Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.429
1.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Article En | MEDLINE | ID: mdl-38707612

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Hydrogen , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Hydrogen/pharmacology , Hydrogen/chemistry , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755530

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


ADAM Proteins , Membrane Proteins , Microglia , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-fos , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/drug therapy , Mice , Microglia/metabolism , Microglia/drug effects , ADAM Proteins/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , MAP Kinase Signaling System/drug effects , Inflammation/pathology , Inflammation/drug therapy , Cell Movement/drug effects , Humans , Antigens, CD
3.
Article En | MEDLINE | ID: mdl-38780270

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Hyperoxia , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/metabolism , Male , Hyperoxia/physiopathology , Hyperoxia/blood , Rats , Oxygen/blood , Oxygen/metabolism , Spinal Cord/metabolism , Spinal Cord/blood supply , Spinal Cord/physiopathology , Cervical Cord/injuries , Cervical Cord/metabolism , Blood Pressure/physiology , Oxyhemoglobins/metabolism , Heart Rate/physiology
4.
Neurochem Int ; 177: 105759, 2024 Jul.
Article En | MEDLINE | ID: mdl-38735393

BACKGROUND: Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear. METHODS: Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining. RESULTS: Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis. CONCLUSIONS: circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.


Exosomes , Ferroptosis , RNA, Circular , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Exosomes/metabolism , Animals , Ferroptosis/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/biosynthesis , Mice , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Neurosci Lett ; 833: 137832, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38796094

Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.


Animals, Newborn , Axons , Nerve Regeneration , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Animals , Axons/metabolism , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cells, Cultured , Neuronal Outgrowth/physiology , Spinal Cord/metabolism , Antigens, CD/metabolism , Neurons/metabolism , Rats , Neurites/metabolism , Neurites/drug effects , Female
6.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728880

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Glycogen Synthase Kinase 3 beta , Macrophages , Microglia , NF-kappa B , Nerve Regeneration , Recovery of Function , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Animals , Microglia/drug effects , Microglia/metabolism , Macrophages/drug effects , Macrophages/immunology , Nerve Regeneration/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , NF-kappa B/metabolism , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Axons/metabolism , Axons/drug effects , Axons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phenotype , Rats , Humans , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
7.
Biomed Pharmacother ; 175: 116734, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754264

Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.


Arachidonate 15-Lipoxygenase , Down-Regulation , Ferroptosis , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries , alpha-Tocopherol , Animals , Ferroptosis/drug effects , alpha-Tocopherol/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Recovery of Function/drug effects , Down-Regulation/drug effects , Rats , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Lipid Peroxidation/drug effects , Male , Reactive Oxygen Species/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/genetics , Disease Models, Animal , Molecular Docking Simulation
8.
Biomed Pharmacother ; 175: 116607, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692056

In the current study, we investigated the effects of acteoside as a phenylpropanoid glycoside on interaction with neurons to assesses locomotor recovery after spinal cord injury (SCI) in rats by focusing on evaluating the factors involved in autophagy, apoptosis, inflammation and oxidative stress processes. 49 Spargue-Dawley rats were prepared and divided into seven healthy and SCI groups receiving different concentrations of acteoside. After 28 days of disease induction and treatment with acteoside, a BBB score test was used to evaluate locomotor activity. Then, by preparing spinal cord cell homogenates, the expression levels of MAP1LC3A, MAP-2, glial fibrillary acidic protein (GFAP), Nrf2, Keap-1, Caspase 3 (Casp3), Bax, Bcl-2, TNF-a, IL-1B, reactive oxygen species (ROS), and malondialdehyde (MDA) were measured. Improvement of locomotor activity in SCI rats receiving acteoside was observed two weeks after the beginning of the experiment and continued until the fourth week. Both MAP1LC3A and MAP-2 were significantly up-regulated in SCI rats treated with acteoside compared to untreated SCI rats, and GFAP levels were significantly decreased in these animals. Pro-apoptotic proteins Bax and Casp3 and anti-apoptotic protein Bcl-2 were down-regulated and up-regulated, respectively, in SCI rats receiving acteoside. In addition, a significant downregulation of iNOS, TNF-α, and IL-1ß and a decrease in contents of both ROS and MDA as well as increases in Nrf2 and Keap-1 were seen in rats receiving acteoside. Furthermore, acteoside strongly interacted with MAP1LC3A, TNF-α, and Casp3 targets with binding affinities of -8.3 kcal/mol, -8.3 kcal/mol, and -8.5 kcal/mol, respectively, determined by molecular docking studies. In general, it can be concluded that acteoside has protective effects in SCI and can be considered as an adjuvant therapy in the treatment of this disease. However, more studies, especially clinical studies, are needed in this field.


Apoptosis , Autophagy , Glucosides , Phenols , Rats, Sprague-Dawley , Recovery of Function , Signal Transduction , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Apoptosis/drug effects , Autophagy/drug effects , Signal Transduction/drug effects , Glucosides/pharmacology , Rats , Recovery of Function/drug effects , Phenols/pharmacology , Male , Locomotion/drug effects , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Disease Models, Animal , Polyphenols
9.
Int Immunopharmacol ; 134: 112190, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38703569

Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.


Benzamidines , Guanidines , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Spinal Cord Injuries , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Mice , Guanidines/pharmacology , Guanidines/therapeutic use , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Disease Models, Animal , Cathepsin B/metabolism
10.
Sci Rep ; 14(1): 11946, 2024 05 25.
Article En | MEDLINE | ID: mdl-38789574

Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.


Disease Models, Animal , Spinal Cord Injuries , Synaptic Vesicles , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/metabolism , Mice , Synaptic Vesicles/metabolism , Locomotion , Female , Neuronal Plasticity , Environment , Recovery of Function , Mice, Inbred C57BL , Nerve Regeneration
11.
Bioorg Chem ; 148: 107458, 2024 Jul.
Article En | MEDLINE | ID: mdl-38788362

Ferroptosis is a novel style of cell death, and studies have shown that ferroptosis is strongly associated with spinal cord injury (SCI). A large number of ferroptosis inhibitors have been reported, but so far no ferroptosis inhibitor has been used clinically. Therefore there is an urgent need to discover a better inhibitor of ferroptosis. In this study, 24 novel sulfonamide phenothiazine ferroptosis inhibitors were designed and synthesized, followed by structure-activity relationship studies on these compounds. Among them, compound 23b exhibited the best activity in Erastin-induced PC12 cells (EC50 = 0.001 µM) and demonstrated a low hERG inhibition activity (IC50 > 30 µM). Additionally, compound 23b was identified as a ROS scavenger and showed promising therapeutic effects in an SD rat model of SCI. Importantly, 23b did not display significant toxicity in both in vivo and in vitro experiments and show good pharmacokinetic properties. These findings suggest that compound 23b, a novel ferroptosis inhibitor, holds potential as a therapeutic agent for spinal cord injury and warrants further investigation.


Drug Design , Ferroptosis , Phenothiazines , Rats, Sprague-Dawley , Spinal Cord Injuries , Sulfonamides , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Rats , Structure-Activity Relationship , Ferroptosis/drug effects , Phenothiazines/pharmacology , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Phenothiazines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , PC12 Cells , Molecular Structure , Dose-Response Relationship, Drug , Humans , Male
12.
PLoS One ; 19(5): e0303235, 2024.
Article En | MEDLINE | ID: mdl-38728287

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Rats , Galectin 3/metabolism , Galectin 3/genetics , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
13.
Nat Commun ; 15(1): 4331, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773121

The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.


Gap Junctions , Motor Neurons , Spinal Cord Injuries , Spinal Cord , Zebrafish , Animals , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Gap Junctions/metabolism , Motor Neurons/metabolism , Calcium/metabolism , Calcium Signaling , Calbindin 2/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Glutamic Acid/metabolism , Cell Survival
14.
Pain ; 165(6): 1336-1347, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38739766

ABSTRACT: Evidence from previous studies supports the concept that spinal cord injury (SCI)-induced neuropathic pain (NP) has its neural roots in the peripheral nervous system. There is uncertainty about how and to which degree mechanoreceptors contribute. Sensorimotor activation-based interventions (eg, treadmill training) have been shown to reduce NP after experimental SCI, suggesting transmission of pain-alleviating signals through mechanoreceptors. The aim of the present study was to understand the contribution of mechanoreceptors with respect to mechanical allodynia in a moderate mouse contusion SCI model. After genetic ablation of tropomyosin receptor kinase B expressing mechanoreceptors before SCI, mechanical allodynia was reduced. The identical genetic ablation after SCI did not yield any change in pain behavior. Peptidergic nociceptor sprouting into lamina III/IV below injury level as a consequence of SCI was not altered by either mechanoreceptor ablation. However, skin-nerve preparations of contusion SCI mice 7 days after injury yielded hyperexcitability in nociceptors, not in mechanoreceptors, which makes a substantial direct contribution of mechanoreceptors to NP maintenance unlikely. Complementing animal data, quantitative sensory testing in human SCI subjects indicated reduced mechanical pain thresholds, whereas the mechanical detection threshold was not altered. Taken together, early mechanoreceptor ablation modulates pain behavior, most likely through indirect mechanisms. Hyperexcitable nociceptors seem to be the main drivers of SCI-induced NP. Future studies need to focus on injury-derived factors triggering early-onset nociceptor hyperexcitability, which could serve as targets for more effective therapeutic interventions.


Disease Models, Animal , Hyperalgesia , Mechanoreceptors , Mice, Inbred C57BL , Spinal Cord Injuries , Animals , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Mice , Hyperalgesia/physiopathology , Hyperalgesia/etiology , Hyperalgesia/metabolism , Mechanoreceptors/metabolism , Mechanoreceptors/physiology , Male , Humans , Pain Threshold/physiology , Female , Pain Measurement , Mice, Transgenic , Neuralgia/etiology , Neuralgia/metabolism , Neuralgia/physiopathology
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 636-643, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708495

OBJECTIVE: To investigate the effect of Jisuikang formula-medicated serum for promoting spinal cord injury (SCI) repair in rats and explore the possible mechanism. METHODS: Thirty adult SD rats were randomized into sham-operated group, SCI (induced using a modified Allen method) model group, and Jisuikang formula-medicated serum treatment group. After the operations, the rats were treated with normal saline or Jisuikang by gavage on a daily basis for 14 days, and the changes in hindlimb motor function of the rats was assessed with Basso-Beattie-Bresnahan (BBB) scores and inclined-plate test. The injured spinal cord tissues were sampled from the SCI rat models for single-cell RNA sequencing, and bioinformatics analysis was performed to identify the target genes of Jisuikang, spinal cord injury and glycolysis. In the cell experiment, cultured astrocytes from neonatal SD rat cortex were treated with SOX2 alone or in combination with Jisuikang-medicated serum for 21 days, and the protein expressions of PKM2, p-PKM2 and YAP and colocalization of PKM2 and YAP in the cells were analyzed with Western blotting and immunofluorescence staining, respectively. RESULTS: The SCI rats with Jisuikang treatment showed significantly improved BBB scores and performance in inclined-plate test. At the injury site, high PKM2 expression was detected in various cell types. Bioinformatic analysis identified the HIPPO-YAP signaling pathway as the target pathway of Jisuikang. In cultured astrocytes, SOX2 combined with the mediated serum, as compared with SOX2 alone, significantly increased PKM2, p-PKM2 and YAP expressions and entry of phosphorylated PKM2 into the nucleus, and promoted PKM2 and YAP co-localization in the cells. CONCLUSION: Jisuikang formula accelerates SCI repair in rats possibly by promoting aerobic glycolysis of the astrocytes via activating the PKM2/YAP axis to induce reprogramming of the astrocytes into neurons.


Astrocytes , Pyruvate Kinase , Signal Transduction , Spinal Cord Injuries , YAP-Signaling Proteins , Animals , Rats , Astrocytes/metabolism , Astrocytes/drug effects , Carrier Proteins/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Membrane Proteins/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism
16.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Article En | MEDLINE | ID: mdl-38811815

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Axons , Granulocyte Colony-Stimulating Factor , Interleukin-4 , Mice, Inbred C57BL , Nerve Regeneration , Neutrophils , Animals , Neutrophils/immunology , Nerve Regeneration/immunology , Mice , Humans , Axons/metabolism , Axons/physiology , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Interleukin-4/metabolism , Neutrophil Activation , Spinal Cord Injuries/therapy , Spinal Cord Injuries/immunology , Spinal Cord Injuries/metabolism , Adoptive Transfer , Cytokines/metabolism , Cells, Cultured
17.
J Orthop Surg Res ; 19(1): 230, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589918

BACKGROUND: Spinal cord injury (SCI) can result in structural and functional damage to the spinal cord, which may lead to loss of limb movement and sensation, loss of bowel and bladder control, and other complications. Previous studies have revealed the critical influence of trans-acting transcription factor 1 (SP1) in neurological pathologies, however, its role and mechanism in SCI have not been fully studied. METHODS: The study was performed using mouse microglia BV2 stimulated using lipopolysaccharide (LPS) and male adult mice subjected to spinal hitting. Western blotting was performed to detect protein expression of SP1, 5-hydroxytryptamine (serotonin) receptor 2B (HTR2B), BCL2-associated x protein (Bax), B-cell lymphoma-2 (Bcl-2), inducible nitric oxide synthase (iNOS), clusters of differentiation 86 (CD86), Arginase 1 (Arg-1) and clusters of differentiation 206 (CD206). Cell viability and apoptosis were analyzed by MTT assay and TUNEL assay. mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-4 (IL-4) and tumor necrosis factor-ß (TNF-ß) were quantified by quantitative real-time polymerase chain reaction. The association of SP1 and HTR2B was identified by chromatin immunoprecipitation assay and dual-luciferase reporter assay. HE staining assay was performed to analyze the pathological conditions of spinal cord tissues. RESULTS: LPS treatment induced cell apoptosis and inhibited microglia polarization from M1 to M2 phenotype, accompanied by an increase of Bax protein expression and a decrease of Bcl-2 protein expression, however, these effects were relieved after SP1 silencing. Mechanism assays revealed that SP1 transcriptionally activated HTR2B in BV2 cells, and HTR2B knockdown rescued LPS-induced effects on BV2 cell apoptosis and microglial M1/M2 polarization. Moreover, SP1 absence inhibited BV2 cell apoptosis and promoted microglia polarization from M1 to M2 phenotype by decreasing HTR2B expression. SCI mouse model assay further showed that SP1 downregulation could attenuate spinal hitting-induced promoting effects on cell apoptosis of spinal cord tissues and microglial M1 polarization. CONCLUSION: SP1 transcriptionally activated HTR2B to aggravate traumatic SCI by shifting microglial M1/M2 polarization.


Microglia , Spinal Cord Injuries , Mice , Male , Animals , Microglia/metabolism , Lipopolysaccharides/pharmacology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
18.
Discov Med ; 36(183): 714-720, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665020

BACKGROUND: Spinal cord injury (SCI) is usually caused by external direct or indirect factors, and with a high morbidity and mortality rate. The aim of this study was to observe the effects of Dexmedetomidine (DEX) combined with Esketamine (ESK) on pain behavior and potential analgesic mechanisms in rats with SCI. The goal was to provide a reliable multimodal analgesic medication regimen for SCI. METHODS: Thirty rats were divided into five groups with six rats in each group: Sham group, SCI group, DEX group, ESK group, and DEX+ESK group. The SCI model in rats was constructed, and the motor function of hind limbs of rats was measured using Basso Beattie Bresnahan (BBB) locomotor rating scale and inclined plate test. The levels of interleukin 18 (IL-18), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in the spinal cord were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of substance P (SP), neurokinin-1 receptor (NK-1R), B cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) in the rats' spinal cord were measured by Western blot assay. The viability of spinal astrocytes was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: After 7 days, the BBB scores were significantly higher in the DEX, ESK, and DEX+ESK groups compared to the SCI group (p < 0.01). Additionally, the DEX+ESK group had significantly higher scores than both the DEX and ESK groups (p < 0.01). The maximum angle of the DEX (p < 0.05), ESK (p < 0.05), and DEX+ESK groups (p < 0.01) were higher than the SCI group, and the maximum angle of DEX+ESK group was higher than DEX and ESK groups (p < 0.05). The levels of IL-18, IL-1ß, and TNF-α in the DEX, ESK, and DEX+ESK groups were lower than the SCI group (p < 0.01), while the DEX+ESK group had significantly lower IL-18, IL-1ß, and TNF-α levels than the DEX and ESK groups (p < 0.01). The levels of SP (p < 0.01) and NK-1R (p < 0.05) were lower in the DEX, ESK, and DEX+ESK groups compared to the SCI group, and the levels of SP and NK-1R were lower in the DEX+ESK group compared to the DEX and ESK groups (p < 0.01). The DEX and ESK groups suppressed the activity of spinal astrocytes (p < 0.01), however, the DEX+ESK group had larger effects on spinal astrocytes than the ESK group (p < 0.05). CONCLUSIONS: Treatment using DEX combined with ESK improves the motor function, inhibits inflammation and astrocyte activity, and exerts analgesic effects on rats with SCI. These findings can serve as a reference for the selection of multi-modal analgesics.


Dexmedetomidine , Ketamine , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Rats , Ketamine/pharmacology , Ketamine/therapeutic use , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Substance P/metabolism , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , Receptors, Neurokinin-1/metabolism , Interleukin-1beta/metabolism
19.
Sci Rep ; 14(1): 9723, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678068

Secondary lung injury after SCI is a major cause of patient mortality, with apoptosis playing a key role. This study aimed to explore the impact of treadmill training and miR145-5p on the MAPK/Erk signaling pathway and apoptosis in rats with complete SCI. SD rats were used to establish T10 segmental complete SCI models and underwent treadmill training 3, 7, or 14 days postinjury. Various techniques including arterial blood gas analysis, lung wet/dry weight ratio, HE staining, immunofluorescence staining, immunohistochemical staining, qRT-PCR, and Western blotting were employed to assess alterations in lung function and the expression levels of crucial apoptosis-related factors. In order to elucidate the specific mechanism, the impact of miR145-5p on the MAPK/Erk pathway and its role in apoptosis in lung cells were confirmed through miR145-5p overexpression and knockdown experiments. Following spinal cord injury (SCI), an increase in apoptosis, activation of the MAPK/Erk pathway, and impairment of lung function were observed in SCI rats. Conversely, treadmill training resulted in a reduction in alveolar cell apoptosis, suppression of the MAPK/Erk pathway, and enhancement of lung function. The gene MAP3K3 was identified as a target of miR145-5p. The influence of miR145-5p on the MAPK/Erk pathway and its impact on apoptosis in alveolar cells were confirmed through the manipulation of miR145-5p expression levels. The upregulation of miR145-5p in spinal cord injury (SCI) rats led to a reduction in MAP3K3 protein expression within lung tissues, thereby inhibiting the MAPK/Erk signaling pathway and decreasing apoptosis. Contrarily, rats with miR145-5p knockdown undergoing treadmill training exhibited an increase in miR145-5p expression levels, resulting in the inhibition of MAP3K3 protein expression in lung tissues, suppression of the MAPK/Erk pathway, and mitigation of lung cell apoptosis. Ultimately, the findings suggest that treadmill training may attenuate apoptosis in lung cells post-spinal cord injury by modulating the MAP3K3 protein through miR145-5p to regulate the MAPK/Erk signaling pathway.


Apoptosis , MAP Kinase Signaling System , MicroRNAs , Physical Conditioning, Animal , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Rats , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Lung/metabolism , Lung/pathology , Lung/physiopathology , Alveolar Epithelial Cells/metabolism , Disease Models, Animal
20.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 182-186, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650136

Microglia activation is an early mediator of neuroinflammation and a major contributor to spinal damage and motor dysfunction. This study was designed to investigate the role of small nucleolar RNA host gene 1 (SNHG1) on the apoptosis and inflammatory response of microglial cell BV-2 and its underlying molecular mechanism. The C5 lamina contusion-induced mouse model of spinal cord injury (SCI) was constructed. Mouse microglia BV2 was stimulated by lipopolysaccharide (LPS) to establish the in vitro model of SCI. The quantitative reverse transcription polymerase chain reaction method was used to quantify RNA expression levels. Enzyme-linked immunosorbent assays were used to quantify concentrations of inflammatory cytokines. Protein levels were assessed by western blotting, and apoptosis was assessed by flow cytometry. Dual luciferase reporter gene assay and RNA pull-down assay were conducted to investigate the binding relationships between molecules. Upregulation of SNHG1 and downregulation of miR-195-5p were observed in the spinal cords of SCI mouse model. LPS treatment led to elevation of SNHG1 expression in BV2 cells, as well as accelerated apoptosis and inflammation. Evident mitigation of LPS-induced BV2 cell damage was observed after SNHG1 knockdown. MiR-195-5p was identified as a target of SNHG1. Inhibition of miR-195-5p restored the impact of SNHG1 knockdown on cell damage of LPS-treated BV2 cells. Furthermore, miR-195-5p can target activating transcription factor-6 (ATF6). In summary, SNHG1 knockdown ameliorates LPS-induced microglial apoptosis and inflammatory response via the miR-195-5p/ATF6 axis, providing a novel direction for SCI treatment.


Apoptosis , Inflammation , Lipopolysaccharides , MicroRNAs , Microglia , Spinal Cord Injuries , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Apoptosis/drug effects , Apoptosis/genetics , Mice , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Silencing , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Male
...