Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.335
Filter
1.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095148

ABSTRACT

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Subject(s)
Carbon , Fluorescent Dyes , Mercury , Quantum Dots , Water Pollutants, Chemical , Mercury/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Environmental Monitoring/methods , Spectrometry, Fluorescence/methods , Limit of Detection , Fluorescence
2.
J Biomed Opt ; 29(9): 097001, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39224540

ABSTRACT

Significance: Although the depth detection limit of fluorescence objects in tissue has been studied, reports with a model including noise statistics for designing the optimum measurement configuration are missing. We demonstrate a variance analysis of the depth detection limit toward clinical applications such as noninvasively assessing the risk of aspiration. Aim: It is essential to analyze how the depth detection limit of the fluorescence object in a strong scattering medium depends on the measurement configuration to optimize the configuration. We aim to evaluate the depth detection limit from theoretical analysis and phantom experiments and discuss the source-detector distance that maximizes this limit. Approach: Experiments for detecting a fluorescent object in a biological tissue-mimicking phantom of ground beef with background emission were conducted using continuous wave fluorescence measurements with a point source-detector scheme. The results were analyzed using a model based on the photon diffusion equations. Then, variance analysis of the signal fluctuation was introduced. Results: The model explained the measured fluorescence intensities and their fluctuations well. The variance analysis showed that the depth detection limit in the presence of ambient light increased with the decrease in the source-detector distance, and the optimum distance was in the range of 10 to 15 mm. The depth detection limit was found to be ∼ 30 mm with this optimum distance for the phantom. Conclusions: The presented analysis provides a guide for the optimum design of the measurement configuration for detecting fluorescence objects in clinical applications.


Subject(s)
Phantoms, Imaging , Animals , Cattle , Limit of Detection , Spectrometry, Fluorescence/methods , Optical Imaging/methods
3.
Methods Enzymol ; 702: 51-74, 2024.
Article in English | MEDLINE | ID: mdl-39155120

ABSTRACT

S-adenosylmethionine (SAM) is most widely known as the biological methylating agent of methyltransferases and for generation of radicals by the iron-sulfur dependent Radical SAM enzymes. SAM also serves as a substrate in biosynthetic reactions that harvest the aminobutyrate moiety of the methionine, producing methylthioadenosine as a co-product. These reactions are found in the production of polyamines such as spermine, siderophores derived from nicotianamine, and opine metallophores staphylopine and pseudopaline, among others. This procedure defines a highly sensitive, continuous fluorescence assay for the determination of steady state kinetic parameters for enzymes that generate the co-product methylthioadenosine.


Subject(s)
Enzyme Assays , S-Adenosylmethionine , Enzyme Assays/methods , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/chemistry , Kinetics , Spectrometry, Fluorescence/methods , Alkyl and Aryl Transferases
4.
Mikrochim Acta ; 191(9): 531, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134877

ABSTRACT

Tetracycline (TC) has been widely used in clinical medicine and animal growth promotion due to its broad-spectrum antibacterial properties and affordable prices. Unfortunately, the high toxicity and difficult degradation rate of TC molecules make them easy to accumulate in the environment, which breaks the ecological balance and seriously threatens human health. Rapid and accurate detection of TC residue levels is important for ensuring water quality and food safety. Recently, fluorescence detection technology of TC residues has developed rapidly. Lanthanide nanomaterials, based on the high luminescence properties of lanthanide ions and the high matching with TC energy levels, are favored in the real-time trace detection of TC due to their advantages of high sensitivity, rapidity, and high selectivity. Therefore, they are considered potential substitutes for traditional detection methods. This review summarizes the synthesis strategy, TC response mechanism, removal mechanism, and applications in intelligent sensing. Finally, the development of lanthanide nanomaterials for TC fluorescence detection and removal is reasonably summarized and prospected. This review provides a reference for the establishment of a method for the accurate determination of TC content in complex food matrices.


