Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74.699
1.
Food Res Int ; 188: 114325, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823824

In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.


Catechol Oxidase , Molecular Docking Simulation , Molecular Dynamics Simulation , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Spectrometry, Fluorescence , Kinetics , Electricity , Agaricales/enzymology , Catechols/chemistry , Catechols/metabolism
2.
Luminescence ; 39(6): e4797, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837846

The study's objective is to establish an eco-friendly, sensitive and economical quantitative methodology for the concurrent analysis of donepezil HCl (DPZ) and trazodone HCl (TRZ) in raw materials, tablets and human plasma. The first derivative synchronous fluorescence spectroscopic (FDSFS) technique was applied at constant wavelength difference (∆λ = 120) for assessment of DPZ and TRZ at each other's zero-crossing point at 279 nm and 297 nm, respectively. The submitted technique was validated in accordance with ICH Q2 R1 guidelines and the linearity of the standard calibration curve was observed over the concentration range of 10-500 ng/ml for DPZ and 20-1,000 ng/ml for TRZ. The detection limits (LOD) were found to be 2.65 and 5.4 ng/ml, and the limits of quantitation (LOQ) were 8.05 and 16.3 ng/ml for DPZ and TRZ, respectively. This technique was used further to quantify the studied medications in their laboratory-prepared mixtures, commercial tablets and spiked plasma samples. The results obtained were not significantly different from those acquired from the comparison methods, indicating the high accuracy and precision of the proposed method. Furthermore, the ecological friendliness of the suggested method was evaluated and proven to be excellent using Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) evaluation tools.


Donepezil , Micelles , Spectrometry, Fluorescence , Tablets , Trazodone , Humans , Trazodone/blood , Trazodone/analysis , Donepezil/blood , Donepezil/chemistry , Limit of Detection
3.
Mikrochim Acta ; 191(7): 366, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833071

Aristolochic acids (AAs), which are a group of nitrophenanthrene carboxylic acids formed by Aristolochia plant, have become an increasing serious threat to humans due to their nephrotoxicity and carcinogenicity. Fast and accurate approaches capable of simultaneous sensing of aristolochic acids (I-IV) are vital to avoid intake of such compounds. In this research, the novel ratiometric fluorescence zinc metal-organic framework and its nanowire have been prepared. The two different coordination modes (tetrahedral configuration and twisted triangular bipyramidal configuration) within zinc metal-organic framework lead to the significant double emissions. The ratiometric fluorescence approach based on nanowire provides a broader concentration range (3.00 × 10-7~1.00 × 10-4 M) and lower limit of detection (3.70 × 10-8 M) than that based on zinc metal-organic framework (1.00 × 10-6~1.00 × 10-4 M, 5.91 × 10-7 M). The RSDs of the results are in the range 1.4-3.5% (nanowire). The density functional theory calculations and UV-Vis absorption verify that the sensing mechanism is due to charge transfer and energy transfer. Excellent spiked recoveries for AAs(I-IV) in soil and water support that nanowire is competent to simultaneously detect these targets in real samples, and the proposed approach has potential as a fluorescence sensing platform for the simultaneous detection of AAs (I-IV) in complex systems.


Aristolochic Acids , Limit of Detection , Metal-Organic Frameworks , Nanowires , Aristolochic Acids/analysis , Aristolochic Acids/chemistry , Metal-Organic Frameworks/chemistry , Nanowires/chemistry , Zinc/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Luminescent Measurements/methods , Fluorescent Dyes/chemistry
4.
Luminescence ; 39(6): e4792, 2024 Jun.
Article En | MEDLINE | ID: mdl-38845344

Favipiravir (FVP) is an oral antiviral drug approved in 2021 for the treatment of COVID-19. It is a pyrazine derivative that can be integrated into anti-viral RNA products to inhibit viral replication. While, adenine is a purine nucleobase that is found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) to generate genetic information. For the first time, the binding mechanism between FVP and adenine was determined using different techniques, including UV-visible spectrophotometry, spectrofluorimetry, synchronous fluorescence (SF) spectroscopy, Fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET), and metal ion complexation. The fluorescence spectra indicated that FVP is bound to adenine via Van der Waals forces and hydrogen bonding through a spontaneous binding process (ΔGο < 0). The quenching mechanism was found to be static. Various temperature settings were used to investigate thermodynamic characteristics, such as binding forces, binding constants, and the number of binding sites. The reaction parameters, including the enthalpy change (ΔHο) and entropy change (ΔSο), were calculated using Van't Hoff's equation. The findings demonstrated that the adenine-FVP binding was endothermic. Furthermore, the results of the experiments revealed that some metal ions (K+, Ca+2, Co+2, Cu+2, and Al+3) might facilitate the binding interaction between FVP and adenine. Slight changes are observed in the FTIR spectra of adenine, indicating the binding interaction between adenine and FVP. This study may be useful in understanding the pharmacokinetic characteristics of FVP and how the drug binds to adenine to prevent any side effects.


