Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.210
Filter
1.
PLoS One ; 19(7): e0303479, 2024.
Article in English | MEDLINE | ID: mdl-38959270

ABSTRACT

Numerous studies confirm the involvement of extracellular vesicles (EVs) in the regulation of physiological processes of mammalian sperm cells. It has been proven that they take part in the processes of capacitation, acrosonmal reaction, and anti-oxidation. Despite growing interest in the biomedical potential (including the search for new reproductive biomarkers) of EVs, the role of extracellular seminal vesicles in maintaining semen quality during cryopreservation has not yet been established. Therefore, the objective of this experiment was to evaluate the effectiveness of the use in the regulation of the mitochondrial membrane potential of bovine sperm and to explain the mechanisms of EV action during cell cryopreservation. Exosomes were isolated from bull semen plasma, measured, and used for extender supplementation. Semen samples were collected from Simmental bulls, diluted, and pre-evaluated. Then they were divided into equal fractions that did not contain EVs or were supplemented with 0.75; 1.5 and 2.25 mg/ml of EVs. The test samples were frozen/thawed and the mitochondrial membrane potential, DNA integrity, and viability were evaluated. EVs have been established to have a positive effect on cryopreserved sperm structures. The most favourable level of EVs was 1.5 mg / ml, which can be successfully to improve cell cryostability during freezing/thawing. In this study, exosomes isolated from the sperm plasma and supplemented with a concentrated dose in the extender for sperm freezing were shown to significantly improve cryostability of cells by supporting the potentials of the mitochondrial membrane and protecting the cytoplasmic membrane of spermatozoa.


Subject(s)
Cryopreservation , Exosomes , Membrane Potential, Mitochondrial , Semen Preservation , Spermatozoa , Male , Animals , Spermatozoa/physiology , Spermatozoa/metabolism , Exosomes/metabolism , Cryopreservation/methods , Cattle , Semen Preservation/methods , Semen Preservation/veterinary , Semen Analysis , Freezing , Cell Survival
2.
Open Vet J ; 14(5): 1191-1198, 2024 May.
Article in English | MEDLINE | ID: mdl-38938440

ABSTRACT

Background: The intracytoplasmic sperm injection (ICSI) technique has low efficiency in cattle. This has mainly been attributed to the oocyte activation failure due to oocyte and/or sperm factors. Aim: Our aim was to evaluate the effect of conventional ICSI and Piezo-ICSI with bull or human sperm on bovine oocyte activation and embryo development and to assess its relationship with the phospholipase C zeta (PLCɀ) activity of both species. Methods: In vitro matured bovine oocytes were randomly divided into five groups and were fertilized as follows: conventional ICSI using bovine sperm with chemical activation (control), conventional ICSI using bovine sperm, Piezo-ICSI using bovine sperm, conventional ICSI using human sperm, and Piezo-ICSI using human sperm. PLCɀ activity was determined in bull and human sperm samples. Results: Within the groups using bull sperm, the oocytes fertilized by conventional ICSI had the lowest values of 2 pronuclei (PN) formation and cleavage, Piezo-ICSI increased both percentages and ICSI + chemical activation presented the highest 2 PN, cleavage, and blastocyst rates (p < 0.05). Within the groups using human sperm, the oocytes fertilized by Piezo-ICSI presented higher 2 PN and cleavage rates than those activated by conventional ICSI (p < 0.05). Piezo-ICSI with human sperm increased bovine oocyte activation as much as conventional ICSI + chemical activation with bovine sperm (p < 0.05). Higher values of PLCɀ activity were found in human sperm compared with bovine sperm (p < 0.05). Conclusion: Our results suggest that the higher stability of the bovine sperm in combination with its relatively low content of PLCɀ impairs bovine oocyte activation after ICSI.


Subject(s)
Oocytes , Sperm Injections, Intracytoplasmic , Spermatozoa , Cattle , Sperm Injections, Intracytoplasmic/veterinary , Male , Animals , Humans , Oocytes/physiology , Spermatozoa/physiology , Female , Phosphoinositide Phospholipase C/metabolism
3.
Medicina (Kaunas) ; 60(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929625

ABSTRACT

Infertility is a prevalent global issue affecting approximately 17.5% of adults, with sole male factor contributing to 20-30% of cases. Oxidative stress (OS) is a critical factor in male infertility, disrupting the balance between reactive oxygen species (ROS) and antioxidants. This imbalance detrimentally affects sperm function and viability, ultimately impairing fertility. OS also triggers molecular changes in sperm, including DNA damage, lipid peroxidation, and alterations in protein expression, further compromising sperm functionality and potential fertilization. Diagnostic tools discussed in this review offer insights into OS markers, antioxidant levels, and intracellular ROS concentrations. By accurately assessing these parameters, clinicians can diagnose male infertility more effectively and thus tailor treatment plans to individual patients. Additionally, this review explores various treatment options for males with OS-associated infertility, such as empirical drugs, antioxidants, nanoantioxidants, and lifestyle modifications. By addressing the root causes of male infertility and implementing targeted interventions, clinicians can optimize treatment outcomes and enhance the chances of conception for couples struggling with infertility.


Subject(s)
Antioxidants , Infertility, Male , Oxidative Stress , Humans , Male , Oxidative Stress/physiology , Infertility, Male/etiology , Infertility, Male/diagnosis , Infertility, Male/therapy , Antioxidants/therapeutic use , Reactive Oxygen Species/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology
4.
Sci Rep ; 14(1): 14736, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926593

ABSTRACT

Japanese medaka (Oryzias latipes) has been used as a model organism in different research fields, including reproductive physiology. Sperm motility is the most important marker for male fertility in fish and, thus, reproduction success. However, because of small volume of ejaculate and short motility duration, it is still challenging to manage the sperm collection and analysis in small model fish. In the present study, we aimed to investigate sperm motility and to optimize sperm collection, short-term sperm storage, and cryopreservation in Japanese medaka (Oryzias latipes). Using two different approaches for sperm collection: testes dissection and abdominal massage, different housing conditions and activating the sperm with different activation solutions, we investigated immediate sperm motility. In the second part of this study, we used different osmolalities of immobilization solution, Hank's Balanced Salt Solution (HBSS) for sperm storage at 0, 2 and 3 h after sperm collection. Finally, the sperm were cryopreserved using methanol as cryoprotectant and HBSS as extender at two different osmolalities, and post-thaw sperm motility was investigated. The highest post-activating sperm motility was achieved in the groups activated by the extender at 300 mOsm/kg. The quality of sperm remained unaffected by co-housing with females or with males only. Furthermore, Hanks' Balanced Salt Solution (HBSS) with an osmolality of 600 mOsm/kg demonstrated its efficacy as a suitable extender for sperm storage, preserving motility and progressivity for 3 h. The highest post-thaw motility was around 35%. There were no significant differences between post-thaw motility in different groups. We also found that post-thaw incubation on ice can maintain the motility of the sperm for up to one hour after thawing.


Subject(s)
Cryopreservation , Oryzias , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Oryzias/physiology , Male , Cryopreservation/methods , Spermatozoa/physiology , Semen Preservation/methods , Female , Cryoprotective Agents/pharmacology
5.
Biomolecules ; 14(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927088

ABSTRACT

pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.


Subject(s)
Fertilization , Spermatozoa , Male , Hydrogen-Ion Concentration , Humans , Spermatozoa/metabolism , Spermatozoa/physiology , Animals , Fertilization/physiology , Fertility/physiology , Female , Spermatogenesis/physiology , Homeostasis , Sperm Motility/physiology
6.
PLoS One ; 19(6): e0305280, 2024.
Article in English | MEDLINE | ID: mdl-38865384

ABSTRACT

Preserving boar semen at 5°C instead of the conventional storage temperature of 17°C would enable a reduction of antibiotic use in pig insemination. To protect the chilling-sensitive boar spermatozoa, holding the extended semen at a higher temperature before cooling could be beneficial and facilitate the implementation of the innovative preservation concept in practice, provided that bacterial growth is kept at a low level. The aim of this study was to introduce a holding time (HT) at 17°C before cooling and to examine the effect on sperm quality and bacterial growth compared to the original cooling protocol for antibiotic-free 5°C semen storage. A series of experiments with semen doses from eight boars extended in Androstar® Premium without conventional antibiotics revealed that sperm kinematics and the integrity of sperm plasma membranes and acrosomes were improved with HT between 16 and 24 h followed by delayed cooling with 0.04°C/min when compared to the original protocol for semen preservation at 5°C (p < 0.05). Both a shorter HT of 6 h and a faster cooling rate of 0.07°C/min reduced sperm quality (p < 0.05). The HT for 24 h did not compromise the inhibitory effect on bacterial growth during long-term semen storage at 5°C, not even in semen doses spiked with Serratia marcescens. In conclusion, semen storage at 5°C with the modified cooling protocol improved sperm quality and is antimicrobially efficient. It thus presents a ready-to-use tool for a reduction or replacement of antibiotics in pig insemination.


Subject(s)
Anti-Bacterial Agents , Semen Preservation , Spermatozoa , Animals , Male , Semen Preservation/methods , Semen Preservation/veterinary , Swine , Anti-Bacterial Agents/pharmacology , Spermatozoa/physiology , Semen/microbiology , Semen Analysis , Bacterial Load , Cold Temperature
7.
Reprod Domest Anim ; 59(6): e14648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877771

ABSTRACT

We evaluated the quality and fertilizing ability of frozen-thawed porcine sperm that were selected using a commercially available device (MIGLIS, Menicon Life Science) consisting of three parts: an outer lid, an inner lid, and a tube. Firstly, to determine an adequate concentration of caffeine for separation, frozen-thawed sperm were incubated with different concentrations of caffeine (0, 1, 2.5, 5, and 10 mM) in a MIGLIS device. To determine the appropriate incubation time for separating sperm in the MIGLIS device, frozen-thawed sperm were incubated with 2.5 mM caffeine for 5, 10, 15, or 20 min. To evaluate the fertilization and embryo development of oocytes fertilized with frozen-thawed sperm separated into two regions (outer and inner) in the MIGLIS device, the separated sperm from the three boars was used to fertilize in vitro-matured oocytes and cultured in vitro for 7 days. Sperm quality parameters of sperm collected from the inner tube after incubation with 2.5 mM caffeine were superior to sperm incubated without caffeine. Moreover, sperm collected from the inner tube after incubation for 10 min had a higher progressive motility. The rate of blastocyst produced from spermatozoa collected from the inner tube after incubation with 2.5 mM caffeine for 10 min significantly increased compared to that produced from spermatozoa from the outer tube, regardless of the boar. In conclusion, sperm sorting using the MIGLIS device may be useful for separating high-quality sperm after incubation with 2.5 mM caffeine for 10 min to improve blastocyst formation.


Subject(s)
Caffeine , Cryopreservation , Fertilization in Vitro , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Male , Caffeine/pharmacology , Spermatozoa/drug effects , Spermatozoa/physiology , Fertilization in Vitro/veterinary , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Female , Sperm Motility/drug effects , Swine , Embryonic Development/drug effects , Oocytes/drug effects , Oocytes/physiology , Blastocyst/drug effects , Blastocyst/physiology
8.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38876797

ABSTRACT

Calcium is critical for regulating the waveform of motile cilia and flagella. Calaxin is currently the only known molecule involved in the calcium-dependent regulation in ascidians. We have recently shown that Calaxin stabilizes outer arm dynein (OAD), and the knockout of Calaxin results in primary ciliary dyskinesia phenotypes in vertebrates. However, from the knockout experiments, it was not clear which functions depend on calcium and how Calaxin regulates the waveform. To address this question, here, we generated transgenic zebrafish expressing a mutant E130A-Calaxin deficient in calcium binding. E130A-Calaxin restored the OAD reduction of calaxin -/- sperm and the abnormal movement of calaxin -/- left-right organizer cilia, showing that Calaxin's stabilization of OADs is calcium-independent. In contrast, our quantitative analysis of E130A-Calaxin sperms showed that the calcium-induced asymmetric beating was not restored, linking Calaxin's calcium-binding ability with an asymmetric flagellar beating for the first time. Our data show that Calaxin is a calcium-dependent regulator of the ciliary beating and a calcium-independent OAD stabilizer.


Subject(s)
Animals, Genetically Modified , Calcium , Dyneins , Spermatozoa , Zebrafish Proteins , Zebrafish , Animals , Male , Calcium/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Dyneins/metabolism , Dyneins/genetics , Cilia/metabolism , Flagella/metabolism , Flagella/physiology , Sperm Motility/genetics , Sperm Motility/physiology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics
9.
Reprod Biol Endocrinol ; 22(1): 67, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877490

ABSTRACT

This comprehensive review explores the evolving landscape of sperm selection techniques within the realm of Assisted Reproductive Technology (ART). Our analysis delves into a range of methods from traditional approaches like density gradient centrifugation to advanced techniques such as Magnetic-Activated Cell Sorting (MACS) and Intracytoplasmic Morphologically Selected Sperm Injection (IMSI). We critically assess the efficacy of these methods in terms of sperm motility, morphology, DNA integrity, and other functional attributes, providing a detailed comparison of their clinical outcomes. We highlight the transition from conventional sperm selection methods, which primarily focus on physical characteristics, to more sophisticated techniques that offer a comprehensive evaluation of sperm molecular properties. This shift not only promises enhanced prediction of fertilization success but also has significant implications for improving embryo quality and increasing the chances of live birth. By synthesizing various studies and research papers, we present an in-depth analysis of the predictability of different sperm selection procedures in ART. The review also discusses the clinical applicability of these methods, emphasizing their potential in shaping the future of assisted reproduction. Our findings suggest that the integration of advanced sperm selection strategies in ART could lead to more cost-effective treatments with reduced duration and higher success rates. This review aims to provide clinicians and researchers in reproductive medicine with comprehensive insights into the current state and future prospects of sperm selection technologies in ART.


Subject(s)
Reproductive Techniques, Assisted , Spermatozoa , Male , Humans , Reproductive Techniques, Assisted/trends , Spermatozoa/physiology , Female , Pregnancy , Sperm Injections, Intracytoplasmic/methods , Sperm Injections, Intracytoplasmic/trends , Sperm Motility/physiology , Cell Separation/methods
10.
Vet Med Sci ; 10(4): e1504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879885

ABSTRACT

BACKGROUND: The metabolic impacts of including soya meal, wheat gluten and corn gluten in the diet of male lambs could influence their reproductive performance. OBJECTIVES: An experiment was carried out to assess the effects of corn gluten, wheat gluten and soya meal on the reproductive system of male lambs. METHODS: Twenty-four male Morkaraman lambs, aged 9 months, were utilized in this study and were fed experimental diets for 56 days. The lambs were divided into a control group (soybean meal + safflower meal), a corn group (corn gluten) and a wheat group (wheat gluten). RESULTS: The serum follicle-stimulating hormone level of the control group was significantly higher and tumour necrosis factor-alpha (TNF-α) level was lower than the wheat and corn gluten groups (p < 0.05). The lowest malondialdehyde level in testicular tissue was observed in the control group, whereas the highest was in the wheat gluten group (p < 0.05). The glutathione level in the control group was significantly higher than in the other groups (p < 0.05). The corn gluten group showed the highest CHOP and IRE1 levels; the lowest Bcl-2 levels and the highest IL-1B and P2 × 7R levels were found in the wheat group; and the lowest TNF-α levels were in the control group (p < 0.05). Additionally, the study revealed that diet had a significant impact on spermatological parameters of the testis such as diameter, volume and weight (p < 0.05). CONCLUSIONS: These results concluded that the inclusion of different protein sources in the diet of reproductive male lambs affects the metabolism of testicular tissue.


Subject(s)
Animal Feed , Diet , Endoplasmic Reticulum Stress , Spermatozoa , Testis , Animals , Male , Diet/veterinary , Animal Feed/analysis , Endoplasmic Reticulum Stress/drug effects , Spermatozoa/physiology , Spermatozoa/drug effects , Semen Analysis/veterinary , Sheep, Domestic/physiology , Sheep/physiology , Triticum/chemistry , Animal Nutritional Physiological Phenomena , Zea mays/chemistry , Glycine max/chemistry
11.
Sci Total Environ ; 941: 173763, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38839004

ABSTRACT

In recent years, nanocopper (Cu NPs) has gained attention due to its antimicrobial properties and potential for industrial, agricultural, and consumer applications. But it also has several effects on the aquatic environment. Widespread use of various nanoproducts has raised concerns about impacts of different nanoparticle size on environment and biological objects. Spermatozoa is a model for studying the ecotoxic effects of pollutants on cells and organisms. This study aimed to investigate the effects of different sizes of copper nanoparticles on rainbow trout spermatozoa motility, and to compare their effects with copper ionic solution. Computer assisted sperm analysis (CASA) was used to detect movement parameters at activation of gametes (direct effect) with milieu containing nanocopper of primary particle size of 40-60, 60-80 and 100 nm. The effect of the elements ions was also tested using copper sulfate solution. All products was prepared in concentration of 0, 1, 5, 50, 125, 250, 350, 500, 750, and 1000 mg Cu L-1. Six motility parameters were selected for analysis. The harmful effect of Cu NPS nanoparticle was lower than ionic form of copper but the effect depends on the motility parameters. Ionic form caused complete immobilization (MOT = 0 %, IC100) at 350 mg Cu L-1 whilst Cu NPs solution only decreased the percentage of motile sperm (MOT) up to 76.4 % at highest concentration tested of 1000 mg Cu L-1 of 40-60 nm NPs. Cu NPs of smaller particles size had more deleterious effect than the bigger one particularly in percentage of MOT and for curvilinear velocity (VCL). Moreover, nanoparticles decrease motility duration (MD). This may influence fertility because the first two parameters positively correlate with fertilization rate. However, the ionic form of copper has deleterious effect on the percentage of MOT and linearity (LIN), but in some concentrations it slightly increases VCL and MD.


Subject(s)
Copper , Metal Nanoparticles , Oncorhynchus mykiss , Particle Size , Sperm Motility , Spermatozoa , Water Pollutants, Chemical , Animals , Male , Oncorhynchus mykiss/physiology , Sperm Motility/drug effects , Copper/toxicity , Water Pollutants, Chemical/toxicity , Spermatozoa/drug effects , Spermatozoa/physiology , Metal Nanoparticles/toxicity
12.
Reprod Fertil Dev ; 362024 Jun.
Article in English | MEDLINE | ID: mdl-38870344

ABSTRACT

In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.


Subject(s)
Adenosine Triphosphate , Spermatozoa , Animals , Male , Spermatozoa/metabolism , Spermatozoa/physiology , Adenosine Triphosphate/metabolism , Humans , Acrosome Reaction/physiology , Receptors, Purinergic/metabolism , Signal Transduction , Mammals/physiology , Mice
13.
Nutrients ; 16(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892713

ABSTRACT

Vaginally administered postbiotics derived from Lactobacillus were recently demonstrated to be effective in alleviating bacterial vaginosis and increasing pregnancy rates. However, their potential effect on sperm quality has not been well investigated. This controlled in vitro study aimed to assess the dose- and time-dependent effects of postbiotics derived from Lactobacillus rhamnosus PB01 (DSM 14870) on sperm quality parameters. The experiment was conducted in vitro to eliminate potential confounding factors from the female reproductive tract and vaginal microbiota. Sperm samples from 18 healthy donors were subjected to analysis using Computer-Aided Sperm Analysis (CASA) in various concentrations of postbiotics and control mediums at baseline, 60 min, and 90 min of incubation. Results indicated that lower postbiotic concentration (PB5) did not adversely affect sperm motility, kinematic parameters, sperm DNA fragmentation, and normal morphology at any time. However, concentrations exceeding 15% demonstrated a reduction in progressively motile sperm and a negative correlation with non-progressively motile sperm at all time points. These findings underscore the importance of balancing postbiotic dosage to preserve sperm motility while realizing the postbiotics' vaginal health benefits. Further research is warranted to understand the underlying mechanisms and refine practical applications in reproductive health.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Sperm Motility , Spermatozoa , Lacticaseibacillus rhamnosus/physiology , Humans , Male , Spermatozoa/drug effects , Spermatozoa/physiology , Sperm Motility/drug effects , Adult , Probiotics/pharmacology , Prospective Studies , Female , DNA Fragmentation , Semen Analysis , Vagina/microbiology , Young Adult
14.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894284

ABSTRACT

Male infertility is a global health issue, with 40-50% attributed to sperm abnormalities. The subjectivity and irreproducibility of existing detection methods pose challenges to sperm assessment, making the design of automated semen analysis algorithms crucial for enhancing the reliability of sperm evaluations. This paper proposes a comprehensive sperm tracking algorithm (Sperm YOLOv8E-TrackEVD) that combines an enhanced YOLOv8 small object detection algorithm (SpermYOLOv8-E) with an improved DeepOCSORT tracking algorithm (SpermTrack-EVD) to detect human sperm in a microscopic field of view and track healthy sperm in a sample in a short period effectively. Firstly, we trained the improved YOLOv8 model on the VISEM-Tracking dataset for accurate sperm detection. To enhance the detection of small sperm objects, we introduced an attention mechanism, added a small object detection layer, and integrated the SPDConv and Detect_DyHead modules. Furthermore, we used a new distance metric method and chose IoU loss calculation. Ultimately, we achieved a 1.3% increase in precision, a 1.4% increase in recall rate, and a 2.0% improvement in mAP@0.5:0.95. We applied SpermYOLOv8-E combined with SpermTrack-EVD for sperm tracking. On the VISEM-Tracking dataset, we achieved 74.303% HOTA and 71.167% MOTA. These results show the effectiveness of the designed Sperm YOLOv8E-TrackEVD approach in sperm tracking scenarios.


Subject(s)
Algorithms , Semen Analysis , Spermatozoa , Male , Humans , Spermatozoa/physiology , Spermatozoa/cytology , Semen Analysis/methods , Infertility, Male/diagnosis , Image Processing, Computer-Assisted/methods
15.
Sci Rep ; 14(1): 14287, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38907001

ABSTRACT

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Subject(s)
Acrosome Reaction , Culture Media , Fertilization in Vitro , Sperm Capacitation , Spermatozoa , Animals , Sperm Capacitation/drug effects , Male , Mice , Spermatozoa/drug effects , Spermatozoa/physiology , Spermatozoa/metabolism , Fertilization in Vitro/methods , Female , Acrosome Reaction/drug effects , Sperm Motility/drug effects , Phosphorylation , Fertilization , Embryonic Development/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism
16.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912771

ABSTRACT

Coral reefs are facing a crisis as the frequency of bleaching events caused by ocean warming increases, resulting in the death of corals on reefs around the world. The subsequent loss of genetic diversity and biodiversity can diminish the ability of coral to adapt to the changing climate, so efforts to preserve existing diversity are essential to maximize the resources available for reef restoration now and in the future. The most effective approach to secure genetics long-term is cryopreservation and biobanking, which permits the frozen storage of living samples at cryogenic temperatures in liquid nitrogen indefinitely. Cryopreservation of coral sperm has been possible since 2012, but the seasonal nature of coral reproduction means that biobanking activities are restricted to just a few nights per year when spawning occurs. Improving the efficiency of coral sperm processing and cryopreservation workflows is therefore essential to maximizing these limited biobanking opportunities. To this end, we set out to optimize cryopreservation processing pathways for coral sperm by building on existing technologies and creating a semi-automated approach to streamline the assessment, handling, and cryopreservation of coral sperm. The process, which combines computer-assisted sperm analysis, barcoded cryovials, and a series of linked auto-datasheets for simultaneous editing by multiple users, improves the efficiency of both sample processing and metadata management in the field. Through integration with cross-cutting research programs such as the Reef Restoration and Adaptation Program in Australia, cryopreservation can play a crucial role in large-scale reef restoration programs by facilitating the genetic management of aquaculture populations, supporting research to enhance thermal tolerance, and preventing the extinction of coral species. The described procedures will be utilized for coral cryopreservation and biobanking practitioners on reefs worldwide and will provide a model for the transition of cryopreservation technologies from research laboratories to large-scale applications.


Subject(s)
Anthozoa , Aquaculture , Biological Specimen Banks , Cryopreservation , Spermatozoa , Anthozoa/physiology , Cryopreservation/methods , Animals , Male , Aquaculture/methods , Spermatozoa/physiology , Spermatozoa/cytology , Workflow , Semen Preservation/methods , Coral Reefs
17.
Reprod Domest Anim ; 59(6): e14637, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864674

ABSTRACT

A variety of parameters, including liquefaction and semen viscosity, affect the sperm's ability to travel and reach the egg for fertilization and conception. Given that the details behind the viscosity of the semen in male camels have not yet been fully clarified, the purpose of this study was to ascertain how the addition of papain affected the viscosity of fresh diluted camel semen. The study examined semen samples derived from camels that had distinct viscosities. Sperm motility, viability, abnormal sperm percentage, concentration, viscosity, morphometry, acrosome integrity and liquefaction were among the evaluations following 0, 5, 10, 20 or 30 min of incubation at 37°C with papain (0.004 mg/mL, 0.04 mg/mL or 0.4 mg/mL; a semen sample without papain was used as a control). A statistically significant interaction between the effects of papain concentrations and incubation time was found (F = 41.68, p = .0001). Papain concentrations (p = .0001) and incubation times (p = .0001) both had a statistically significant impact on viscosity, according to a simple main effects analysis. A lower viscosity was found (p < .05) at 0.04 mg/mL (0.1 ± 0.0) after 10 min of incubation. A simple main effects analysis showed that papain concentrations and incubation time have a statistically significant effect on sperm motility (p = .0001). At 0.04 mg/mL papain, the sperm motility % was higher (p < .05) after 10 min (64.4 ± 4.8), 20 min (68.4 ± 6.2), and 30 min incubation (72.2 ± 6.6) compared to 0, 5 min (38.3 ± 4.1 and 51.6 ± 5.0, respectively). In conclusion, the fresh diluted camel semen had the lowest viscosity properties after 10 min of incubation with 0.04 mg/mL papain, without compromising sperm motility, viability, acrosome integrity and sperm morphology.


Subject(s)
Camelus , Papain , Semen Preservation , Semen , Sperm Motility , Animals , Papain/pharmacology , Male , Viscosity , Sperm Motility/drug effects , Semen/drug effects , Semen Preservation/veterinary , Semen Preservation/methods , Semen Analysis/veterinary , Spermatozoa/drug effects , Spermatozoa/physiology , Acrosome/drug effects
18.
Anim Reprod Sci ; 266: 107517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823234

ABSTRACT

Sperm cryopreservation plays an important role in the artificial insemination (AI) industry of small ruminants. It, however the use of frozen-thawed goat semen is limited due to the insufficient number of sperm with good biological functions. Mitochondria are the most sensitive organelles to cryopreservation damage in sperm. This study was conducted to determine the effects of MitoQ, the mitochondrial-targeted antioxidant, in a plant-based extender on the quality parameters of Markhoz goat sperm after the freezing and thawing process. Semen samples were collected and diluted in the extender, divided into five equal aliquots and supplemented with 0, 1, 10, 100 and 1000 nM MitoQ and cryopreserved in liquid nitrogen. After thawing, sperm motility, membrane functionality, abnormal morphology, mitochondrial activity, acrosome integrity, lipid peroxidation (LPO), DNA fragmentation, reactive oxygen species (ROS) concentration, viability and apoptotic-like changes were measured. The use of 10 and 100 nM MitoQ resulted in higher (P≤0.05) total motility (TM), progressive motility (PM), viability, membrane functionality, mitochondrial activity, and acrosome integrity compared to the other groups. On the other hand, LPO, apoptotic-like changes, DNA fragmentation and ROS concentration were lower (P≤0.05) in MQ10 and MQ100 groups compared to the other groups. MitoQ has no effect (P>0.05) on sperm abnormal morphology and velocity parameters. In conclusion, MitoQ can reduce oxidative stress by regulating mitochondrial function during the cryopreservation process of buck sperm and could be an effective additive in the cryopreservation media to protect sperm quality.


Subject(s)
Antioxidants , Cryopreservation , Goats , Mitochondria , Organophosphorus Compounds , Semen Analysis , Semen Preservation , Spermatozoa , Ubiquinone , Animals , Male , Cryopreservation/veterinary , Cryopreservation/methods , Ubiquinone/pharmacology , Ubiquinone/analogs & derivatives , Semen Preservation/veterinary , Semen Preservation/methods , Antioxidants/pharmacology , Organophosphorus Compounds/pharmacology , Mitochondria/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Semen Analysis/veterinary , Cryoprotective Agents/pharmacology , Sperm Motility/drug effects , Reactive Oxygen Species/metabolism
19.
Sci Rep ; 14(1): 14920, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942916

ABSTRACT

Monarch butterfly (Danaus plexippus L.) populations have declined in North America. The International Union for Conservation of Nature (IUCN) recently classified the species as endangered, sparking public concern and conservation efforts. Our approach to conservation is through cryopreservation of germinal cells and tissue. The goal of this study was to develop a cryopreservation protocol for monarch spermatozoa to ensure successful long-term storage. Cryopreserved sperm cells would provide a reserve of monarch germplasm, which could be utilized in the event of population loss. In this study, sperm cell bundles collected from male monarch butterflies were cryopreserved in a cryoprotective medium and stored in liquid nitrogen. To determine the post-cryopreservation sperm cell viability, a subsample of preserved sperm bundles were thawed rapidly, and their viability was qualified using a sperm live/dead stain. We are presenting a protocol to preserve and store genetic material and viable sperm bundles of the monarch butterfly. To date, this is the first report of successful cryopreservation of monarch germplasm which sets the foundation for cryostorage and could be extensible to other vulnerable lepidopterans.


Subject(s)
Butterflies , Conservation of Natural Resources , Cryopreservation , Spermatozoa , Butterflies/physiology , Cryopreservation/methods , Animals , Male , Spermatozoa/physiology , Conservation of Natural Resources/methods , Endangered Species , Cell Survival , Cryoprotective Agents/pharmacology
20.
Acta Vet Hung ; 72(2): 125-132, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900586

ABSTRACT

This study was conducted in two steps to evaluate the influence of freezing methods and natural extracts on cryopreserved ram sperm quality. Initially, the research compared the effects of two freezing methods: liquid nitrogen (LN2) versus -80 °C, on post-thawed ram semen on total and progressive motilities and velocity parameters. Experiment I revealed no significant differences (P > 0.05) between the LN2 and -80 °C freezing methods, indicating similar effects on the analyzed parameters. Experiment II aimed to examine the influence of Spirulina platensis (SP) and Salvia verbenaca (SV) extracts added to egg yolk extender on cryopreserved sperm quality, utilizing the -80 °C freezing method. Various concentrations (1.25, 3.75, 6.25 and 8.75 µg*mL-1) of acetone (Ac-SP and Ac-SV) and hexanoic (Hex-SP), as well as methanolic (MeOH-SV) extracts, were added into the extender. A thorough assessment of post-thawed sperm quality parameters, encompassing motility, velocity parameters, viability, membrane integrity, abnormality and lipid peroxidation was conducted. The outcomes demonstrated that 1.25 and 3.75 g*mL-1 of Ac-SP and Hex-SP and 1.25 µg*mL-1 of AC-SV and MeOH-SV increased the post-thawed ram sperm quality. In conclusion, this study emphasizes the antioxidant properties of SP and SV extracts, highlighting their potential to protect cryopreserved sperm cells from oxidative stress at -80 °C.


Subject(s)
Cryopreservation , Plant Extracts , Semen Analysis , Semen Preservation , Spermatozoa , Spirulina , Male , Animals , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/drug effects , Spermatozoa/physiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spirulina/chemistry , Sheep/physiology , Semen Analysis/veterinary , Salvia/chemistry , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...