Subject(s)
Fluorescent Dyes , Lanthanoid Series Elements , Tetracycline , Lanthanoid Series Elements/chemistry , Tetracycline/analysis , Tetracycline/chemistry , Fluorescent Dyes/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Humans , Spectrometry, Fluorescence/methods , Food Contamination/analysis
5.
Sci Rep ; 14(1): 18694, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134599

ABSTRACT

Guaifenesin (GUA) is determined in dosage forms and plasma using two methods. The spectrofluorimetric technique relies on the measurement of native fluorescence intensity at 302 nm upon excitation wavelength "223 nm". The method was validated according to ICH and FDA guidelines. A concentration range of 0.1-1.1 µg/mL was used, with limit of detection (LOD) and quantification (LOQ) values 0.03 and 0.08 µg/mL, respectively. This method was used to measure GUA in tablets and plasma, with %recovery of 100.44% ± 0.037 and 101.03% ± 0.751. Furthermore, multivariate chemometric-assisted spectrophotometric methods are used for the determination of GUA, paracetamol (PARA), oxomemazine (OXO), and sodium benzoate (SB) in their lab mixtures. The concentration ranges of 2.0-10.0, 4.0-16.0, 2.0-10.0, and 3.0-10.0 µg/mL for OXO, GUA, PARA, and SB; respectively, were used. LOD and LOQ were 0.33, 0.68, 0.28, and 0.29 µg/mL, and 1.00, 2.06, 0.84, and 0.87 µg/mL for PARA, GUA, OXO, and SB. For the suppository application, the partial least square (PLS) model was used with %recovery 98.49% ± 0.5, 98.51% ± 0.64, 100.21% ± 0.36 & 98.13% ± 0.51, although the multivariate curve resolution alternating least-squares (MCR-ALS) model was used with %recovery 101.39 ± 0.45, 99.19 ± 0.2, 100.24 ± 0.12, and 98.61 ± 0.32 for OXO, GUA, PARA, and SB. Analytical Eco-scale and Analytical Greenness Assessment were used to assess the greenness level of our techniques.


Subject(s)
Guaifenesin , Limit of Detection , Spectrometry, Fluorescence , Guaifenesin/analysis , Guaifenesin/administration & dosage , Humans , Spectrometry, Fluorescence/methods , Tablets , Green Chemistry Technology/methods
6.
Anal Chim Acta ; 1320: 343016, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142787

ABSTRACT

BACKGROUND: Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications. Herein, for the first time, a novel label-free field-applicable spectrofluorimetric nanobiosensor was developed for direct TATP detection using a novel activated-protein protected gold nanocluster (ABSA-AuNCs; QY = 28.3 %) synthesized by a combined protein-assisted-ultrasonication procedure. RESULTS: The ABSA-AuNCs revealed a fluorescence spectrum centered at 330.0 nm which was significantly quenched by TATP (binding constant = 154.06 M-1; ΔG = -12.5 kJ mol-1; E(%) = 88.5 %). This phenomenon was used as a basis for direct TATP quantification, providing a working range of 0.01-40.0 mg L-1 and a detection limit of 6.7 µg L-1 which is the lowest LOD provided for TATP detection up to now. A %RSD of 0.9 % and 1.56 % was obtained for repeatability and inter-day reproducibility, respectively. The selectivity was checked against a variety of camouflages, revealing ultra-selectivity. Several synthetic samples prepared by several camouflages and real samples (clay soil and real water media) were analyzed, revealing quantitative recoveries of TATP. SIGNIFICANCE: During the production of the notorious explosive TATP, it can be discharged into water and soil. This novel method eliminated the false-positive results of traditional methods and is applicable for direct quantitative detection of camouflaged TATP and its residues in real soil and water samples in a highly short response time (2 min). The camouflaged TATP analysis is important for tracking the terrorist attacks in field conditions and analysis of soil and water can provide a first indication of the location of the production site.