Adenine Nucleotides , Amides , Antiviral Agents , Pyrazines , Thermodynamics , Pyrazines/chemistry , Pyrazines/metabolism , Amides/chemistry , Amides/metabolism , Adenine Nucleotides/chemistry , Adenine Nucleotides/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Spectroscopy, Fourier Transform Infrared , Spectrometry, Fluorescence , Fluorescence Resonance Energy Transfer , Spectrophotometry, Ultraviolet , Binding Sites , Adenine/chemistry , Adenine/metabolism
5.
Anal Chim Acta ; 1306: 342581, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692785

Cancer detection is still a major challenge in public health. Identification of oncogene is the first step toward solving this problem. Studies have revealed that various cancers are associated with miRNA expression. Therefore, the sensitive detection of miRNA is substantially important to solve the cancer problem. In this study, let-7a, a representative substance of miRNA, was selected as the detection target. With the assistance of magnetic beads commonly used in biosensors and self-synthesized graphene oxide materials, specificity and sensitivity detection of the target gene let-7a were achieved via protease-free signal amplification. The limit of detection (LOD) was as low as 15.015pM. The fluorescence signal intensity showed a good linear relationship with the logarithm of let-7a concentration. The biosensor could also detect let-7a in complex human serum samples. Overall, this fluorescent biosensor is not only simple to operate, but also strongly specificity to detect let-7a. Therefore, it has substantial potential for application in the early diagnosis of clinical medicine and biological research.


Biosensing Techniques , Graphite , Limit of Detection , MicroRNAs , Biosensing Techniques/methods , Humans , Graphite/chemistry , MicroRNAs/analysis , MicroRNAs/blood , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Neoplasms/diagnosis , Neoplasms/blood
6.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692787

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Colorimetry , Oxidation-Reduction , Sarcosine , Smartphone , Sarcosine/urine , Sarcosine/analysis , Sarcosine/chemistry , Humans , Nanostructures/chemistry , Limit of Detection , Spectrometry, Fluorescence , Prostatic Neoplasms/diagnosis , Fluorescence , Biosensing Techniques , Sarcosine Oxidase/chemistry
7.
Luminescence ; 39(5): e4743, 2024 May.
Article En | MEDLINE | ID: mdl-38692854

A unique luminescent lanthanide metal-organic framework (LnMOF)-based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M-1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern-Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 µM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.


Metal-Organic Frameworks , Oxytetracycline , Terbium , Oxytetracycline/analysis , Oxytetracycline/chemistry , Terbium/chemistry , Metal-Organic Frameworks/chemistry , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection , Water/chemistry , Fluorescence , Water Pollutants, Chemical/analysis
8.
Luminescence ; 39(5): e4752, 2024 May.
Article En | MEDLINE | ID: mdl-38697778

Prucalopride (PCD), is a modern medication approved by the United States in 2018 to alleviate constipation caused by motility issues. PCD demonstrates a strong affinity and selectivity toward the 5-HT4 receptor. The study here introduces a feasible, direct, non-extractive, and affordable pathway for PCD analytical tracking. The fluorimetric study is based on the on-off effect on the emission amplitude of fluorone-based dye (pyrosin B). In a one-pot experiment, the complex between PCD and pyrosin B is formed instantly in an acidic medium. Correlation between decreased pyrosin B emission and PCD concentrations provides a linear calibration plot from 50 to 900 ng/mL. PCD-dye complex system affecting variables were meticulously tuned. The values of the estimated limit of quantitation and limit of detection for the current methodology were 47.5 and 15.7 ng/mL, respectively. Conformity of the strategy validity was achieved by a comprehensive study of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use criteria. The method was convincingly applied for PCD assay in tablets and content uniformity investigation. Furthermore, PCD tracking in the spiked biological fluid was applied. Finally, the method uses distilled water as dispersing medium which rise accommodation with the green chemistry principle.


Benzofurans , Fluorescent Dyes , Benzofurans/chemistry , Benzofurans/analysis , Fluorescent Dyes/chemistry , Humans , Spectrometry, Fluorescence , Molecular Structure , Limit of Detection
9.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709340

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Fluorescent Dyes , Limit of Detection , Salmonella typhimurium , Silicon Dioxide , Salmonella typhimurium/isolation & purification , Silicon Dioxide/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Lead/chemistry , Point-of-Care Systems , Sulfides/chemistry , Magnetite Nanoparticles/chemistry , Humans
10.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709371

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Fluorescent Dyes , Gold , Metal Nanoparticles , Potassium , Serum Albumin, Bovine , Valinomycin , Gold/chemistry , Valinomycin/chemistry , Potassium/analysis , Potassium/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Animals , Hydrophobic and Hydrophilic Interactions , Cattle
11.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704412

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
12.
Mikrochim Acta ; 191(6): 310, 2024 05 08.
Article En | MEDLINE | ID: mdl-38714566

A ratiometric fluorescence sensor has been established based on dual-excitation carbon dots (D-CDs) for the detection of flavonoids (morin is chosen as the typical detecting model for flavonoids). D-CDs were prepared using microwave radiation with o-phenylenediamine and melamine and exhibit controllable dual-excitation behavior through the regulation of their concentration. Remarkably, the short-wavelength excitation of D-CDs can be quenched by morin owing to the inner filter effect, while the long-wavelength excitation remains insensitive, serving as the reference signal. This contributes to the successful design of an excitation-based ratiometric sensor. Based on the distinct and differentiated variation of excitation intensity, morin can be determined from 0.156 to 110 µM with a low detection limit of 0.156 µM. In addition, an intelligent and visually lateral flow sensing device is developed for the determination  of morin content in real samples with satisfying recoveries, which indicates the potential application for human health monitoring.


Carbon , Flavonoids , Limit of Detection , Nitrogen , Printing, Three-Dimensional , Quantum Dots , Spectrometry, Fluorescence , Flavonoids/analysis , Flavonoids/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Nitrogen/chemistry , Fluorescent Dyes/chemistry , Humans , Flavones
13.
Anal Chim Acta ; 1307: 342642, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719399

BACKGROUND: Similar to hypochlorous acid (HClO), hypobromous acid (HBrO) is one of the most notable reactive oxygen species (ROS). Overexpression of HBrO is linked to various diseases causing organ and tissue loss. Due to HBrO's role in the oxidation of micropollutants, real-time monitoring of HBrO in water-based systems is essential. Tetraphenylethylene (TPE)-based organic aggregation-induced emission luminophores (AIEgens) are an emerging category of fluorescent probe materials that have attracted considerable attentions. However, AIE probes are rarely applied to detect HBrO. Developing faster, more precise, and more sensitive AIE probes is thus crucial for detecting biological and environmental HBrO. RESULTS: A small molecule fluorescent probe 4-(1,2,2-triphenylvinyl)benzamidoxime (SWJT-21) was synthesized for the sensitive and selective detection of hypobromous acid (HBrO) based on aggregation-induced emission (AIE). The amidoxime unit of SWJT-21 would undergo an oxidation reaction with HBrO, leading to a structure differentiation between the probe and the product, and therefore the turn-on fluorescence by the AIE effect. The probe could recognize hypobromous acid rapidly (less than 3 s) in high aqueous phase (99 % water) with a turn-on fluorescence response. It was determined that the limit of detection for HBrO was 5.47 nM. Moreover, SWJT-21 demonstrates potential as a test strip for the detection of HBrO. SWJT-21 was also successfully used for the monitoring of HBrO in water samples and for the detection of endogenous/exogenous HBrO in living cells and zebrafish. SIGNIFICANCE: A special AIE fluorescence turn-on probe SWJT-21 based on tetraphenylethylene was designed for detecting HBrO in the environmental and biological systems. This probe has an extremely low detection limit of 5.47 nM and is able to detect HBrO in 99 % aqueous phase in less than 3 s.


Bromates , Fluorescent Dyes , Stilbenes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Bromates/analysis , Bromates/chemistry , Stilbenes/chemistry , Animals , Humans , Zebrafish , Spectrometry, Fluorescence , Limit of Detection , Molecular Structure
14.
Luminescence ; 39(5): e4738, 2024 May.
Article En | MEDLINE | ID: mdl-38719576

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV-vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10-200 µg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the 'Analytical GREEnness (AGREE)' scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.


