiers did not provide a notable advantage compared to the exclusive use of HIU-PPI in enhancing probiotic viability during in vitro simulated digestion. This research offers valuable perspectives for the food industry on harnessing environmentally friendly, plant-based proteins as emulsifiers in probiotic delivery systems. It underscores the potential of HIU-modified pea protein and pectin in developing functional food products that promote the health benefits of probiotics.


Subject(s)
Emulsions , Lactobacillus plantarum , Pea Proteins , Pectins , Pea Proteins/chemistry , Pectins/chemistry , Particle Size , Water/chemistry , Ultrasonic Waves , Sonication , Solubility , Probiotics/chemistry , Oils/chemistry , Hydrophobic and Hydrophilic Interactions
14.
Int J Biol Macromol ; 272(Pt 2): 132862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838880

ABSTRACT

In this study, starch nanoparticles (SNPs) were prepared by alternate treatments of liquid nitrogen ball milling and ultrasonication. The impact, shear and friction forces produced by ball milling, and acoustic cavitation and shear effects generated by ultrasonication disrupted starch granules to prepare SNPs. The SNPs possessed narrow particle size distribution (46.91-210.52 nm) and low polydispersity index (0.28-0.45). Additionally, the SNPs exhibited the irregular fragments with good uniformity. The relative crystallinity decreased from 34.91 % (waxy corn starch, WCS) to 0-25.91 % (SNPs), and the absorbance ratios of R1047/1022 decreased from 0.81 (WCS) to 0.60-0.76 (SNPs). The SNPs had lower thermal stability than that of WCS, characterized by a decrease in Td (temperature at maximum weight loss) from 309.39 °C (WCS) to 300.39-305.75 °C (SNPs). Furthermore, the SNPs exhibited excellent swelling power (3.48-28.02 %) and solubility (0.34-0.97 g/g). Notably, oil absorption capacity of the SNPs (9.77-15.67 g/g) was rather greater than that of WCS (1.33 g/g). Furthermore, the SNPs possessed the lower storage modulus (G'), loss modulus (G″) and viscosity than that of WCS. The SNPs with predictable size and high dispersion capability prepared in this study lay a foundation for expanding the application of SNPs.


Subject(s)
Nanoparticles , Particle Size , Starch , Starch/chemistry , Nanoparticles/chemistry , Sonication , Solubility , Temperature , Zea mays/chemistry , Zea mays/genetics
15.
Phys Med Biol ; 69(14)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914104

ABSTRACT

Objective.Pulsed focused ultrasound (FUS) can deliver therapeutics to the brain by using intravenous microbubbles (MBs) to open the blood-brain barrier (BBB). MB emissions indicate treatment outcomes, like BBB opening (harmonics) and damage (broadband). Typically, a pulse repetition frequency (PRF) of 1 Hz is used, but the effect of PRF on MBs is not fully understood. We investigated the effect of PRF on MB activity and tracer delivery.Approach.The effect of PRF (0.125, 0.25, 0.5, 1, and 2 Hz) on MB activity was monitored through harmonic and wideband emissions during FUS sonications of the rat brain at 274.3 kHz. BBB opening was quantified through fluorescence imaging to estimate the concentration of Trypan Blue (TB) dye following a 75-pulse FUS exposure for PRFs of 1 and 0.25 Hz.Main results.At a fixed acoustic pressure, the percentage change in maximum harmonic amplitude compared to the control (PRF = 1 Hz) decreased with increasing PRF, with a median change of 73.8% at 0.125 Hz and -38.3% at 2 Hz. There was no difference in the pressure threshold for broadband emissions between PRFs of 0.25 and 1 Hz. PRF = 0.25 Hz, led to a 68.2% increase in the mean concentration of TB measured after FUS, with a 53.9% increase in the mean harmonic sum, compared with PRF = 1 Hz. Harmonic emissions-based control at PRF = 0.25 Hz yielded similar TB delivery, with less damage at histology, compared with 1 Hz.Significance.For a fixed number of FUS pulses, reducing the PRF was shown to increase the magnitude of harmonic emissions and TB delivery, but not the threshold for broadband emissions. While further research is necessary to understand the mechanisms involved, these results may be useful to improve clinical safety margins and sensitivity to detecting small harmonic signals from cavitating MBs.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Microbubbles , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Animals , Rats , Ultrasonic Waves , Rats, Sprague-Dawley , Male , Sonication/methods
16.
Food Microbiol ; 122: 104563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839237

ABSTRACT

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Subject(s)
Fermentation , Gene Expression Profiling , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/genetics , Hydrogen-Ion Concentration , Transcriptome , Sonication , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
17.
Food Res Int ; 188: 114477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823839