Subject(s)
Explosive Agents , Gold , Heterocyclic Compounds, 1-Ring , Metal Nanoparticles , Peroxides , Spectrometry, Fluorescence , Spectrometry, Fluorescence/methods , Explosive Agents/analysis , Heterocyclic Compounds, 1-Ring/chemistry , Metal Nanoparticles/chemistry , Peroxides/analysis , Peroxides/chemistry , Gold/chemistry , Limit of Detection , Biosensing Techniques/methods
7.
PLoS One ; 19(8): e0308084, 2024.
Article in English | MEDLINE | ID: mdl-39150912

ABSTRACT

Fluorescence-based oligonucleotide probes have a great importance in research of molecular interactions. Molecular beacons (MBs) are special case of fluorescent probes that form a stem-loop shape, bringing together a fluorophore and quencher, thus emitting fluorescence only when hybridized to a complementary target. Here we describe a new method for the quantitation of MB hybridization based on the measurement of changes in free energy instead of the fluorescence intensity. The MB energy state can be measured by micro-fluorescence detection. The approach allowed to determine hybridization energy of the MB with target nucleotide directly from fluorescence spectra and distinguish the MB in unfolded and hybridized states. Moreover, the method enabled us to discriminate between DNA duplexes with perfect complementarity or a single-nucleotide mismatch, based on the first direct experimental prove of enthalpy-entropy compensation.


Subject(s)
Nucleic Acid Hybridization , Nucleic Acid Hybridization/methods , Fluorescent Dyes/chemistry , DNA/analysis , DNA/chemistry , Thermodynamics , Oligonucleotide Probes/chemistry , Oligonucleotide Probes/genetics , Spectrometry, Fluorescence/methods
8.
Sci Rep ; 14(1): 19068, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39154101

ABSTRACT

Herein we have reported a fluorescent probe (MB-M) based on MB derivative for Cu2+ ions detection. The probe was well characterized by 1H NMR, 13C NMR and HR-MS spectrum. Probe MB-M showed naked-eyes recognition to Cu2+ as color change from colorless to indigo. The probe exhibited promising features such as high fluorescence and UV-vis selectivity, fast response (5 mint), workable at pH 2-7, and low limit of detection (LOD = 0.33 µM). Probe MB-M was also used for Cu2+ ions imaging in HepG-2 cells and detection in daily life (Test Strip and lake water). Moreover, non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analysis were used to study the interaction between MB-M and Cu2+ ions. By examining the electronic characteristics of the complex using natural bond orbital (NBO), electron density difference (EDD), and frontier molecular orbital (FMO) analysis, the sensitivity of MB-M towards Cu2+ ions were investigated. The results illustrated that the interactions between MB-M and Cu2+ ions involved chemisorption.


Subject(s)
Copper , Fluorescent Dyes , Copper/analysis , Copper/chemistry , Fluorescent Dyes/chemistry , Humans , Hep G2 Cells , Optical Imaging/methods , Ions , Spectrometry, Fluorescence/methods , Limit of Detection
9.
Anal Methods ; 16(33): 5642-5651, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39113546

ABSTRACT

Bisphenol A is a fluorophoric platform that is used to develop chemosensors for various species. Herein, we report a bisphenol A based Schiff-base molecule, 4,4'-(propane-2,2-diyl)bis(2-((E)-((2-hydroxy-5-methylphenyl)imino)methyl)phenol) (Me-H4L), as a selective chemosensor for Al3+. Among the several metal ions, it shows a significant increment in its fluorescence intensity (50 fold) at 535 nm in the presence of Al3+ ions. The enhanced fluorescence was attributed to the CHEFF mechanism and inhibition of CN isomerization. The limit of detection value of Me-H4L for Al3+ was determined to be 9.65 µM. Its quantum yield and lifetime increased considerably in the presence of the cation. Some theoretical calculations were performed to explain the interaction between Al3+ and the probe. Furthermore, Me-H4L was applied in cell imaging studies using animal cells and plant roots.


