Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.264
Filter
1.
FASEB J ; 38(13): e23803, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963404

ABSTRACT

Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Extracellular Vesicles , Head and Neck Neoplasms , Mice, Inbred C57BL , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Mice , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Ganglia, Spinal/metabolism , Humans , Gene Amplification , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
2.
BMC Oral Health ; 24(1): 742, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937712

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, characterized by high morbidity, high mortality, and poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) has been shown to be highly expressed in various cancers. However, its biological functions, potential role as a biomarker, and its relationship with immune infiltrates in HNSCC remain unclear. Our principal objective was to analyze CTHRC1 expression, its prognostic implications, biological functions, and its effects on the immune system in HNSCC patients using bioinformatics analysis. METHODS: The expression matrix was obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). CTHRC1 expression in HNSCC was analyzed between tumor and adjacent normal tissues, different stages were compared, and its impact on clinical prognosis was assessed using Kaplan-Meier analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) were employed for enrichment analysis. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to analyze protein-protein interactions. Pearson correlation tests were used to investigate the association between CTHRC1 expression and immune checkpoints. The correlation between CTHRC1 and immune infiltration was investigated using CIBERSORT, TIMER, and ESTIMATE. RESULTS: Compared to adjacent normal tissues, CTHRC1 was found to be highly overexpressed in tumors. Increased expression of CTHRC1 was more evident in the advanced stage of HNSCC and predicted a poor prognosis. Most genes related to CTHRC1 in HNSCC were enriched in physiological functions of Extracellular matrix(ECM) and tumor. Furthermore, several immune checkpoints, such as TNFSF4 and CD276 have been shown to be associated with CTHRC1 expression. Notably, the level of CTHRC1 expression correlated significantly with immune infiltration levels, particularly activated macrophages in HNSCC. CONCLUSIONS: High expression of CTHRC1 predicts poor prognosis and is associated with immune infiltration in HNSCC, confirming its utility as a tumor marker for HNSCC. TRIAL REGISTRATION: Not applicable. All data are from public databases and do not contain any clinical trials.


Subject(s)
Biomarkers, Tumor , Extracellular Matrix Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Computational Biology , Male
3.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900797

ABSTRACT

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Large Neutral Amino Acid-Transporter 1 , Methionine , Methionine/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Cell Line, Tumor , Epigenesis, Genetic , Epigenomics/methods , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Mice , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Cell Proliferation , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cellular Reprogramming/genetics
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928200

ABSTRACT

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Squamous Cell Carcinoma of Head and Neck , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Male , Cell Line, Tumor , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Middle Aged , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/genetics , Aged , Carcinogenesis/genetics , Adult
5.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920662

ABSTRACT

Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key regulators of cancer development. However, the mode of their interaction with tumor cells or other components of the tumor microenvironment (TME) remains elusive. We established an SC-related 43-gene set as a surrogate for peripheral nerves in the TME. Head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA) were classified into low, intermediate and high SC score groups based on the expression of this gene set. Perineural invasion (PNI) and TGF-ß signaling were hallmarks of SChigh tumors, whereas SClow tumors were enriched for HPV16-positive OPSCC and higher PI3K-MTOR activity. The latter activity was partially explained by a higher frequency of PTEN mutation and PIK3CA copy number gain. The inverse association between PI3K-MTOR activity and peripheral nerve abundance was context-dependent and influenced by the TP53 mutation status. An in silico drug screening approach highlighted the potential vulnerabilities of HNSCC with variable SC scores and predicted a higher sensitivity of SClow tumors to DNA topoisomerase inhibitors. In conclusion, we have established a tool for assessing peripheral nerve abundance in the TME and provided new clinical and biological insights into their regulation. This knowledge may pave the way for new therapeutic strategies and impart proof of concept in appropriate preclinical models.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Peripheral Nerves/pathology , Peripheral Nerves/metabolism , Peripheral Nerves/virology , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Mutation/genetics , TOR Serine-Threonine Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Schwann Cells/metabolism , Schwann Cells/pathology , Schwann Cells/virology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Gene Expression Regulation, Neoplastic , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
6.
Aging (Albany NY) ; 16(12): 10579-10614, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38913914

ABSTRACT

Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.