ABSTRACT

The extensive utilization in food industry of pea protein is often impeded by its low water solubility, resulting in poor functional properties. Various methods, including pH-shifting (PS), ultrasonication (US), high-pressure micro-fluidization (MF), pH-shifting combined with ultrasonication (PS-US), and pH-shifting with micro-fluidization (PS-MF), were utilized to modify pea protein isolate (PPI) in order to enhance its functionality in emulsion formulation. The physicochemical properties and structural changes of the protein were investigated by assessing solubility, particle size, surface charge, protein profile, surface hydrophobicity, free sulfhydryl groups, and secondary structure content. The extent of modification induced by each treatment method on PPI-stabilized emulsions was compared based on parameters such as adsorbed interfacial protein concentration, particle size, zeta potential, and microstructure of the prepared emulsions. All modification increased the solubility of pea protein in the sequence of PS (4-fold) < MF (7-fold) < US (11-fold) < PS-US (13-fold) < PS-MF (14-fold). For single treatments, proteins dissolved more readily under US, resulting in the most uniform emulsions with small particle. The combined processes of PS-US and PS-MF further improved solubility, decreased emulsions particle size, promoted uniformity of emulsions. PS-US-stabilized emulsions displayed more smaller droplet size, narrower size distribution, and slightly higher stability than those prepared by PS-MF. The relatively higher emulsifying capacity of PPI treated by PS-US than those by PS-MF may be attributed to its higher surface hydrophobicity.


Subject(s)
Emulsions , Hydrophobic and Hydrophilic Interactions , Particle Size , Pea Proteins , Solubility , Emulsions/chemistry , Pea Proteins/chemistry , Hydrogen-Ion Concentration , Pisum sativum/chemistry , Sonication , Protein Structure, Secondary , Food Handling/methods
18.
Food Chem ; 455: 139877, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824726

ABSTRACT

High-intensity ultrasonication is an emerging technology for plant protein isolation and modification. In this study, the potential of temperature-controlled ultrasonication to enhance the recovery of functional proteins from potato trimmings was assessed. Different ultrasound energy levels [2000-40,000 J/g fresh weight (FW)] were applied during protein extraction at pH 9.0. True protein yields after ultrasonication significantly increased (up to 91%) compared to conventional extraction (33%). Microstructural analysis of the extraction residues showed more disrupted cells as ultrasonication time increased. Ultrasound treatments (10,000 and 20,000 J/g FW) increased the protein yield without affecting the foaming and air-water interfacial properties of protein isolates obtained after isoelectric precipitation (pH 4.0). However, proteins obtained after extended ultrasonication (40,000 J/g FW) had significantly slower early-stage adsorption kinetics. This was attributed to ultrasound-induced aggregation of the protease inhibitor fraction. In conclusion, ultrasonication shows potential to help overcome some challenges associated with plant protein extraction.


Subject(s)
Plant Proteins , Solanum tuberosum , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Solanum tuberosum/chemistry , Sonication , Kinetics , Ultrasonics , Hydrogen-Ion Concentration
19.
Ultrason Sonochem ; 108: 106962, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943850

ABSTRACT

Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.


Subject(s)
Decontamination , Meat , Meat/microbiology , Decontamination/methods , Sonication/methods , Ultrasonic Waves
20.
Ultrason Sonochem ; 108: 106958, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889569

ABSTRACT

Fermented skim milk is an ideal food for consumers such as diabetic and obese patients, but its low-fat content affects its texture and viscosity. In this study, we developed an effective pretreatment method for fermented skim milk using low-frequency ultrasound (US), and investigated the molecular mechanism of the corresponding quality improvement. The skim milk samples were treated by optimal ultrasonication conditions (336 W power for 7 min at 3 °C), which improved the viscosity, water-holding capacity, sensory attributes, texture, and microstructure of fermented skim milk (P < 0.05). Further mechanistic analyses revealed that the US treatment enhanced the exposure of fluorescent amino acids within proteins, facilitating the cross-linking between casein and whey. The increased surface hydrophobicity of fermented milk indicates that the US treatment led to the exposure of hydrophobic amino acid residues inside proteins, contributing to the formation of a denser gel network; the average particle size of milk protein was reduced from 24.85 to 18.06 µm, which also contributed to the development of a softer curd texture. This work is the first attempt to explain the effect of a low-frequency ultrasound treatment on the quality of fermented skim milk and discuss the molecular mechanism of its improvement.


Subject(s)
Fermentation , Milk , Milk/chemistry , Animals , Food Handling/methods , Ultrasonic Waves , Sonication , Hydrophobic and Hydrophilic Interactions , Food Quality , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL