Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.039
1.
PLoS One ; 19(5): e0302850, 2024.
Article En | MEDLINE | ID: mdl-38748711

BACKGROUND AND AIM: Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE: The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT: Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS: Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.


Dementia, Vascular , Disease Models, Animal , Hippocampus , Long-Term Potentiation , Lutein , Neuronal Plasticity , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/physiopathology , Rats , Male , Neuronal Plasticity/drug effects , Long-Term Potentiation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Lutein/pharmacology , Lutein/administration & dosage , Lutein/therapeutic use , Memory/drug effects , Rats, Wistar , Spatial Memory/drug effects , Dose-Response Relationship, Drug , Maze Learning/drug effects , Synaptic Transmission/drug effects
2.
Behav Brain Res ; 468: 115039, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38718877

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Brain-Derived Neurotrophic Factor , Depression , Disease Models, Animal , Hippocampus , Olanzapine , Pain Perception , Spatial Memory , Stress, Psychological , Synaptophysin , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Male , Synaptophysin/metabolism , Female , Olanzapine/pharmacology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Rats , Depression/drug therapy , Depression/metabolism , Spatial Memory/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Pain Perception/drug effects , Pain Perception/physiology , Behavior, Animal/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Antipsychotic Agents/pharmacology , Rats, Sprague-Dawley
3.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Article En | MEDLINE | ID: mdl-38783536

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Amphetamine-Related Disorders , Doublecortin Protein , Exosomes , Hippocampus , Mesenchymal Stem Cells , Methamphetamine , Mice, Inbred BALB C , Neurogenesis , Animals , Exosomes/metabolism , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Mice , Methamphetamine/toxicity , Amphetamine-Related Disorders/therapy , Amphetamine-Related Disorders/psychology , Amphetamine-Related Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Cognition/drug effects , Cognition/physiology , Maze Learning/drug effects , Maze Learning/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Nerve Tissue Proteins/metabolism , Central Nervous System Stimulants/toxicity , Spatial Memory/drug effects , Spatial Memory/physiology , Microfilament Proteins/metabolism , Mesenchymal Stem Cell Transplantation/methods , Calcium-Binding Proteins , DNA-Binding Proteins
4.
Physiol Behav ; 281: 114583, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38750806

The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.


Administration, Intranasal , Disease Models, Animal , Frailty , Insulin , Mice, Transgenic , Muscle Strength , Spatial Memory , Animals , Insulin/administration & dosage , Insulin/pharmacology , Muscle Strength/drug effects , Spatial Memory/drug effects , Female , Frailty/drug therapy , Mice , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Alzheimer Disease/drug therapy , Maze Learning/drug effects , Dose-Response Relationship, Drug , Memory Disorders/drug therapy , Amyloid beta-Protein Precursor/genetics , Hand Strength/physiology , Fear/drug effects , Hippocampus/drug effects , Hippocampus/metabolism
5.
Toxicol Appl Pharmacol ; 487: 116953, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705400

INTRODUCTION: Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS: Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3ß, and ß-catenin levels, antioxidant activities, and histopathological changes. RESULTS: BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3ß (GSK3ß) and restored Wnt3 and ß-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION: Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/ß-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.


Alzheimer Disease , Anthocyanins , Benzhydryl Compounds , Cognition , Neuroprotective Agents , Phenols , Rats, Sprague-Dawley , Spatial Memory , Wnt Signaling Pathway , Animals , Phenols/pharmacology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/pharmacology , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Spatial Memory/drug effects , Male , Rats , Wnt Signaling Pathway/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cognition/drug effects , Disease Models, Animal , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
6.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661671

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


LDL-Receptor Related Proteins , Mice, Knockout , Selenium , Spatial Learning , Animals , Mice , Diet , Hippocampus/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Maze Learning/physiology , Maze Learning/drug effects , Memory/physiology , Memory/drug effects , Selenium/administration & dosage , Selenium/deficiency , Selenium/pharmacology , Selenoprotein P/genetics , Selenoprotein P/metabolism , Spatial Learning/physiology , Spatial Learning/drug effects , Spatial Memory/physiology , Spatial Memory/drug effects
7.
Behav Brain Res ; 466: 114978, 2024 May 28.
Article En | MEDLINE | ID: mdl-38582410

PURPOSE: As the elderly population grows, the prevalence of dementia is also rapidly increasing worldwide. Metformin, an antidiabetic drug, has been shown to have ameliorative effects on impaired cognitive functions in experimental models. However, studies have generally used young animals. Additionally, although it has a major role in Alzheimer's disease (AD) and memory, literature information about the effects of metformin on the cholinergic system is limited. In this study, we investigated the effects of metformin on memory in a model of scopolamine-induced memory impairment in aged rats. We also examined the effects of metformin on the cholinergic system, which is very important in cognitive functions. METHODS: Metformin was administered orally to male Wistar rats (20-22 months old) at 100 mg/kg/day for three weeks. Morris water maze (MWM) tests were performed to assess spatial memory. Before the probe test of the MWM test, scopolamine was injected intraperitoneally at a dose of 1 mg/kg. After testing, animals were sacrificed, whole brains were removed, and hippocampus samples were separated for biochemical analysis. RESULTS: Impaired memory associated with scopolamine administration was reversed by metformin. In addition, metformin administration ameliorated scopolamine-induced changes in acetylcholine (ACh) levels, acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and choline acetyltransferase (ChAT) activity. CONCLUSION: Our results show that metformin may have protective effects in a scopolamine-induced memory impairment model in aged animals by improving cholinergic function. Metformin shows promise in preventing dementia with its dual cholinesterase inhibition and ChAT activation effect.


Acetylcholine , Aging , Choline O-Acetyltransferase , Disease Models, Animal , Hippocampus , Memory Disorders , Metformin , Rats, Wistar , Scopolamine , Animals , Metformin/pharmacology , Metformin/administration & dosage , Scopolamine/pharmacology , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Rats , Choline O-Acetyltransferase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Aging/drug effects , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Maze Learning/drug effects , Hypoglycemic Agents/pharmacology , Spatial Memory/drug effects
8.
J Alzheimers Dis ; 99(1): 121-143, 2024.
Article En | MEDLINE | ID: mdl-38640149

Background: Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective: This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-ß (Aß) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods: 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results: Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aß plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions: This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.


Alzheimer Disease , Disease Models, Animal , Memory Disorders , Rats, Wistar , Vanadium Compounds , Animals , Alzheimer Disease/pathology , Alzheimer Disease/chemically induced , Male , Vanadium Compounds/pharmacology , Rats , Memory Disorders/pathology , Memory Disorders/chemically induced , Maze Learning/drug effects , Brain/pathology , Brain/drug effects , Brain/metabolism , Spatial Memory/drug effects , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/drug effects , Plaque, Amyloid/pathology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Administration, Inhalation
9.
Exp Gerontol ; 191: 112442, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38663491

In this study we investigated the potential synergistic effects of moderate interval training (MIT) and lithium on spatial learning and memory. Forty-two male Wistar males were classified into six groups including I: Control, II: 10 mg/kg/day IP lithium (Li10), III: MIT, IV: Li10 + MIT, V: 40 mg/kg/day IP lithium (Li40), and VI: Li40 + MIT. Then, the rats underwent Morris Water Maze (MWM) test to assess their spatial memory and learning ability. Brain-derived neurotrophic factor (BDNF) density was measured by enzyme-linked immunosorbent assay (ELISA), and the expression of PGC1 and SIRT3 were assessed via qRT-PCR. The results show that MIT improves both memory and spatial learning; but lithium alone, does not cause this. Additionally, those exposed to a combination of exercise and lithium also had improved spatial learning and memory. Finally, we observed a positive role of BDNF protein, and PGC1 gene on the effects of exercise and lithium.


Brain-Derived Neurotrophic Factor , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Sirtuin 3 , Spatial Memory , Animals , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , Lithium/pharmacology , Maze Learning/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Rats, Wistar , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuins , Spatial Learning/drug effects , Spatial Memory/drug effects
10.
Phytomedicine ; 129: 155624, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678955

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. Intestinal flora and its metabolism play a significant role in ameliorating central nervous system disorders, including AD, through bidirectional interactions between the gut-brain axis. A naturally occurring alkaloid compound called berberine (BBR) has neuroprotective properties and prevents Aß-induced microglial activation. Additionally, BBR can suppress the synthesis of Aß and decrease BACE1 expression. However, it is still unclear if BBR therapy can alleviate AD by changing the gut flora. PURPOSE: In this study, we examined whether a partial alleviation of AD could be achieved with BBR treatment and the molecular mechanisms involved. METHODS: We did this by analyzing alterations in Aß plaques, neurons, and related neuroinflammation-related markers in the brain and the transcriptome of the mouse brain. The relationship between the intestinal flora of 5xFAD model mice and BBR treatment was investigated using high-throughput sequencing analysis of 16S rRNA from mouse feces. RESULTS: The findings demonstrated that treatment with BBR cleared Aß plaques, alleviated neuroinflammation, and ameliorated spatial memory dysfunction in AD. BBR significantly alleviated intestinal inflammation, decreased intestinal permeability, and could improve intestinal microbiota composition in 5xFAD mice.


Alzheimer Disease , Berberine , Brain-Gut Axis , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Transgenic , Berberine/pharmacology , Alzheimer Disease/drug therapy , Animals , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis/drug effects , Mice , Brain/drug effects , Brain/metabolism , Male , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroprotective Agents/pharmacology , Plaque, Amyloid/drug therapy , Mice, Inbred C57BL , Spatial Memory/drug effects
11.
Eur J Neurosci ; 59(10): 2715-2731, 2024 May.
Article En | MEDLINE | ID: mdl-38494604

In a changing environment, animals must process spatial signals in a flexible manner. The rat hippocampal formation projects directly upon the retrosplenial cortex, with most inputs arising from the dorsal subiculum and terminating in the granular retrosplenial cortex (area 29). The present study examined whether these same projections are required for spatial working memory and what happens when available spatial cues are altered. Consequently, injections of iDREADDs were made into the dorsal subiculum of rats. In a separate control group, GFP-expressing adeno-associated virus was injected into the dorsal subiculum. Both groups received intracerebral infusions within the retrosplenial cortex of clozapine, which in the iDREADDs rats should selectively disrupt the subiculum to retrosplenial projections. When tested on reinforced T-maze alternation, disruption of the subiculum to retrosplenial projections had no evident effect on the performance of those alternation trials when all spatial-cue types remained present and unchanged. However, the same iDREADDs manipulation impaired performance on all three alternation conditions when there was a conflict or selective removal of spatial cues. These findings reveal how the direct projections from the dorsal subiculum to the retrosplenial cortex support the flexible integration of different spatial cue types, helping the animal to adopt the spatial strategy that best meets current environmental demands.


Hippocampus , Rats, Long-Evans , Spatial Memory , Animals , Male , Rats , Spatial Memory/drug effects , Spatial Memory/physiology , Hippocampus/drug effects , Hippocampus/physiology , Cues , Clozapine/pharmacology , Clozapine/analogs & derivatives , Maze Learning/drug effects , Maze Learning/physiology , Neural Pathways/physiology , Neural Pathways/drug effects , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology
12.
J Alzheimers Dis ; 99(s1): S157-S169, 2024.
Article En | MEDLINE | ID: mdl-38489175

Background: The cholinergic neuronal loss in the basal forebrain and increasing brain oxidative stress are one of the main features of the brain suffering from Alzheimer's disease. Marrubium vulgare (M. vulgare), commonly known as 'white horehound,' possesses a variety of valuable properties, such as antioxidative, anti-inflammatory, and antidiabetic activities. Moreover, it possesses neuromodulatory properties that could potentially impact short-term memory functions. Objective: The present study was undertaken to investigate the preventive effects of water M. vulgare extract on working memory, cholinergic neurotransmission, and oxidative stress in rats with scopolamine (Sco)-induced dementia. Methods: Male Wistar rats (200-250 g) were divided into four experimental groups. The plant extract was administered orally for 21 days, and Sco (2 mg/kg) was administered intraperitoneally for 11 consecutive days. The behavioral performance of the animals was evaluated by the T-maze test. The effect of the extract on acetylcholinesterase (AChE) activity and antioxidant status in cortex and hippocampus were also monitored. Results: Our experimental data revealed that treatment with M. vulgare significantly increased the percentage of correct choices of rats with Sco-induced dementia in the T maze test (by 38%, p < 0.05). Additionally, it reduced AChE activity in the hippocampus (by 20%, p < 0.05) and alleviated oxidative stress induced by Sco, particularly in the cortex. Conclusions: M. vulgare water extract demonstrated working memory preserving effect in rats with Sco-induced dementia, AChE inhibitory activity and in vivo antioxidant potential, and deserve further attention.


Marrubium , Maze Learning , Memory, Short-Term , Oxidative Stress , Plant Extracts , Rats, Wistar , Scopolamine , Animals , Oxidative Stress/drug effects , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Maze Learning/drug effects , Memory, Short-Term/drug effects , Rats , Marrubium/chemistry , Acetylcholinesterase/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Spatial Memory/drug effects , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Antioxidants/pharmacology
13.
Eur J Neurosci ; 59(9): 2240-2255, 2024 May.
Article En | MEDLINE | ID: mdl-38258622

Spatial memory encoding depends in part on cholinergic modulation. How acetylcholine supports spatial memory encoding is not well understood. Prior studies indicate that acetylcholine release is correlated with exploration, including epochs of rearing onto hind legs. Here, to test whether elevated cholinergic tone increases the probability of rearing, we tracked rearing frequency and duration while optogenetically modulating the activity of choline acetyltransferase containing (i.e., acetylcholine producing) neurons of the medial septum in rats performing a spatial working memory task (n = 17 rats). The cholinergic neurons were optogenetically inhibited using halorhodopsin for the duration that rats occupied two of the four open arms during the study phase of an 8-arm radial arm maze win-shift task. Comparing rats' behaviour in the two arm types showed that rearing frequency was not changed, but the average duration of rearing epochs became significantly longer. This effect on rearing was observed during optogenetic inhibition but not during sham inhibition or in rats that received infusions of a fluorescent reporter virus (i.e., without halorhodopsin; n = 6 rats). Optogenetic inhibition of cholinergic neurons during the pretrial waiting phase had no significant effect on rearing, indicating a context-specificity of the observed effects. These results are significant in that they indicate that cholinergic neuron activity in the medial septum is correlated with rearing not because it motivates an exploratory state but because it contributes to the processing of information acquired while rearing.


Cholinergic Neurons , Optogenetics , Spatial Memory , Animals , Cholinergic Neurons/physiology , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Spatial Memory/physiology , Spatial Memory/drug effects , Male , Rats , Optogenetics/methods , Rats, Long-Evans , Choline O-Acetyltransferase/metabolism , Choline O-Acetyltransferase/genetics , Acetylcholine/metabolism , Memory, Short-Term/physiology , Memory, Short-Term/drug effects , Maze Learning/physiology , Maze Learning/drug effects
14.
Metab Brain Dis ; 38(2): 613-620, 2023 Feb.
Article En | MEDLINE | ID: mdl-36346500

In hepatic encephalopathy, hyperammonemia (HA) causes cognitive impairment and anxiety by causing neuroinflammation. Ibuprofen and 1,8- cineol have anti-inflammatory and antioxidant properties, respectively. The aim of this study was to evaluate the effects of ibuprofen alone and in combination with 1,8- cineol on anxiety and oxidative stress in a HA rat animal model. For this purpose, 36 rats were divided into six groups (n = 6) including the HA (received intraperitoneally (IP) ammonium acetate 2.5 mg/kg for four week), ibuprofen (induced HA rats that received 15 mg/kg, IP), cineol (induced HA rats that received 5 and 10 mg/kg, IP), Ib + cineol (induced HA rats that received 15 and 10 mg/kg, respectively, IP), and the control groups (received normal saline, IP). Except the HA group, all other groups received the aforementioned treatment for two weeks.. The Morris water maze and elevated plus maze were used to assess cognitive function and anxiety in the animals, respectively. Superoxide dismutase (SOD) activity was measured to evaluate oxidative stress. The mRNA expression levels of interleukin (IL)-6 and IL-1ß was assessed by real-time PCR in the animal's brain. The results showed a significant improvement in spatial memory and anxiety of the Ib group compared to the HA group (P < 0.01), but no significant change was observed in SOD activity (P > 0.05). There was a significant improvement in spatial memory and anxiety as well as a significant increase in SOD activity in the Ib + cineol group (P < 0.01) compared to the HA group. These results indicate that the Ib + cineol, not only improve cognitive function and reduce anxiety, also reduce oxidative stress, therefore, the simultaneous use of these two compounds may be useful in improving HA-induced cognitive disorders and anxiety.


Anxiety , Eucalyptol , Hyperammonemia , Ibuprofen , Spatial Memory , Animals , Rats , Anxiety/drug therapy , Hippocampus/metabolism , Hyperammonemia/metabolism , Ibuprofen/pharmacology , Oxidative Stress , Rats, Wistar , Spatial Memory/drug effects , Superoxide Dismutase/metabolism , Eucalyptol/pharmacology
15.
J Med Chem ; 65(4): 3388-3403, 2022 02 24.
Article En | MEDLINE | ID: mdl-35133171

Histone acetylation is a prominent epigenetic modification linked to the memory loss symptoms associated with neurodegenerative disease. The use of existing histone deacetylase inhibitor (HDACi) drugs for treatment is precluded by their weak blood-brain barrier (BBB) permeability and undesirable toxicity. Here, we address these shortcomings by developing a new class of disulfide-based compounds, inspired by the scaffold of the FDA-approved HDACi romidepsin (FK288). Our findings indicate that our novel compound MJM-1 increases the overall level of histone 3 (H3) acetylation in a prostate cancer cell line. In mice, MJM-1 injected intraperitoneally (i.p.) crossed the BBB and could be detected in the hippocampus, a brain region that mediates memory. Consistent with this finding, we found that the post-training i.p. administration of MJM-1 enhanced hippocampus-dependent spatial memory consolidation in male mice. Therefore, MJM-1 represents a potential lead for further optimization as a therapeutic strategy for ameliorating cognitive deficits in aging and neurodegenerative diseases.


Brain/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Spatial Memory/drug effects , Animals , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacology , Mice , Mice, Inbred BALB C
16.
Stem Cell Reports ; 17(2): 259-275, 2022 02 08.
Article En | MEDLINE | ID: mdl-35063124

Senescent cells are responsible, in part, for tissue decline during aging. Here, we focused on CNS neural precursor cells (NPCs) to ask if this is because senescent cells in stem cell niches impair precursor-mediated tissue maintenance. We demonstrate an aging-dependent accumulation of senescent cells, largely senescent NPCs, within the hippocampal stem cell niche coincident with declining adult neurogenesis. Pharmacological ablation of senescent cells via acute systemic administration of the senolytic drug ABT-263 (Navitoclax) caused a rapid increase in NPC proliferation and neurogenesis. Genetic ablation of senescent cells similarly activated hippocampal NPCs. This acute burst of neurogenesis had long-term effects in middle-aged mice. One month post-ABT-263, adult-born hippocampal neuron numbers increased and hippocampus-dependent spatial memory was enhanced. These data support a model where senescent niche cells negatively influence neighboring non-senescent NPCs during aging, and ablation of these senescent cells partially restores neurogenesis and hippocampus-dependent cognition.


Cellular Senescence/physiology , Neural Stem Cells/metabolism , Stem Cell Niche/physiology , Aging , Aniline Compounds/pharmacology , Animals , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Female , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neurogenesis/drug effects , Spatial Memory/drug effects , Sulfonamides/pharmacology
17.
Acta Neuropathol Commun ; 10(1): 11, 2022 01 29.
Article En | MEDLINE | ID: mdl-35093182

Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.


Adenosine A3 Receptor Agonists/pharmacology , Antineoplastic Agents/adverse effects , Chemotherapy-Related Cognitive Impairment/drug therapy , Cisplatin/adverse effects , Receptor, Adenosine A3/metabolism , Spatial Memory/drug effects , Adenosine A3 Receptor Agonists/therapeutic use , Animals , Female , Male , Mice , Motor Activity/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Pain/metabolism
18.
Brain Res Bull ; 178: 120-130, 2022 01.
Article En | MEDLINE | ID: mdl-34838642

In addition to motor dysfunction, cognitive impairments have been reported to occur in patients with early-stage Parkinson's disease (PD). In this study, we examined a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This treatment led to the degeneration of nigrostriatal dopaminergic neurons in mice, a phenomenon that is consistent with previous studies. Besides, spatial memory and object recognition of MPTP-treated mice were impaired, as denoted by the Morris water maze (MWM) and novel object recognition (NOR) tests, respectively. Moreover, hippocampal synaptic plasticity (long-term potentiation and depotentiation) and the levels of synaptic proteins in hippocampus were decreased after MPTP treatment. We also found that MPTP resulted in the microglial activation and an inflammatory response in the striatum and hippocampus. Mammalian asparagine endopeptidase (AEP), a cysteine lysosomal protease, is involved in the cleavage and activation of Toll-like receptors (TLRs). The deletion of AEP can inhibit TLR4 in a mouse model of Alzheimer's disease, and TLR4 is upregulated in PD, inducing microglial activation and inflammation. We found that AEP deletion provided greater resistance to the toxic effects of MPTP. AEP knockout ameliorated the cognition and the synaptic plasticity defects in the hippocampus. Furthermore, AEP deletion decreased the expression of TLR4 and reduced microglial activation and the levels of several proinflammatory cytokines. Thus, we suggest that AEP plays a role in the inflammation induced by MPTP, and TLR4 might also involve in this process. AEP deletion could be a possible treatment strategy for the cognitive deficits of PD.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cognitive Dysfunction/chemically induced , Cysteine Endopeptidases/metabolism , Dopamine Agents/pharmacology , Dopaminergic Neurons/drug effects , MPTP Poisoning , Neuroinflammatory Diseases/chemically induced , Neuronal Plasticity/drug effects , Toll-Like Receptor 4/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Mice , Mice, Knockout , Recognition, Psychology/drug effects , Spatial Learning/drug effects , Spatial Memory/drug effects
19.
Behav Brain Res ; 417: 113619, 2022 01 24.
Article En | MEDLINE | ID: mdl-34619248

In previous research, we found that chronic-intermittent ethanol administration (CIEA), a model of binge drinking, impaired emotional memory in mice, and this impairment was counteracted by the anti-inflammatory drug indomethacin. In the present study, we evaluated the effects of CIEA on spatial memory and cognitive flexibility in adolescent mice of both sexes. Animals were randomly assigned to one of four groups for each sex: SS (saline + saline), SA (saline + alcohol), SI (saline + indomethacin), and AI (alcohol + indomethacin). They were injected with saline, ethanol (3 g/kg) or indomethacin (10 mg/kg) for the first three days of each week, throughout three weeks. 96 h after treatment, subjects learnt a standard water maze task on five consecutive days (4-day training and 1-day probe trial). One day later, mice underwent a reversal task for evaluating spatial cognitive flexibility. Animals receiving alcohol (SA and AI groups) did not differ from controls (SS groups) during the standard task, but animals treated with indomethacin performed better than controls, both in the acquisition trials and the probe trial. During the reversal task, no significant differences between alcohol groups and controls were observed, but the indomethacin group showed significant lower escape latencies than controls. No sex differences were found in either task. In conclusion, binge drinking does not impair spatial memory or spatial cognitive flexibility, while the anti-inflammatory indomethacin improves both, showing that the effects of alcohol and indomethacin on spatial memory (dependent on hippocampus) are different to those they exert on emotional memory (dependent on amygdala).


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binge Drinking/psychology , Cognition/drug effects , Indomethacin/pharmacology , Maze Learning/drug effects , Spatial Memory/drug effects , Animals , Ethanol/pharmacology , Female , Male , Mice
20.
Neurotoxicology ; 88: 36-43, 2022 01.
Article En | MEDLINE | ID: mdl-34718059

BACKGROUND: Maternal substance use and its long-term effect on the neurocognitive functions of children is a global public health issue. Despite an increase in substance use in rural areas of low to middle-income countries, research is limited in these populations. OBJECTIVE: We have therefore explored the effect of maternal drinking and smoking behaviors on the neurocognitive functioning of rural school children. METHOD: A cross-sectional analysis on the determinants of current, past and gestational maternal alcohol use and gestational smoking on child neurocognitive functions was conducted on school-children (N = 482), embedded within the child health agricultural cohort (CapSA) study across seven schools in rural Western Cape, South Africa. Standardised neurocognitive assessment tools included the Cambridge Automated Neuropsychological Battery (CANTAB) and the KIDSCREEN-10 to measure health-related quality of life via a child questionnaire. Maternal smoking and drinking behaviour were captured using a parent/guardian questionnaire. RESULTS: Of the 482 parents/guardians who completed the survey, 29 % reported current drinking 27 % reported past drinking and 10 % reported maternal gestational drinking, while 31 % reported gestational smoking. Significant associations were observed between past and current maternal drinking and child's reduced rapid visual processing accuracy in attention [ß:-0.03; 95 % confidence interval (CI): -0.05;-0.004] and between maternal drinking during pregnancy and reduced child's spatial working memory (ß: -0.59; CI: -1.02; -0.15). Heavy (>5 cigarettes per day) gestational smoking was associated with lowered child's learning in memory (ß:-1.69; 95 % CI: -3.05; -0.33) and lower health-related quality of life (ß: -3.41; CI: -6.64; -0.17). The odds of a child repeating a grade were 1.69 (CI: 2.81-1.02) for those exposed to maternal gestational smoking and 1.68 (CI: 3.31-0.85) for those exposed to maternal gestational drinking compared to those who were not exposed. CONCLUSION: The consistent negative associations across all four maternal substance use proxies, six neurocognitive health outcomes and one health symptom is suggestive of adverse health effects, warranting longitudinal follow-up. Health policies to eliminate gestational substance use are recommended.


Alcohol Drinking/adverse effects , Child Development/drug effects , Neurocognitive Disorders/etiology , Pregnancy Complications/psychology , Prenatal Exposure Delayed Effects/etiology , Smoking/adverse effects , Adolescent , Child , Cross-Sectional Studies , Female , Humans , Male , Pregnancy , South Africa/epidemiology , Spatial Memory/drug effects
...