Subject(s)
Head and Neck Neoplasms , Immunotherapy , Machine Learning , Mitophagy , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Mitophagy/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Immunotherapy/methods , Prognosis , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Mutation , Multiomics
7.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892156

ABSTRACT

Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of malignant tumor with a poor prognosis and low quality of life in the otolaryngology department. It has been found that microRNA (miRNA) plays an important role in the occurrence and development of various tumors. This study found that the expression level of miRNA-107 (miR-107) in HSCC was significantly reduced. Subsequently, we screened out the downstream direct target gene Neuronal Vesicle Trafficking Associated 1 (NSG1) related to miR-107 through bioinformatics analysis and found that the expression of NSG1 was increased in HSCC tissues. Following the overexpression of miR-107 in HSCC cells, it was observed that miR-107 directly suppressed NSG1 expression, leading to increased apoptosis, decreased proliferation, and reduced invasion capabilities of HSCC cells. Subsequent experiments involving the overexpression and knockdown of NSG1 in HSCC cells demonstrated that elevated NSG1 levels enhanced cell proliferation, migration, and invasion, while the opposite effect was observed upon NSG1 knockdown. Further investigations revealed that changes in NSG1 levels in the HSCC cells were accompanied by alterations in ERK signaling pathway proteins, suggesting a potential regulatory role of NSG1 in HSCC cell proliferation, migration, and invasion through the ERK pathway. These findings highlight the significance of miR-107 and NSG1 in hypopharyngeal cancer metastasis, offering promising targets for therapeutic interventions and prognostic evaluations for HSCC.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hypopharyngeal Neoplasms , MAP Kinase Signaling System , MicroRNAs , Humans , Male , Apoptosis/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Hypopharyngeal Neoplasms/genetics , Hypopharyngeal Neoplasms/pathology , Hypopharyngeal Neoplasms/metabolism , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
8.
Technol Cancer Res Treat ; 23: 15330338241261615, 2024.
Article in English | MEDLINE | ID: mdl-38887096

ABSTRACT

This study aimed to investigate the role of miR-558 in tumor angiogenesis by targeting heparinase (HPSE) in tongue squamous cell carcinoma (TSCC)-derived exosomes. In the present study, the role of exosome miR-558 in angiogenesis in vitro and in vivo was investigated by cell proliferation, migration, tube formation, subcutaneous tumor formation in mice, and in vivo Matrigel plug assay. The target genes of miR-558 were detected by means of dual luciferase assay. It was found that TSCC cells secrete miR-558 into the extracellular environment, with exosome as the carrier. Human umbilical vein endothelial cells (HUVEC) ingested exosomes, which not only increased the expression level of miR-558, but also enhanced their proliferation, migration, and tube formation functions. In vivo Matrigel plug assay demonstrated that TSCC cell-derived exosome miR-558 promoted neovascularization in vivo. Compared with negative control cells, TSCC cells overexpressing miR-558 formed subcutaneous tumors in nude mice, with larger volume, heavier mass, and more vascularization. Dual luciferase assay confirmed that HPSE was the direct target gene regulated by miR-558. HPSE promoted the proliferation, migration, and tube formation of HUVECs, and the knockout of HPSE could downregulate the pro-angiogenic effect of miR-558. In summary, miR-558 in TSCC exosomes promotes the proliferation, migration, and tube formation of HUVECs by targeting HPSE, and enhancing tumor angiogenesis.


Subject(s)
Cell Movement , Cell Proliferation , Exosomes , Gene Expression Regulation, Neoplastic , Heparin Lyase , MicroRNAs , Neovascularization, Pathologic , Tongue Neoplasms , Humans , Animals , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/genetics , Tongue Neoplasms/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Movement/genetics , Cell Line, Tumor , Heparin Lyase/metabolism , Heparin Lyase/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Human Umbilical Vein Endothelial Cells , Disease Models, Animal , Xenograft Model Antitumor Assays , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Angiogenesis
9.
Int J Oral Sci ; 16(1): 44, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886346

ABSTRACT

Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.


Subject(s)
Head and Neck Neoplasms , Serine , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Prognosis , Serine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/therapy , Glycine/metabolism , Carbon/metabolism , Transcriptome , Tumor Microenvironment , Cell Proliferation , Cell Line, Tumor , Animals
10.
Anal Cell Pathol (Amst) ; 2024: 8810804, 2024.
Article in English | MEDLINE | ID: mdl-38826849

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) poses significant challenges with poor survival rates and limited therapeutic strategies. Our study, using The Cancer Genome Atlas (TCGA) data, assesses cancer-associated fibroblast (CAF) gene signatures' clinical relevance. In our analysis across TCGA tumor types, differential gene expression analysis revealed that fibroblast activation protein (FAP) is upregulated in tumor tissues and associated with poorer survival rates in HNSCC. Furthermore, mechanistic studies employing gene-silencing techniques substantiated that FAP knockout led to a significant decrease in cellular proliferation, invasion, and migration in HNSCC cell lines. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we established that high FAP expression correlates with vital biological processes such as extracellular matrix organization, angiogenesis, and cellular motility. Importantly, FAP was found to regulate these processes by promoting the expression of key proteins involved in epithelial-mesenchymal transition-related pathways. Additionally, our analysis revealed a significant correlation between FAP expression and the expression profiles of immune checkpoint molecules, underscoring its potential role in immune modulation. Collectively, our findings illuminate FAP's pivotal role in HNSCC pathogenesis and its potential as a prognostic biomarker and therapeutic target. This research lays the groundwork for understanding the multifaceted roles and regulatory mechanisms of CAFs in HNSCC, thereby offering valuable perspectives for the development of targeted therapeutic strategies aimed at improving patient outcomes.


Subject(s)
Biomarkers, Tumor , Endopeptidases , Gelatinases , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Membrane Proteins , Serine Endopeptidases , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Endopeptidases/metabolism , Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Gelatinases/metabolism , Gelatinases/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , Cell Movement/genetics
11.
J Cell Mol Med ; 28(12): e18482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899556

ABSTRACT

Hypoxia poses a significant challenge to the effectiveness of radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients, and it is imperative to discover novel approaches to overcome this. In this study, we investigated the underlying mechanisms contributing to x-ray radioresistance in HPV-negative HNSCC cells under mild hypoxic conditions (1% oxygen) and explored the potential for autophagy modulation as a promising therapeutic strategy. Our findings show that HNSCC cells exposed to mild hypoxic conditions exhibit increased radioresistance, which is largely mediated by the hypoxia-inducible factor (HIF) pathway. We demonstrate that siRNA knockdown of HIF-1α and HIF-1ß leads to increased radiosensitivity in HNSCC cells under hypoxia. Hypoxia-induced radioresistance was not attributed to differences in DNA double strand break repair kinetics, as these remain largely unchanged under normoxic and hypoxic conditions. Rather, we identify autophagy as a critical protective mechanism in HNSCC cells following irradiation under mild hypoxia conditions. Targeting key autophagy genes, such as BECLIN1 and BNIP3/3L, using siRNA sensitizes these cells to irradiation. Whilst autophagy's role in hypoxic radioresistance remains controversial, this study highlights the importance of autophagy modulation as a potential therapeutic approach to enhance the effectiveness of radiotherapy in HNSCC.


Subject(s)
Autophagy , Cell Hypoxia , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck , Humans , Autophagy/radiation effects , Autophagy/genetics , Radiation Tolerance/genetics , Cell Line, Tumor , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Beclin-1/metabolism , Beclin-1/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA Repair/radiation effects , DNA Repair/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , X-Rays , DNA Breaks, Double-Stranded/radiation effects , Tumor Suppressor Proteins
12.
Sci Rep ; 14(1): 13367, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862693

ABSTRACT

Patients with distant metastasis of head and neck squamous cell carcinoma (HNSCC) often have a poor prognosis. However, early diagnosis of distant metastasis is challenging in clinical practice, and distant metastasis is often only detected in the late stages of tumor metastasis through imaging techniques. In this study, we utilized data from HNSCC patients collected from the TCGA database. Patients were divided into distant metastasis and nonmetastasis groups based on the tumor-node-metastasis (TNM) stage. We analyzed the differentially expressed genes between the two groups (DM/non-M DEGs) and their associated lncRNAs and generated a predictive model based on 23 lncRNAs that were significantly associated with the occurrence of distant metastasis in HNSCC patients. On this basis, we built a nomogram to predict the distant metastasis of HNSCC patients. Moreover, through WGCNA and Cytoscape software analysis of DM/non-M DEGs, we identified the gene most closely related to HNSCC distant metastasis: EIF5A. Our findings were validated using GEO data; EIF5A expression was significantly increased in the tumor tissues of HNSCC patients with distant metastasis. We then predicted miRNAs that can directly bind to EIF5A via the TargetScan and miRWalk websites, intersected them with differentially expressed miRNAs in the two groups from the TCGA cohort, and identified the only overlapping miRNA, miR-424; we predicted the direct binding site of EIF5A and miR-424 via the miRWalk website. Immunohistochemistry further revealed high expression of EIF5A in the primary tumor tissue of HNSCC patients with distant metastasis. These results provide a new perspective for the early diagnosis of distant metastasis in HNSCC patients and the study of the mechanisms underlying HNSCC distant metastasis.


Subject(s)
Eukaryotic Translation Initiation Factor 5A , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Neoplasm Metastasis , Nomograms , Peptide Initiation Factors , RNA-Binding Proteins , Squamous Cell Carcinoma of Head and Neck , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Prognosis , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
13.
Head Face Med ; 20(1): 37, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890650

ABSTRACT

BACKGROUND: The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvß6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS: ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS: In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS: ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Integrin beta Chains , Mouth Neoplasms , Humans , Cell Movement/genetics , Cell Proliferation/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Integrin beta Chains/genetics , Gene Knockout Techniques , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Neoplasm Invasiveness/genetics , Gene Expression Regulation, Neoplastic
15.
Cancer Control ; 31: 10732748241251571, 2024.
Article in English | MEDLINE | ID: mdl-38869038

ABSTRACT

OBJECTIVES: To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS: Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS: Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION: Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.


ObjectivesInvestigating the dysregulated signaling pathways of head and neck squamous cell carcinoma (HNSCC) linked with circulating tumor cells (CTCs) using single-cell molecular characterization.IntroductionHNSCC poses a significant global health burden with poor survival rates despite advancements in treatment. Metastatic activity from treatment-resistant cancer cells remains a major challenge in developing effective treatments. However, the molecular profiles of cancer cells, particularly CTCs, are not well-understood.MethodsWe analyzed in-situ HNSCC tumors and corresponding CTCs using surrogate biomarkers to detect metastasis, a technique not widely used in HNSCC treatment protocols.ResultsOur study revealed complex CTCs in metastatic HNSCC patients characterized by gene expression and mutational gene profiling via single-cell RNASeq (scRNASeq). These profiles confirmed molecular pathways inherent in CTCs, further validated by previous research.ConclusionThrough our research, we identified five dysregulated signaling pathways in CTCs, suggesting potential biomarker panels for HNSCC screening in situ tumors.


Subject(s)
Head and Neck Neoplasms , Neoplastic Cells, Circulating , Signal Transduction , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/blood , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/metabolism , Single-Cell Analysis/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Male , Female , Gene Expression Profiling/methods , Middle Aged , Gene Expression Regulation, Neoplastic
16.
Cell Mol Life Sci ; 81(1): 282, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943031

ABSTRACT

Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.


Subject(s)
Cetuximab , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cetuximab/pharmacology , Drug Resistance, Neoplasm/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Animals , Mice , Cell Nucleus/metabolism , Cell Nucleus/genetics , Female , Mice, Nude
17.
Cancer Med ; 13(12): e7346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923758

ABSTRACT

OBJECTIVES: Previous studies have demonstrated that obesity may impact the efficacy of anti-PD1 therapy, but the underlying mechanism remains unclear. In this study, our objective was to determine the prognostic value of obesity in patients with oral tongue squamous cell carcinoma (OTSCC) treated with pembrolizumab and establish a subtype based on fatty acid metabolism-related genes (FAMRGs) for immunotherapy. MATERIALS AND METHODS: We enrolled a total of 56 patients with OTSCC who underwent neoadjuvant anti-PD1 therapy. Univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis, and immunohistochemistry staining were performed. Additionally, we acquired the gene expression profiles of pan-cancer samples and conducted GSEA and KEGG pathway analysis. Moreover, data from TCGA, MSigDB, UALCAN, GEPIA and TIMER were utilized to construct the FAMRGs subtype. RESULTS: Our findings indicate that high Body Mass Index (BMI) was significantly associated with improved PFS (HR = 0.015; 95% CI, 0.001 to 0.477; p = 0.015), potentially attributed to increased infiltration of PD1 + T cells. A total of 91 differentially expressed FAMRGs were identified between the response and non-response groups in pan-cancer patients treated with immunotherapy. Of these, 6 hub FAMRGs (ACSL5, PLA2G2D, PROCA1, IL4I1, UBE2L6 and PSME1) were found to affect PD-1 expression and T cell infiltration in HNSCC, which may impact the efficacy of anti-PD1 therapy. CONCLUSION: This study demonstrates that obesity serves as a robust prognostic predictor for patients with OTSCC undergoing neoadjuvant anti-PD1 therapy. Furthermore, the expression of 6 hub FAMRGs (ACSL5, PLA2G2D, PROCA1, IL4I1, UBE2L6 and PSME1) plays a pivotal role in the context of anti-PD1 therapy and deserves further investigation.


Subject(s)
Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Obesity , Tongue Neoplasms , Humans , Tongue Neoplasms/drug therapy , Tongue Neoplasms/metabolism , Tongue Neoplasms/immunology , Tongue Neoplasms/pathology , Tongue Neoplasms/mortality , Tongue Neoplasms/genetics , Female , Male , Neoadjuvant Therapy/methods , Obesity/metabolism , Obesity/complications , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Prognosis , Aged , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Adult , Body Mass Index , Biomarkers, Tumor/metabolism
18.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920638

ABSTRACT

Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.


Subject(s)
Membrane Proteins , Tumor Suppressor Proteins , Humans , Male , Female , Prognosis , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Middle Aged , Membrane Proteins/metabolism , Membrane Proteins/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomaviridae/genetics , Aged , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Kaplan-Meier Estimate , Adult
19.
J Biochem Mol Toxicol ; 38(7): e23752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923759

ABSTRACT

Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.


Subject(s)
Homeodomain Proteins , Mouth Neoplasms , Phosphopyruvate Hydratase , Transcriptional Activation , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cell Line, Tumor , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Warburg Effect, Oncologic , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Animals , Gene Expression Regulation, Neoplastic , Disease Progression , Mice , Mice, Nude , Male , Female , Glycolysis , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
20.
Front Biosci (Landmark Ed) ; 29(6): 220, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38940026

ABSTRACT

BACKGROUND: The incidence rate of oropharyngeal squamous cell carcinoma (OPSCC) worldwide is alarming. In the clinical community, there is a pressing necessity to comprehend the etiology of the OPSCC to facilitate the administration of effective treatments. METHODS: This study confers an integrative genomics approach for identifying key oncogenic drivers involved in the OPSCC pathogenesis. The dataset contains RNA-Sequencing (RNA-Seq) samples of 46 Human papillomavirus-positive head and neck squamous cell carcinoma and 25 normal Uvulopalatopharyngoplasty cases. The differential marker selection is performed between the groups with a log2FoldChange (FC) score of 2, adjusted p-value < 0.01, and screened 714 genes. The Particle Swarm Optimization (PSO) algorithm selects the candidate gene subset, reducing the size to 73. The state-of-the-art machine learning algorithms are trained with the differentially expressed genes and candidate subsets of PSO. RESULTS: The analysis of predictive models using Shapley Additive exPlanations revealed that seven genes significantly contribute to the model's performance. These include ECT2, LAMC2, and DSG2, which predominantly influence differentiating between sample groups. They were followed in importance by FAT1, PLOD2, COL1A1, and PLAU. The Random Forest and Bayes Net algorithms also achieved perfect validation scores when using PSO features. Furthermore, gene set enrichment analysis, protein-protein interactions, and disease ontology mining revealed a significant association between these genes and the target condition. As indicated by Shapley Additive exPlanations (SHAPs), the survival analysis of three key genes unveiled strong over-expression in the samples from "The Cancer Genome Atlas". CONCLUSIONS: Our findings elucidate critical oncogenic drivers in OPSCC, offering vital insights for developing targeted therapies and enhancing understanding its pathogenesis.


Subject(s)
Biomarkers, Tumor , Oropharyngeal Neoplasms , Humans , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/virology , Biomarkers, Tumor/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Artificial Intelligence , Gene Expression Regulation, Neoplastic , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/virology , Algorithms , Sequence Analysis, RNA/methods , Machine Learning , Papillomaviridae/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...