Subject(s)
Aluminum , Benzhydryl Compounds , Fluorescent Dyes , Phenols , Plant Roots , Phenols/chemistry , Phenols/analysis , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Aluminum/analysis , Aluminum/chemistry , Plant Roots/chemistry , Fluorescent Dyes/chemistry , Animals , Schiff Bases/chemistry , Humans , Optical Imaging/methods , Spectrometry, Fluorescence/methods , Limit of Detection
10.
Biosens Bioelectron ; 264: 116641, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39167885

ABSTRACT

Rapid and accurate diagnosis of tuberculosis (TB) is of great significance to control the spread of this devastating infectious disease. In this work, a sensitive and low-cost point-of-care testing (POCT) detection platform for TB was developed based on recombinase polymerase amplification (RPA)-catalytic hairpin assembly (CHA)-assisted dual signal amplification strategy. This platform could achieve homogeneous fluorescent and visual diagnosis of TB by using CdTe quantum dots (QDs) signal reporter. In the presence of target DNA (IS1081 gene fragment), RPA amplicons blocked by short oligonucleotide strands could trigger CHA signal amplification, leading to the Ag+ releasing from C-Ag+-C structure and the fluorescence quenching of CdTe QDs by the released Ag+. Furthermore, the detection performance of CdTe QDs modified by 3-mercaptopropionic acid (MPA) or thiomalic acid (TMA) (MPA-capped QDs and TMA-capped QDs) was systematically compared. Experimental results demonstrated that TMA-capped QDs exhibited better detection sensitivity due to their stronger interaction with Ag+. The limits of detection (LODs) of fluorescence and visual analysis were as low as 0.13 amol L-1 and 0.33 amol L-1. This method was successfully applied to the clinical sputum samples from 36 TB patients and 20 healthy individuals, and its quantitative results were highly consistent with those obtained by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The proposed approach has the advantages of high sensitivity and specificity, simple operation and low cost, and is expected to be applied in clinical TB screening and diagnosis.


Subject(s)
Biosensing Techniques , Colorimetry , Limit of Detection , Nucleic Acid Amplification Techniques , Quantum Dots , Tuberculosis , Quantum Dots/chemistry , Humans , Biosensing Techniques/methods , Colorimetry/methods , Tuberculosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Tellurium/chemistry , Cadmium Compounds/chemistry , Point-of-Care Systems , Silver/chemistry , Spectrometry, Fluorescence/methods , Point-of-Care Testing , Fluorescence
11.
Talanta ; 279: 126608, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094530

ABSTRACT

The presence of fluoroquinolones (FQs) residues in food and the environment has prompted concerns regarding food safety and public health. Consequently, it is of great significance to analyze the types and levels of FQs present. However, the majority of studies have concentrated on the specific detection of individual FQs, with a notable absence of high-throughput and rapid analysis methods for the simultaneous detection of multiple FQs that may coexist in food and the environment. Hereon, a triple-channel sensor array was successfully constructed utilizing fluorescent carbon dots (TA-CDs), with the assistance of Cu2+ and Fe3+, for the qualitative discrimination and quantitative detection of eight types of FQs. The sensor array can distinguish between different concentrations of FQs and various mixtures of FQs, as well as 100 % accuracy in the discrimination of unknown samples. Impressively, the sensor platform can quantitatively detect FQs in animal-derived foods, such as honey, milk, eggs, and pork, as well as in water samples. This research has the potential to be extended to other analytes with similar chemical structures or properties.


Subject(s)
Carbon , Fluorescent Dyes , Fluoroquinolones , Milk , Quantum Dots , Carbon/chemistry , Fluoroquinolones/analysis , Quantum Dots/chemistry , Animals , Milk/chemistry , Fluorescent Dyes/chemistry , Food Contamination/analysis , Honey/analysis , Spectrometry, Fluorescence/methods , Copper/chemistry , Copper/analysis , Eggs/analysis , Limit of Detection , Swine
12.
Mikrochim Acta ; 191(8): 505, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39097544

ABSTRACT

A novel and sensitive fluorescence ratiometric method is developed for urea detection based  on the pH-sensitive response of two fluorescent carbon dot (CD) systems: R-CDs/methyl red (MR) and NIR-CDs/Cu2+. The sensing mechanism involves breaking down urea using the enzyme urease, releasing ammonia and increasing pH. At higher pH, the fluorescence of NIR-CDs is quenched due to the enhanced interaction with Cu2+, while the fluorescence of R-CDs is restored as the acidic MR converts to its basic form, removing the inner filter effect. The ratiometric signal (F608/F750) of the R-CDs/MR and NIR-CDs/Cu2+ intensities changed in response to the pH induced by urea hydrolysis, enabling selective and sensitive urea detection. Detailed spectroscopic and morphological investigations confirmed the fluorescence probe design and elucidated the sensing mechanism. The method exhibited excellent sensitivity (0.00028 mM LOD) and linearity range (0.001 - 8.0 mM) for urea detection, with successful application in milk samples for monitoring adulteration, demonstrating negligible interference and high recovery levels (96.5% to 101.0%). This ratiometric fluorescence approach offers a robust strategy for selective urea sensing in complicated matrices.


