Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.107
Filter
1.
Neurosci Lett ; 837: 137918, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39096756

ABSTRACT

Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 µg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 µg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 µg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 µg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.


Subject(s)
Arcuate Nucleus of Hypothalamus , Goats , Gonadotropin-Releasing Hormone , Morphinans , Receptors, Opioid, kappa , Spiro Compounds , Animals , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Female , Spiro Compounds/pharmacology , Spiro Compounds/administration & dosage , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/agonists , Morphinans/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Kisspeptins/metabolism , Dynorphins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurokinin B/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125595

ABSTRACT

Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John's wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved activity and compatibility. Here, we studied the antimicrobial activity of two synthetic PPAP-derivatives, the water-insoluble PPAP23 and the water-soluble sodium salt PPAP53. In vitro, both compounds exhibited good activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Both compounds had no adverse effects on Galleria mellonella wax moth larvae. However, they were unable to protect the larvae from infection with S. aureus because components of the larval coelom neutralized the antimicrobial activity; a similar effect was also seen with serum albumin. In silico docking studies with PPAP53 revealed that it binds to the F1 pocket of human serum albumin with a binding energy of -7.5 kcal/mol. In an infection model of septic arthritis, PPAP23 decreased the formation of abscesses and S. aureus load in kidneys; in a mouse skin abscess model, topical treatment with PPAP53 reduced S. aureus counts. Both PPAPs were active against anaerobic Gram-positive gut bacteria such as neurotransmitter-producing Clostridium, Enterococcus or Ruminococcus species. Based on these results, we foresee possible applications in the decolonization of pathogens.


Subject(s)
Ketones , Methicillin-Resistant Staphylococcus aureus , Spiro Compounds , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecium/drug effects , Ketones/chemistry , Ketones/pharmacology , Larva/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Moths/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Staphylococcal Infections/drug therapy
3.
Sci Rep ; 14(1): 18773, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138211

ABSTRACT

Twelve spiro thiazolidinone compounds (A-L) were synthesized via either conventional thermal or ultrasonication techniques using Fe2O3 nanoparticles. The modification of the traditional procedure by using Fe2O3 nanoparticles led to enhancement of the yield of the desired candidates to 78-93% in approximately half reaction time compared with 58-79% without catalyst. The products were fully characterized using different analytical and spectroscopic techniques. The structure of the two derivatives 4-phenyl-1-thia-4-azaspirodecan-3-one (A) and 4-(p-tolyl)-1-thia-4-azaspirodecan-3-one (B) were also determined using single crystal X-ray diffraction and Hirshfeld surface analysis. The two compounds (A and B) were crystallized in the orthorhombic system with Pbca and P212121 space groups, respectively. In addition, the crystal packing of compounds revealed the formation of supramolecular array with a net of intermolecular hydrogen bonding interactions. The energy optimized geometries of some selected derivatives were performed by density functional theory (DFT/B3LYP). The reactivity descriptors were also calculated and correlated with their biological properties. All the reported compounds were screened for antimicrobial inhibitions. The two derivatives, F and J, exhibited the highest levels of bacterial inhibition with an inhibition zone of 10-17 mm. Also, the two derivatives, F and J, displayed the most potent fungal inhibition with an inhibition zone of 15-23 mm. Molecular docking investigations of some selected derivatives were performed using a B-DNA (PDB: 1BNA) as a macromolecular target. Structure and activity relationship of the reported compounds were correlated with the data of antimicrobial activities and the computed reactivity parameters.


Subject(s)
Molecular Docking Simulation , Thiazolidines , Catalysis , Thiazolidines/chemistry , Thiazolidines/chemical synthesis , Thiazolidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Crystallography, X-Ray/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Density Functional Theory , Microbial Sensitivity Tests , Ferric Compounds/chemistry , Hydrogen Bonding
4.
Molecules ; 29(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064909