Azetidinecarboxylic Acid , Carbon , Dihydropyridines , Quantum Dots , Spectrometry, Fluorescence , Dihydropyridines/analysis , Dihydropyridines/chemistry , Carbon/chemistry , Azetidinecarboxylic Acid/analysis , Azetidinecarboxylic Acid/analogs & derivatives , Azetidinecarboxylic Acid/chemistry , Quantum Dots/chemistry , Green Chemistry Technology , Tablets/analysis , Fluorescent Dyes/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Molecular Structure
15.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Article En | MEDLINE | ID: mdl-38748375

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Carbon , Dopamine , Fluorescent Dyes , Limit of Detection , Molecularly Imprinted Polymers , Nifedipine , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Nifedipine/chemistry , Nifedipine/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Dopamine/urine , Dopamine/analysis , Carbon/chemistry , Spectrometry, Fluorescence/methods , Humans , Polymerization , Molecular Imprinting , Tablets/analysis
16.
Anal Chim Acta ; 1308: 342659, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740459

BACKGROUND: Kanamycin is an antibiotic that can easily cause adverse side effects if used improperly. Due to the extremely low concentrations of kanamycin in food, quantitative detection of kanamycin becomes a challenge. As one of the DNA self-assembly strategies, entropy-driven strand displacement reaction (EDSDR) does not require enzymes or hairpins to participate in the reaction, which greatly reduces the instability of detection results. Therefore, it is a very beneficial attempt to construct a highly sensitive and specific fluorescence detection method based on EDSDR that can detect kanamycin easily and quickly while ensuring that the results are effective and stable. RESULTS: We created an enzyme-free fluorescent aptamer sensor with high specificity and sensitivity for detecting kanamycin in milk by taking advantage of EDSDR and the high specific binding between the target and its aptamer. The specific binding can result in the release of the promoter chain, which then sets off the pre-planned EDSDR cycle. Fluorescent label modification on DNA combined with the fluorescence quenching-recovery mechanism gives the sensor impressive fluorescence response capabilities. The research results showed that within the concentration range of 0.1 nM-50 nM, there was a good relationship between the fluorescence intensity of the solution and the concentration of kanamycin. Specificity experiments and actual sample detection experiments confirmed that the biosensor could achieve highly sensitive and specific detection of trace amounts of kanamycin in food, with a detection limit of 0.053 nM (S/N = 3). SIGNIFICANCE: To our knowledge, this is the first strategy to combine EDSDR with fluorescence to detect kanamycin in food. Accurate results can be obtained in as little as 90 min with no enzymes or hairpins involved in the reaction. Furthermore, our enzyme-free biosensing method is straightforward, highly sensitive, and extremely specific. It has many possible applications, including monitoring antibiotic residues and food safety.


Aptamers, Nucleotide , Biosensing Techniques , Entropy , Fluorescent Dyes , Kanamycin , Milk , Kanamycin/analysis , Kanamycin/chemistry , Aptamers, Nucleotide/chemistry , Milk/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Spectrometry, Fluorescence , Limit of Detection , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Food Contamination/analysis
17.
Anal Chim Acta ; 1308: 342660, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740460

BACKGROUND: The research on cysteine (Cys) determination is deemed as a hot topic, since it has been reported to be connected with various physiological processes and disease prediction. However, existing Cys-responding probes may expose some defects such as long reaction time, disappointing photostability, and suboptimal sensitivity. Under such a circumstance, our team has proposed an efficient fluorescent probe with novel sensing mechanism to perfectly cope with the above-mentioned drawbacks. RESULTS: A novel cascade reaction-based probe 9-(2,2-dicyanovinyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-yl acrylate (DPQA) has been synthesized for the first time. Undergoing addition-cleavage and cyclization-rearrangement processes, DPQA reacts with Cys to generate an iminocoumarin product with relucent green fluorescence, namely 11-imino-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carbonitrile (IMC-J), and the relative fluorescence quantum yield (Φf) soars from 0.007 to 0.793. Utilizing such a mechanism, DPQA shows a superb turn-on signal (172-fold), low detection limit (4.1 nM), and wide detection range (5-6000 nM) toward Cys detection. Encouraged by the admirable sensing performance of DPQA, bioimaging of endogenous Cys has been attempted in HeLa cells with satisfactory results. Moreover, cell model of H2O2-induced oxidative stress has been established and the Cys fluctuation during this process has been inspected, elucidating how living cells confront with the eruption of reactive oxygen species (ROS) storm. SIGNIFICANCE: The probe DPQA with such an intriguing cascade responding process for Cys detection has been endowed with many merits, such as fast reaction and superior sensitivity, conducive to improving responsiveness and rendering it more suitable for further applications. Thereby, we expect that the DPQA would be an efficient tool for detecting Cys fluctuation in living cells of different physiological processes.


Cysteine , Fluorescent Dyes , Cysteine/analysis , Cysteine/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , HeLa Cells , Spectrometry, Fluorescence , Molecular Structure , Limit of Detection
18.
Luminescence ; 39(5): e4774, 2024 May.
Article En | MEDLINE | ID: mdl-38757441

One of the most common features of many different clinical conditions is pain; hence, there is a crucial need for eliminating or reducing it to a tolerable level to retrieve physical, psychological and social functioning. A first derivative synchronous spectrofluorimetry technique is proposed for the simultaneous determination of celecoxib and tramadol HCl, a recent coformulation authorized for treating acute pain in adults. The method includes using synchronous spectrofluorimetry at ∆λ = 80 nm where tramadol HCl was determined using first derivative technique at λ = 230.2 nm, while celecoxib was determined at λ = 288.24 nm. The proposed method was successfully applied to their co-formulated dosage forms in addition to spiked human plasma and validated in agreement with the guidelines of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH). The linear ranges were found to be 0.50-5.0 and 0.15-0.50, the limits of detection to be 0.088 and 0.011 and the limits of quantification to be 0.266 and 0.032 µg/ml for celecoxib and tramadol, respectively. Statistical analysis revealed no significant difference when compared with previously reported methods as evidenced by the values of the variance ratio F-test and Student t-test. The proposed method was successfully applied to commercial dosage forms and spiked human samples. Moreover, the greenness of the proposed method was investigated based on the analytical eco-scale approach, with the results showing an excellent green scale with a score of 95.


Celecoxib , Spectrometry, Fluorescence , Tramadol , Celecoxib/blood , Celecoxib/analysis , Tramadol/blood , Tramadol/analysis , Humans , Spectrometry, Fluorescence/methods , Tablets
19.
Luminescence ; 39(5): e4773, 2024 May.
Article En | MEDLINE | ID: mdl-38757733

Two Schiff base probes (S1 and S2) were prepared and synthesized by incorporating thienopyrimidine into salicylaldehyde or 3-ethoxysalicylaldehyde individually, with the aim of detecting Ga3+ and Pd2+ sequentially. Upon chelation with Ga3+, S1 and S2 exhibited fluorescence enhancement in DMSO/H2O buffer. Both S1-Ga3+ and S2-Ga3+ were quenched by Pd2+. The limit of detection for S1 in response to Ga3+ and Pd2+ was 2.86 × 10-7 and 4.4 × 10-9 M, respectively. For S2, the limit of detection for Ga3+ and Pd2+ was 4.15 × 10-8 and 3.0 × 10-9 M, respectively. Furthermore, the complexation ratios of both S1 and S2 with Ga3+ and Pd2+ were determined to be 1:2 through Job's plots, ESI-MS analysis, and theoretical calculations. Two molecular logic gates were constructed, leveraging the response behaviors of S1 and S2. Moreover, the potential utility of S1 and S2 for monitoring Ga3+ and Pd2+ in domestic water was verified.


Fluorescent Dyes , Gallium , Palladium , Pyrimidines , Schiff Bases , Schiff Bases/chemistry , Palladium/chemistry , Pyrimidines/chemistry , Pyrimidines/analysis , Gallium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Molecular Structure
20.
Food Res Int ; 183: 114175, 2024 May.
Article En | MEDLINE | ID: mdl-38760120

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Furaldehyde , Lactose , Maillard Reaction , Milk , Polysaccharides , Powders , Lactose/chemistry , Polysaccharides/chemistry , Milk/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , beta-Galactosidase/metabolism , beta-Cyclodextrins/chemistry , Hydrolysis , Spray Drying , Temperature , Lysine/chemistry , Lysine/analogs & derivatives , Solubility , Spectrometry, Fluorescence , Milk Proteins/chemistry , Food Handling/methods
...