Subject(s)
Carbon , Copper , Fluorescent Dyes , Limit of Detection , Quantum Dots , Spectrometry, Fluorescence , Urea , Urease , Urea/analysis , Urea/chemistry , Urease/chemistry , Copper/chemistry , Carbon/chemistry , Hydrogen-Ion Concentration , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , Milk/chemistry , Azo Compounds/chemistry , Food Contamination/analysis
13.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126026

ABSTRACT

Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.


Subject(s)
Melanins , Melanoma , Spectrometry, Fluorescence , Humans , Hypoxia/metabolism , Melanins/metabolism , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Spectrometry, Fluorescence/methods
14.
Biosens Bioelectron ; 263: 116606, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089190

ABSTRACT

The pH of human sweat is highly related with a variety of diseases, whereas the monitoring of sweat pH still remains challenging for ordinary families. In this study, we developed a novel dual-emission Tb-MOF using DPA as the ligand and further designed and constructed a skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. With the increased concentration of H+, the interaction of H+ with carbonyl organic ligand leads to the collapse of the Tb-MOF crystal structure, resulting in the interruption of antenna effect, and correspondingly increasing the emission of the ligand at 380 nm and decreasing the emission of the central ion Tb3+ at 544 nm. This Tb-MOF nanoprobe has a good linear response in the pH range of 4.12-7.05 (R2 = 0.9914) with excellent anti-interference ability. Based on the merits of fast pH response and high sensitivity, the nanoprobe was further used to prepare flexible wearable sensor. The wearable sensor can detect pH in the linear range of 3.50-6.70, which covers the pH range of normal human sweat (4.50-6.50). Subsequently, the storage stability and detection accuracy of the sensors were evaluated. Finally, the sensor has been successfully applied for the detection of pH in actual sweat samples from 21 volunteer and the real-time monitoring of pH variation during movement processing. This skin-attachable Tb-MOF sensor, with the advantages of low cost, visible color change and long shelf-life, is appealing for sweat pH monitoring especially for ordinary families.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Metal-Organic Frameworks , Sweat , Terbium , Wearable Electronic Devices , Humans , Sweat/chemistry , Biosensing Techniques/methods , Hydrogen-Ion Concentration , Terbium/chemistry , Metal-Organic Frameworks/chemistry , Fluorescent Dyes/chemistry , Skin/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection
15.
Biosens Bioelectron ; 263: 116621, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098283

ABSTRACT

Constructing label-free bivariate fluorescence biosensor would be intriguing and desired for the recognizable and accurate detection of two specific DNA segments, yet the design of functional DNA structures with low overlapped interference might be challenging. Herein in this work, a double-faced Janus DNA nanoarchitecture (JDNA) with bi-responsive recognition regions on opposite sides was assembled, which consisted of two substrate strands and two template strands for loading green-/red-emissive Ag nanoclusters (gAgNC and rAgNC) as bivariate signaling reporters. Of note, the hybridized double helix in the middle rationally oriented two flank faces and stabilized the rigid conformation of JDNA, while the template sequences of bicolor clusters were blocked to minimize non-specific background leakage. Upon inputting two targets, the discernible hairpins lost their hairpin structures due to forming two dsDNA complexes. They were executed to simultaneously invade JDNA for activating two individual target-recycled strand displacement (TRSD) events, guiding signal transduction and efficient amplification. Consequently, the clustering templates were unlocked via the tailored conformation switch of JDNA, in which gAgNC and rAgNC were in situ synthesized in two diagonal positions, thereby significantly emitting bi-responsive signal without cross interference. Benefited from the logic integration of double-faced JDNA and TRSD, a label-free, sensitive and specific bivariate fluorescence approach was developed, which would open a new avenue for the potential application in biosensing and bioanalysis.