ABSTRACT

We recently developed a series of nalfurafine analogs (TK10, TK33, and TK35) that may serve as non-addictive candidate analgesics. These compounds are mixed-action agonists at the kappa and delta opioid receptors (KOR and DOR, respectively) and produce antinociception in a mouse warm-water tail-immersion test while failing to produce typical mu opioid receptor (MOR)-mediated side effects. The warm-water tail-immersion test is an assay of pain-stimulated behavior vulnerable to false-positive analgesic-like effects by drugs that produce motor impairment. Accordingly, this study evaluated TK10, TK33, and TK35 in a recently validated assay of pain-related behavioral depression in mice that are less vulnerable to false-positive effects. For comparison, we also evaluated the effects of the MOR agonist/analgesic hydrocodone (positive control), the neurokinin 1 receptor (NK1R) antagonist aprepitant (negative control), nalfurafine as a selective KOR agonist, SNC80 as a selective DOR agonist, and a nalfurafine/SNC80 mixture. Intraperitoneal injection of dilute lactic acid (IP lactic acid) served as a noxious stimulus to depress vertical and horizontal locomotor activity in male and female ICR mice. IP lactic acid-induced locomotor depression was alleviated by hydrocodone but not by aprepitant, nalfurafine, SNC80, the nalfurafine/SNC80 mixture, or the KOR/DOR agonists. These results suggest that caution is warranted in advancing mixed-action KOR/DOR agonists as candidate analgesics.


Subject(s)
Pain , Receptors, Opioid, delta , Receptors, Opioid, kappa , Animals , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Mice , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Pain/drug therapy , Pain/metabolism , Male , Depression/drug therapy , Depression/etiology , Morphinans/pharmacology , Behavior, Animal/drug effects , Analgesics, Opioid/pharmacology , Spiro Compounds/pharmacology , Spiro Compounds/chemistry
5.
Parasit Vectors ; 17(1): 313, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030610

ABSTRACT

BACKGROUND: Canine acaricides with rapid onset and sustained activity can reduce pathogen transmission risk and enhance pet owner experience. This randomized, complete block design, investigator-masked study compared the speed of kill of Amblyomma americanum provided by three monthly-use isoxazoline-containing products. METHODS: Eight randomized beagles per group were treated (day 0), per label, with sarolaner (combined with moxidectin and pyrantel, Simparica Trio™), afoxolaner (NexGard™), or lotilaner (Credelio™), or remained untreated. Infestations with 50 adult A. americanum were conducted on days - 7, - 2, 21, and 28, and tick counts were performed on day - 5 (for blocking), and at 4, 8, 12, 24, 48, and 72 h following treatment and subsequent infestations. Efficacy calculations were based on geometric mean live tick counts. A linear mixed model was used for between-group comparisons. RESULTS: On day 0, only lotilaner significantly reduced an A. americanum infestation by 12 h (43.3%; P = 0.002). Efficacy of lotilaner and afoxolaner at 24 h post-treatment was 95.3% and 97.6%, respectively, both significantly different from sarolaner (74%) (P = 0.002, P < 0.001, respectively). On day 21, at 12 h postinfestation, lotilaner efficacy (59.6%) was significantly different from sarolaner (0.0%) (P < 0.001) and afoxolaner (6.3%) (P < 0.001). At 24 h, lotilaner efficacy (97.4%) was significantly different (P < 0.001) from sarolaner and afoxolaner (13.6% and 14.9%, respectively). On day 28, at 12 h postinfestation, lotilaner efficacy (47.8%) was significantly different from sarolaner (17.1%) (P = 0.020) and afoxolaner (9.0%) (P = 0.006). At 24 h, lotilaner efficacy (92.3%) was significantly different from sarolaner 4.9% (P < 0.001) and afoxolaner (0.0%) (P < 0.001). Speed of kill for sarolaner and afoxolaner, but not lotilaner, significantly declined over the study period. Following reinfestation on day 28, neither sarolaner nor afoxolaner reached 90% efficacy by 48 h. By 72 h, sarolaner efficacy was 97.4% and afoxolaner efficacy was 86.3%. Only lotilaner achieved ≥ 90% efficacy by 24 h post-treatment and 24 h postinfestation on days 21 and 28. Time to ≥ 90% efficacy following new infestations consistently occurred 24-48 h earlier for lotilaner compared with sarolaner or afoxolaner. CONCLUSIONS: Credelio (lotilaner) has a more rapid onset of acaricidal activity against A. americanum than Simparica Trio (sarolaner-moxidectin-pyrantel) and NexGard (afoxolaner). Only lotilaner's speed of tick kill is sustained throughout the dosing period.


Subject(s)
Acaricides , Amblyomma , Azetidines , Dog Diseases , Isoxazoles , Tick Infestations , Animals , Dogs , Tick Infestations/veterinary , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Acaricides/administration & dosage , Dog Diseases/drug therapy , Dog Diseases/parasitology , Isoxazoles/administration & dosage , Isoxazoles/therapeutic use , Amblyomma/drug effects , Azetidines/administration & dosage , Azetidines/therapeutic use , Female , Spiro Compounds/administration & dosage , Spiro Compounds/therapeutic use , Male , Time Factors , Naphthalenes/administration & dosage , Naphthalenes/therapeutic use , Treatment Outcome , Oxazoles , Thiophenes
6.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999023

ABSTRACT

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Subject(s)
Antitubercular Agents , Azetidines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nitrofurans , Spiro Compounds , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Azetidines/chemistry , Azetidines/pharmacology , Nitrofurans/pharmacology , Nitrofurans/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Molecular Structure
7.
Yakugaku Zasshi ; 144(8): 791-798, 2024.
Article in Japanese | MEDLINE | ID: mdl-39085055

ABSTRACT

This review describes novel organocatalytic methods for the enantioselective construction of spiroindans and spirochromans and the application of the methods to the total synthesis of natural products. We developed an intramolecular Friedel-Craftstype 1,4-addition in which the substrates were a resorcinol derivative and 2-cyclohexenone linked by an alkyl chain. The reaction proceeded smoothly in the presence of a cinchonidine-based primary amine (30 mol%) with water and p-bromophenol as additives. A variety of spiroindanes were obtained with high enantioselectivity under these conditions. The reaction was applied in the first total synthesis of the unusual proaporphine alkaloid (-)-misramine, which included the key steps of enantioselective spirocyclization and double reductive amination of the keto-aldehyde to form a piperidine ring toward the end of the synthesis. The total synthesis of misrametine was achieved by selective demethylation of the methoxy group from the precursor to misramine. Next, a method for highly enantioselective organocatalytic construction of spirochromans containing a tetrasubstituted stereocenter was developed. An intramolecular oxy-Michael addition was catalyzed by a bifunctional cinchona alkaloid thiourea catalyst. A variety of spirochroman compounds containing a tetrasubstituted stereocenter were obtained with excellent enantioselectivity of up to 99% enantiomeric excess. The reaction was applied to the asymmetric formal synthesis of (-)-(R)-cordiachromene.


Subject(s)
Biological Products , Catalysis , Biological Products/chemical synthesis , Biological Products/chemistry , Stereoisomerism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Cinchona Alkaloids/chemistry , Cyclohexanones/chemical synthesis , Cyclohexanones/chemistry , Organic Chemistry Phenomena , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , Amines/chemistry , Amines/chemical synthesis , Thiourea/chemistry , Thiourea/chemical synthesis , Resorcinols/chemical synthesis , Resorcinols/chemistry , Indans/chemical synthesis , Indans/chemistry
8.
J Nat Prod ; 87(7): 1798-1807, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39018435

ABSTRACT

Highly functionalized spirobisnaphthalenes, preussomerins N (1) and O (2), and simpler compounds, such as 2,3-α-epoxypalmarumycin CP18 (3), 3α-hydroxy-CJ-12,372 (4), and 16 known structurally related congeners, were isolated from a culture broth of Roussoella sp. KT4147. Structural analysis revealed that 1 was a dimer of preussomerin G (6), connected by a nitrogen atom, and 2 was a derivative of 6 with a macommelin substructure. Preussomerin N (1) was considered to be biosynthetically derived via the Michael-type 1,4-addition of ammonia to 6, followed by another Michael addition to another molecule of 6. Contrarily, 2 was suggested to be derived through an endo-Diels-Alder cycloaddition between a diene derived from the (E)-enol form of macommelinal via an ene-reaction and dienophile 6. Compounds 1 and 2 exhibited potent cytotoxicity against COLO-201 human colorectal cancer cells.


Subject(s)
Naphthalenes , Spiro Compounds , Humans , Molecular Structure , Spiro Compounds/chemistry , Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology , Naphthalenes/chemistry , Naphthalenes/pharmacology , Naphthalenes/isolation & purification , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cycloaddition Reaction , Cell Line, Tumor
9.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964057

ABSTRACT

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Subject(s)
Ferroptosis , Guanidines , Lipid Peroxidation , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Mice , Lipid Peroxidation/drug effects , Cell Line , Guanidines/toxicity , Guanidines/pharmacology , Male , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Cyclohexylamines/pharmacology , Phenylenediamines , Quinoxalines , Spiro Compounds
10.
Drug Des Devel Ther ; 18: 2729-2743, 2024.
Article in English | MEDLINE | ID: mdl-38974123

ABSTRACT

Background: Oliceridine is a novel G protein-biased ligand µ-opioid receptor agonist. This study aimed to assess the pharmacokinetics and safety profile of single-ascending doses of oliceridine fumarate injection in Chinese patients with chronic non-cancer pain. Methods: Conducted as a single-center, open-label trial, this study administered single doses of 0.75, 1.5, and 3.0 mg to 32 adult participants. The trial was conducted in two parts. First, we conducted a preliminary test comprising the administration of a single dose of 0.75mg to 2 participants. Then, we conducted the main trial involving intravenous administration of escalating doses of oliceridine fumarate (0.75 to 3 mg) to 30 participants. Pharmacokinetic (PK) parameters were derived using non-compartmental analysis. Additionally, the safety evaluation encompassed the monitoring of adverse events (AEs). Results: 32 participants were included in the PK and safety analyses. Following a 2-min intravenous infusion of oliceridine fumarate injection (0.75, 1.5, or 3 mg), Cmax and Tmax ranged from 51.293 to 81.914 ng/mL and 0.034 to 0.083 h, respectively. AUC0-t and half-life (t1/2) increased more than proportionally with dosage (1.85-2.084 h). Treatment emergent adverse events (TEAEs) were found to be consistent with the commonly reported adverse effects of opioids, both post-administration and as documented in the original trials conducted in the United States. Critically, no serious adverse events were observed. Conclusion: Oliceridine demonstrated comparable PK parameters and a consistent PK profile in the Chinese population, in line with the PK results observed in the original trials conducted in the United States. Oliceridine was safe and well tolerated in Chinese patients with chronic non-cancer pain at doses ranging from 0.75 mg to 3.0 mg. Trial Registration: The trial is registered at chictr.org.cn (ChiCTR2100047180).


Subject(s)
Chronic Pain , Dose-Response Relationship, Drug , Humans , Male , Adult , Female , Chronic Pain/drug therapy , Middle Aged , Young Adult , Asian People , China , East Asian People , Spiro Compounds , Thiophenes
11.
Sci Rep ; 14(1): 15259, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38956259

ABSTRACT

Greenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T. vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions. In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis. Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions.


Subject(s)
Beauveria , Hemiptera , Insecticides , Pest Control, Biological , Animals , Hemiptera/drug effects , Hemiptera/microbiology , Insecticides/pharmacology , Beauveria/physiology , Pest Control, Biological/methods , Cordyceps , Spiro Compounds/pharmacology
12.
J Agric Food Chem ; 72(31): 17306-17316, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39054269

ABSTRACT

Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.


Subject(s)
Arthropod Proteins , Spiro Compounds , Animals , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Spiro Compounds/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/chemistry , Drug Resistance/genetics , Carboxylesterase/genetics , Carboxylesterase/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , 4-Butyrolactone/pharmacology
13.
PLoS One ; 19(7): e0305710, 2024.
Article in English | MEDLINE | ID: mdl-38990850

ABSTRACT

There is an urgent unmet need for more targeted and effective treatments for advanced epithelial ovarian cancer (EOC). The emergence of drug resistance is a particular challenge, but small molecule covalent inhibitors have promise for difficult targets and appear less prone to resistance. Michael acceptors are covalent inhibitors that form bonds with cysteines or other nucleophilic residues in the target protein. However, many are categorized as pan-assay interference compounds (PAINS) and considered unsuitable as drugs due to their tendency to react non-specifically. Targeting RPN13/ADRM1-mediated substrate recognition and deubiquitination by the proteasome 19S Regulatory Particle (RP) is a promising treatment strategy. Early candidate RPN13 inhibitors (iRPN13) produced a toxic accumulation of very high molecular weight polyubiquitinated substrates, resulting in therapeutic activity in mice bearing liquid or solid tumor models, including ovarian cancer; however, they were not drug-like (PAINS) because of their central piperidone core. Up284 instead has a central spiro-carbon ring. We hypothesized that adding a guanidine moiety to the central ring nitrogen of Up284 would produce a compound, RA475, with improved drug-like properties and therapeutic activity in murine models of ovarian cancer. RA475 produced a rapid accumulation of high molecular polyubiquitinated proteins in cancer cell lines associated with apoptosis, similar to Up284 although it was 3-fold less cytotoxic. RA475 competed binding of biotinylated Up284 to RPN13. RA475 shows improved solubility and distinct pharmacodynamic properties compared to Up284. Specifically, tetraubiquitin firefly luciferase expressed in leg muscle was stabilized in mice more effectively upon IP treatment with RA475 than with Up284. However, pharmacologic analysis showed that RA475 was more rapidly cleared from the circulation, and less orally available than Up284. RA475 shows reduced ability to cross the blood-brain barrier and in vitro inhibition of HERG. Treatment of mice with RA475 profoundly inhibited the intraperitoneal growth of the ID8-luciferase ovarian tumor model. Likewise, RA475 treatment of immunocompetent mice inhibited the growth of spontaneous genetically-engineered peritoneal tumor, as did weekly cisplatin dosing. The combination of RA475 and cisplatin significantly extended survival compared to individual treatments, consistent with synergistic cytotoxicity in vitro. In sum, RA475 is a promising candidate covalent RPN13i with potential utility for treatment of patients with advanced EOC in combination with cisplatin.


Subject(s)
Ovarian Neoplasms , Female , Animals , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Mice , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use , Spiro Compounds/chemistry , Xenograft Model Antitumor Assays , Carcinoma, Ovarian Epithelial/drug therapy , Guanidines/pharmacology , Guanidines/therapeutic use , Guanidines/chemistry , Intracellular Signaling Peptides and Proteins
14.
J Hazard Mater ; 476: 135247, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39029196

ABSTRACT

Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 µg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.


Subject(s)
Marine Toxins , Pectinidae , Spiro Compounds , Animals , Marine Toxins/toxicity , Spiro Compounds/toxicity , Pectinidae/drug effects , Pectinidae/metabolism , Pectinidae/immunology , Reactive Oxygen Species/metabolism , Energy Metabolism/drug effects , Transcriptome/drug effects , Polyether Toxins
15.
ACS Infect Dis ; 10(8): 3071-3082, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39082980

ABSTRACT

Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Neisseria gonorrhoeae , Topoisomerase II Inhibitors , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , DNA Topoisomerase IV/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/genetics , DNA Gyrase/metabolism , DNA Gyrase/genetics , DNA Gyrase/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Humans , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Barbiturates/pharmacology , Barbiturates/chemistry , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Isoxazoles , Morpholines , Spiro Compounds
16.
Int Immunopharmacol ; 138: 112539, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38936054

ABSTRACT

With the increasing frequency of global heatwaves, the incidence of heatstroke (HS) is significantly rising. The liver plays a crucial role in metabolism and is an organ highly sensitive to temperature. Acute liver injury (ALI) frequently occurs in patients with HS, yet the exact mechanisms driving ALI in HS are still unknown. In this basic study, we investigated the specific molecular mechanisms by which cytosolic phospholipase A2 (cPLA2) mediates ferroptosis, contributing to the development of ALI following HS. We utilized a mouse model of HS and divided the mice into healthy control and HS groups for a series of experiments. Firstly, we assessed oxidative damage markers in tissues and cells, as well as ferroptosis biomarkers. Additionally, we conducted a non-targeted metabolomics analysis to validate the role of key enzymes in metabolism and the ferroptosis pathway. Our results indicated that ferroptosis contributed to the progression of ALI after HS. Administering the ferroptosis inhibitor liproxstatin-1 (10 mg/kg) post-HS onset significantly inhibits HS-induced ALI progression. Mechanistically, heatstroke triggered cPLA2 activation and increased the levels of its metabolic product, arachidonic acid, thereby further promoted the occurrence of ferroptosis. Furthermore, heatstroke mediated cPLA2 activation might involve enhancing transient receptor potential vanilloid subtype 1 (TRPV1) receptor function. Overall, these results highlighted the critical role that cPLA2-mediated ferroptosis plays in the development of ALI following HS, indicating that inhibiting cPLA2 may present a novel therapeutic approach to prevent ALI after HS by limiting liver cell death.


Subject(s)
Arachidonic Acid , Ferroptosis , Heat Stroke , TRPV Cation Channels , Animals , Humans , Male , Mice , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Arachidonic Acid/metabolism , Disease Models, Animal , Heat Stroke/metabolism , Heat Stroke/pathology , Liver/pathology , Liver/metabolism , Mice, Inbred C57BL , Phospholipases A2, Cytosolic/metabolism , Quinoxalines , Signal Transduction , Spiro Compounds , TRPV Cation Channels/metabolism
17.
Int Immunopharmacol ; 138: 112579, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38944951

ABSTRACT

Obstructive sleep apnea, typically characterized by chronic intermittent hypoxia (CIH), is linked to cognitive dysfunction in children. Ferroptosis, a novel form of cell death characterized by lethal iron accumulation and lipid peroxidation, is implicated in neurodegenerative diseases and ischemia-reperfusion injuries. Nevertheless, its contribution to CIH-induced cognitive dysfunction and its interaction with endoplasmic reticulum stress (ERS) remain uncertain. In this study, utilizing a CIH model in 4-week-old male mice, we investigated ferroptosis and its potential involvement in ERS regulation during cognitive dysfunction. Our findings indicate ferroptosis activation in prefrontal cortex neurons, leading to neuron loss, mitochondrial damage, decreased levels of GPX4, SLC7A11, FTL, and FTH, increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), Fe2+, ACSL4, TFRC, along with the activation of ERS-related PERK-ATF4-CHOP pathway. Treatment with the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) effectively mitigated the neuron injury and cognitive dysfunction induced by CIH, significantly reducing Fe2+ and partly restoring expression levels of ferroptosis-related proteins. Furhermore, the use of Lip-1 and DFO downregulated p-PERK, ATF4 and CHOP, and upregulated Nrf2 expression, suggesting that inhibiting ferroptosis reduce ERS and that the transcription factor Nrf2 is involved in the process. In summary, our findings indicate that cognitive impairment in CIH mice correlates with the induction of neuronal ferroptosis, facilitated by the System xc - GPX4 functional axis, lipid peroxidation, and the iron metabolism pathway, along with ferroptosis-mediated ERS in the prefrontal cortex. Nrf2 has been identified as a potential regulator of ferroptosis and ERS involved in the context of CIH.


Subject(s)
Cognitive Dysfunction , Endoplasmic Reticulum Stress , Ferroptosis , Hypoxia , Neurons , Animals , Endoplasmic Reticulum Stress/drug effects , Male , Hypoxia/metabolism , Hypoxia/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Cyclohexylamines/pharmacology , Disease Models, Animal , Reactive Oxygen Species/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Humans , Quinoxalines , Spiro Compounds , Amino Acid Transport System y+
18.
Inorg Chem ; 63(26): 12342-12349, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904258

ABSTRACT

As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , Reverse Transcriptase Inhibitors , Ruthenium , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/metabolism , Ligands , HIV-1/enzymology , HIV-1/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , RNA, Viral/metabolism , RNA, Viral/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Molecular Structure , Humans , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Long Terminal Repeat , Binding Sites
19.
J Med Chem ; 67(13): 10986-11002, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38932487

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.


Subject(s)
Antiviral Agents , Azetidines , Oxindoles , Respiratory Syncytial Virus Infections , Spiro Compounds , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/drug therapy , Animals , Oxindoles/chemistry , Oxindoles/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/pharmacokinetics , Spiro Compounds/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Azetidines/chemistry , Azetidines/pharmacology , Azetidines/administration & dosage , Azetidines/pharmacokinetics , Pre-Exposure Prophylaxis/methods , Injections, Intramuscular , Indoles/chemistry , Indoles/administration & dosage , Indoles/pharmacology , Injections, Subcutaneous , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects
20.
Bioorg Med Chem Lett ; 110: 129864, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942126

ABSTRACT

We report herein the design and discovery of novel allosteric HIV-1 integrase inhibitors. Our design concept utilized the spirocyclic moiety to restrain the flexibility of the conformation of the lipophilic part of the inhibitor. Compound 5 showed antiviral activity by binding to the nuclear lens epithelium-derived growth factor (LEDGF/p75) binding site of HIV-1 integrase (IN). The introduction of a lipophilic amide substituent into the central benzene ring resulted in a significant increase in antiviral activity against HIV-1 WT X-ray crystallography of compound 15 in complex with the integrase revealed the presence of a hydrogen bond between the oxygen atom of the amide of compound 15 and the hydroxyl group of the T125 side chain. Chiral compound 17 showed high antiviral activity, good bioavailability, and low clearance in rats.


Subject(s)
Drug Design , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Spiro Compounds , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , HIV Integrase/metabolism , HIV-1/drug effects , Crystallography, X-Ray , Rats , Structure-Activity Relationship , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Animals , Humans , Allosteric Regulation/drug effects , Molecular Structure , Models, Molecular , Binding Sites
SELECTION OF CITATIONS
SEARCH DETAIL