Subject(s)
Biosensing Techniques , DNA , Metal Nanoparticles , Silver , Biosensing Techniques/methods , Silver/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Humans , Spectrometry, Fluorescence/methods , Nanostructures/chemistry , Nucleic Acid Hybridization , Limit of Detection , Fluorescence , Fluorescent Dyes/chemistry
16.
J Hazard Mater ; 477: 135364, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39111178

ABSTRACT

The development of a fluorescent probe for pyriproxyfen (PPF) is crucial due to its potential threat to human health. However, the chemical inertness and low solubility of PPF present significant challenges for the detection of PPF in aqueous solutions using fluorescent probes. Herein, we have originally proposed a complex based on 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4 H-chromen-4-one (HOF) and serum albumin (SA) as a dual-mode fluorescent probe, HOF@SA. This probe utilizes an indicator displacement assay (IDA) to release the dye HOF from the probe at low PPF concentrations (< 10 µM) and embeds the free dye HOF into the micelle of PPF at high concentrations (> 10 µM). This results in dual-mode fluorescent response characteristics for PPF: a turn-off response at low concentrations and a ratiometric response at high concentrations. An investigation of sensing behavior of HOF@SA for PPF detection exhibits rapid response (< 60 s), high sensitivity (LOD ∼4.7 ppb), high selectivity, and excellent visual detection capability (from cyan to yellow). Moreover, with the aid of a portable device, this method enables to analyze PPF in environmental and food samples. These results promote the advancement of a fluorescent probe approach for PPF analysis in environment and food.


Subject(s)
Fluorescent Dyes , Food Contamination , Pyridines , Fluorescent Dyes/chemistry , Pyridines/chemistry , Pyridines/analysis , Food Contamination/analysis , Serum Albumin/analysis , Spectrometry, Fluorescence/methods , Limit of Detection , Environmental Monitoring/methods
17.
Methods Appl Fluoresc ; 12(4)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39111331

ABSTRACT

Detection of autofluorescence parameters is a useful approach to gain insight into the physiological state of plants and algae, but the effect of reabsorption hinders unambiguous interpretation ofin vivodata. The exceptional morphological features ofNitellopsis obtusamade it possible to measure autofluorescence spectra along single internodal cells and estimate relative changes in autofluorescence intensity in selected spectral regions at room temperatures, avoiding the problems associated with thick or optically dense samples. The response of algal cells to controlled white light and DCMU herbicide was analyzed by monitoring changes in peak FL intensity at 680 nm and in F680/F750 ratio. Determining the association between the selected spectral FL parameters revealed an exponential relationship, which provides a quantitative description of photoinduced changes. The ability to discern the effect of DCMU not only in the autofluorescence spectra of dark-adapted cells, but also in the case of light-adapted cells, and even after certain doses of excess light, suggests that the proposed autofluorescence analysis ofN. obtusamay be useful for detecting external stressors in the field.


Subject(s)
Light , Stress, Physiological/physiology , Spectrometry, Fluorescence/methods , Fluorescence , Herbicides/toxicity
18.
Luminescence ; 39(9): e4882, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39192838

ABSTRACT

Aspartame is an artificial sweetener used in drinks and many foods. International Agency for Research on Cancer classified aspartame as possibly carcinogenic to humans (IARC Group 2B). In this study, a sensitive and selective spectrofluorimetric method was developed to detect aspartame. The method is based on switching on the fluorescence activity of aspartame upon its condensation with O-phthalaldehyde (Roth's reaction) in the presence of 2-mercaptoethanol. The reaction product was detected fluorometrically at λem of 438 nm after λex of 340 nm. All reaction conditions required to yield the optimal fluorescence intensity were observed and investigated. Furthermore, the approach was validated according to ICH guidelines. Upon plotting the concentrations of aspartame against their associated fluorescence intensity values, the relationship between the two variables was linear within the range of 0.5-3.0 µg/mL. Furthermore, the method was employed to analyze the quantity of aspartame in commercial packages and soft drinks with an acceptable level of recovery. In addition, the Green Solvents Selecting Tool, Complementary Green Analytical Procedure Index, and the Analytical Greenness Metric tool were used to evaluate the sustainability and the greenness of the developed methodology.


Subject(s)
Aspartame , Carbonated Beverages , Spectrometry, Fluorescence , Sweetening Agents , Tablets , Aspartame/analysis , Sweetening Agents/analysis , Spectrometry, Fluorescence/methods , Tablets/analysis , Carbonated Beverages/analysis , o-Phthalaldehyde/chemistry , Green Chemistry Technology , Mercaptoethanol/chemistry
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124886, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39089069

ABSTRACT

Mercury, one of the various harmful metals, is particularly significant in affecting aquatic organisms, currently gaining more attentions and sparking discussions. In response to the limitations of traditional detections, fluorescent probes have emerged as a promising solution with some advantages, such as weaker background interference, shorter processing time, higher accuracy. Thus, a novel fluorescent probe, FS-Hg-1, has been developed for assessing mercury ion (Hg2+) concentrations in aquatic products. This probe displays specific recognition of mercury ions in fluorescence spectra. Notably, FS-Hg-1 exhibits a distinct color change to pink when combined with Hg2+ (with a 948-fold increase in absorption at 568 nm) and a substantial fluorescence change towards Hg2+ (361-fold increase, excitation at 562 nm, emission at 594 nm) in N, N-dimethylformamide. The probe boasts a detection limit of 0.14 µM and rapid reaction with Hg2+ within 10 s, showing an excellent linear correlation with [Hg2+] in the range of 0 to 10 µM. Through thorough analysis using FS-Hg-1, the results align with those from the standard method (P > 0.05), with spiked recovery rates ranging from 108.4% to 113.2%. With its precise recognition, low detection limit, and remarkable sensitivity, this fluorescent assay proves effective in mercury concentration determination in aquatic samples without interference. The potential of FS-Hg-1 is promising for speedy detection of residual Hg2+ and holds significance in ensuring food safety.


Subject(s)
Fluorescent Dyes , Limit of Detection , Mercury , Rhodamines , Spectrometry, Fluorescence , Water Pollutants, Chemical , Mercury/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Rhodamines/chemistry , Water Pollutants, Chemical/analysis , Animals
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124915, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39096672

ABSTRACT

The development of innovative multi-emission sensors for the rapid and accurate detection of contaminants is both vital and challenging. In this study, utilizing two rigid ligands (H3ICA and H4BTEC), a series of water-stable bimetallic organic frameworks (EuTb-MOFs) were synthesized. Luminescent investigations have revealed that EuTb-MOF-1 exhibits prominent multiple emission peaks, attributed to the distinctive fluorescence characteristics of Eu(III) and Tb(III) ions. Therefore, EuTb-MOF-1 efficiently recognized various metal ions and pharmaceutical compounds through 2D decoded maps. Fe3+ and Pb2+ exhibited significant quenching effects on the luminescence of EuTb-MOF-1, which were attributed to the internal filtering effect and the interaction between Lewis basic sites within EuTb-MOF-1 and Pb2+ ions, respectively. Furthermore, EuTb-MOF-1 demonstrated high sensitivity to sulfonamide antibiotics, with detection limits of 0.037 µM for SMZ and 0.041 µM for SDZ, respectively. In addition, EuTb-MOF-1 was immobilized to prepare MOF-based test strips, enabling direct visual detection of sulfonamides as a portable sensor. With excellent water stability, multi-responsive recognition capabilities, and high sensitivity to specific analytes, EuTb-MOF-1 is a promising candidate for environmental contaminant detection in aquatic systems.


Subject(s)
Metal-Organic Frameworks , Water , Metal-Organic Frameworks/chemistry , Water/chemistry , Water/analysis , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Luminescent Measurements/methods , Limit of Detection , Metals/chemistry , Metals/analysis , Lanthanoid Series Elements/chemistry , Ions/analysis , Luminescence , Spectrometry, Fluorescence/methods , Sulfonamides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL