Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.357
Filter
1.
PLoS One ; 19(7): e0305211, 2024.
Article in English | MEDLINE | ID: mdl-38968222

ABSTRACT

Staphylococcus pseudintermedius is an opportunistic pathogen in dogs, and infection in humans is increasingly found, often linked to contact with dogs. We conducted a retrospective genotyping and antimicrobial susceptibility testing study of 406 S. pseudintermedius isolates cultured from animals (dogs, cats and an otter) and humans across Scotland, from 2007 to 2020. Seventy-five sequence types (STs) were identified, among the 130 isolates genotyped, with 59 seen only once. We observed the emergence of two methicillin resistant Staphylococcus pseudintermedius (MRSP) clones in Scotland: ST726, a novel locally-evolving clone, and ST551, first reported in 2015 in Poland, possibly linked to animal importation to Scotland from Central Europe. While ST71 was the most frequent S. pseudintermedius strain detected, other lineages that have been replacing ST71 in other countries, in addition to ST551, were detected. Multidrug resistance (MDR) was detected in 96.4% of MRSP and 8.4% of MSSP. A single MRSP isolate was resistant to mupirocin. Continuous surveillance for the emergence and dissemination of novel MDR MRSP in animals and humans and changes in antimicrobial susceptibility in S. pseudintermedius is warranted to minimise the threat to animal and human health.


Subject(s)
Methicillin Resistance , Pets , Staphylococcal Infections , Staphylococcus , Whole Genome Sequencing , Animals , Scotland , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Dogs/microbiology , Cats/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Humans , Methicillin Resistance/genetics , Pets/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Retrospective Studies , Dog Diseases/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Cat Diseases/microbiology
2.
BMC Microbiol ; 24(1): 263, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026151

ABSTRACT

BACKGROUND: Coagulase-negative Staphylococcus species are an emerging cause of intramammary infection, posing a significant economic and public health threat. The aim of this study was to assess the occurrence of coagulase-negative Staphylococcus species in bovine milk and dairy farms in Northwestern Ethiopia and to provide information about their antibiotic susceptibility and virulence gene profiles. METHODS: The cross-sectional study was conducted from February to August 2022. Coagulase-negative Staphylococcus species were isolated from 290 milk samples. Species isolation and identification were performed by plate culturing and biochemical tests and the antimicrobial susceptibility pattern of each isolate was determined by the Kirby-Bauer disc diffusion test. The single-plex PCR was used to detect the presence of virulent genes. The STATA software version 16 was used for data analysis. The prevalence, proportion of antimicrobial resistance and the number of virulent genes detected from coagulase-negative Staphylococcus species were analyzed using descriptive statistics. RESULTS: Coagulase-negative Staphylococcus species were isolated in 28.6%, (95% CI: 23.5-34.2) of the samples. Of these, the S. epidermidis, S. sciuri, S. warneri, S. haemolyticus, S. simulans, S. chromogens, S. cohnii, and S. captis species were isolated at the rates of 11, 5.2, 3.4, 3.1, 3.1, 1, 1, and 0.7% respectively. All the isolates showed a high percentage (100%) of resistance to Amoxicillin, Ampicillin, and Cefotetan and 37.5% of resistance to Oxacillin. The majority (54.2%) of coagulase-negative isolates also showed multidrug resistance. Coagulase-negative Staphylococcus species carried the icaD, pvl, mecA, hlb, sec, and hla virulent genes at the rates of 26.5%, 22.1%, 21.7%, 9.6%, 9.6% and 8.4% respectively. CONCLUSION: The present study revealed that the majority of the isolates (54.2%) were found multidrug-resistant and carriage of one or more virulent and enterotoxin genes responsible for intramammary and food poisoning infections. Thus, urgent disease control and prevention measures are warranted to reduce the deleterious impact of coagulase-negative species. To the best of our knowledge, this is the first study in Ethiopia to detect coagulase-negative Staphylococcus species with their associated virulent and food poisoning genes from bovine milk.


Subject(s)
Anti-Bacterial Agents , Coagulase , Microbial Sensitivity Tests , Milk , Staphylococcus , Animals , Milk/microbiology , Cattle , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus/enzymology , Ethiopia , Coagulase/genetics , Coagulase/metabolism , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Virulence/genetics , Virulence Factors/genetics , Female , Genes, Bacterial/genetics , Mastitis, Bovine/microbiology
3.
BMC Genomics ; 25(1): 575, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849728

ABSTRACT

BACKGROUND: Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS: The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS: Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.


Subject(s)
Bacteriocins , Genome, Bacterial , Staphylococcus , Staphylococcus/genetics , Staphylococcus/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Fermentation , Genomics/methods , Secondary Metabolism/genetics , Meat/microbiology , Multigene Family , Phylogeny
4.
Sci Rep ; 14(1): 14850, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937465

ABSTRACT

Nasally colonized staphylococci carry antibiotic resistance genes and may lead to serious opportunistic infections. We are investigating nasal carriage of Staphylococcus aureus and Staphylococci other than S. aureus (SOSA) among young volunteers in Egypt to determine their risk potential. Nasal swabs collected over 1 week in June 2019 from 196 volunteers were cultured for staphylococcus isolation. The participants were interviewed to assess sex, age, general health, hospitalization and personal hygiene habits. Identification was carried out using biochemical tests and VITEK 2 automated system. Disc diffusion and minimum inhibitory concentration tests were performed to determine antibiotic susceptibility. Screening for macrolide resistance genes (ermA, ermB, ermC, ermT and msrA) was performed using polymerase chain reaction. Thirty four S. aureus and 69 SOSA were obtained. Multi-drug resistance (MDR) was detected among most staphylococcal species, ranging from 30.77% among S. hominis to 50% among S. epidermidis. Phenotypic resistance to all tested antibiotics, except for linezolid, was observed. Susceptibility to rifampicin, vancomycin and teicoplanin was highest. ermB showed the highest prevalence among all species (79.41% and 94.2% among S. aureus and SOSA, respectively), and constitutive macrolide-lincosamide-streptogramin B (MLSB) resistance was equally observed in S. aureus and SOSA (11.11% and 16.22%, respectively), whereas inducible MLSB resistance was more often found in S. aureus (77.78% and 43.24%, respectively). The species or resistance level of the carried isolates were not significantly associated with previous hospitalization or underlying diseases. Although over all colonization and carriage of resistance genes are within normal ranges, the increased carriage of MDR S. aureus is alarming. Also, the fact that many macrolide resitance genes were detected should be a warning sign, particularly in case of MLSB inducible phenotype. More in depth analysis using whole genome sequencing would give a better insight into the MDR staphylococci in the community in Egypt.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Phenotype , Staphylococcal Infections , Staphylococcus , Humans , Egypt/epidemiology , Female , Male , Staphylococcus/genetics , Staphylococcus/isolation & purification , Staphylococcus/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Adult , Young Adult , Genotype , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Adolescent
5.
Int J Food Microbiol ; 421: 110781, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852217

ABSTRACT

This study used hydrogen peroxide (H2O2) treatment to overexpress the gene of nitric oxide synthase (nos) in Staphylococcus vitulinus, which was then inoculated into fermented sausages to observe its effect on colour development. The results showed that a low concentration of H2O2 (50 mM) could up-regulate the expression of nos by increasing the oxidative stress level of S. vitulinus. At 2 h after treatment, the expression of nos in S. vitulinus was the highest (P < 0.05), and the relative enzyme activity was increased to about 1.5 times that of the untreated. The growth of S. vitulinus was not substantially affected by 50-mM H2O2 treatment (P > 0.05). When H2O2-treated S. vitulinus was inoculated into fermented sausages, the content of nitrosomyoglobin was increased, and the a*-value (indicating redness) was not significantly different from that in the group treated with nitrite (P > 0.05). This study provides a potential method to enhance the ability of S. vitulinus for colourising fermented sausage by inducing the overexpression of nos.


Subject(s)
Fermentation , Hydrogen Peroxide , Meat Products , Nitric Oxide Synthase , Staphylococcus , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Meat Products/microbiology , Staphylococcus/drug effects , Staphylococcus/enzymology , Staphylococcus/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/genetics , Oxidative Stress , Color , Food Microbiology , Animals
6.
Microbiol Spectr ; 12(7): e0344123, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864649

ABSTRACT

This study aimed to characterize the composition of intestinal and nasal microbiota in septic patients and identify potential microbial biomarkers for diagnosis. A total of 157 subjects, including 89 with sepsis, were enrolled from the affiliated hospital. Nasal swabs and fecal specimens were collected from septic and non-septic patients in the intensive care unit (ICU) and Department of Respiratory and Critical Care Medicine. DNA was extracted, and the V4 region of the 16S rRNA gene was amplified and sequenced using Illumina technology. Bioinformatics analysis, statistical processing, and machine learning techniques were employed to differentiate between septic and non-septic patients. The nasal microbiota of septic patients exhibited significantly lower community richness (P = 0.002) and distinct compositions (P = 0.001) compared to non-septic patients. Corynebacterium, Staphylococcus, Acinetobacter, and Pseudomonas were identified as enriched genera in the nasal microbiota of septic patients. The constructed machine learning model achieved an area under the curve (AUC) of 89.08, indicating its efficacy in differentiating septic and non-septic patients. Importantly, model validation demonstrated the effectiveness of the nasal microecological diagnosis prediction model with an AUC of 84.79, while the gut microecological diagnosis prediction model had poor predictive performance (AUC = 49.24). The nasal microbiota of ICU patients effectively distinguishes sepsis from non-septic cases and outperforms the gut microbiota. These findings have implications for the development of diagnostic strategies and advancements in critical care medicine.IMPORTANCEThe important clinical significance of this study is that it compared the intestinal and nasal microbiota of sepsis with non-sepsis patients and determined that the nasal microbiota is more effective than the intestinal microbiota in distinguishing patients with sepsis from those without sepsis, based on the difference in the lines of nasal specimens collected.


Subject(s)
Bacteria , Biomarkers , Feces , Intensive Care Units , Microbiota , RNA, Ribosomal, 16S , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Aged , RNA, Ribosomal, 16S/genetics , Biomarkers/analysis , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Feces/microbiology , Adult , Machine Learning , Gastrointestinal Microbiome , Nose/microbiology , Corynebacterium/isolation & purification , Corynebacterium/genetics , Acinetobacter/isolation & purification , Acinetobacter/genetics , Aged, 80 and over , Staphylococcus/isolation & purification , Staphylococcus/genetics , Pseudomonas/isolation & purification , Pseudomonas/genetics
7.
Food Res Int ; 189: 114544, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876605

ABSTRACT

Previous studies have demonstrated that Staphylococcus cohnii WX_M8 and S. saprophyticus MY_A10 significantly enhanced the flavor of Chinese bacon in a mixed fermentation. However, due to the complexity of the processing, the contribution of the bacteria is deceptive when investigating only the phenotypic changes at the time of fermentation. In order to clarify the metabolic mechanisms of mixed fermentation, a technological characterization, whole genome and comparative genomics analysis, and metabolites were approached in this study. Results showed that differences in tolerance characteristics existed between WX_M8 and MY_A10. And the genomes of both the two strains consisted of one chromosome and four circular plasmids. Their genome sizes were 2.74 Mp and 2.62 Mp, the GC contents were 32.45% and 33.18%, and the predicted coding genes (CDS) were 2564 and 2541, respectively. Based on the annotation of gene functions and assessment of metabolic pathways in the KEGG database, WX_M8 and MY_A10 strains were found to harbor complete protein degradation and amino acid metabolic pathways, pyruvate and butanol metabolic pathways, and isoleucine metabolic pathways, and their diverse enzyme-encoding genes superimposed the metabolic functions, whereas the alcohol dehydrogenase genes, adh and frmA, achieved complementary functions in the production of esters. Comparative genomics analysis revealed a diversity of encoding genes of aminotransferases and a greater metabolism for sulfur-containing amino acids, aromatic amino acids, and branched-chain amino acids in the mixed fermentation of strains WX_M8 and MY_A10. Metabolites analysis showed that MY_A10 focused on the production of soluble peptides and free amino acids (FAAs), while WX_M8 focused on volatile organic compounds (VOCs), resulting in a significant enhancement of the flavor of Chinese bacon when the two were mixed fermented. This result may provide direction for strains WX_M8 and MY_A10 to be used as starter cultures and targeted to regulate flavor.


Subject(s)
Fermentation , Genome, Bacterial , Genomics , Staphylococcus , Staphylococcus/genetics , Staphylococcus/metabolism , Food Microbiology , Staphylococcus saprophyticus/genetics , Staphylococcus saprophyticus/metabolism , Metabolic Networks and Pathways/genetics , Meat Products/microbiology
8.
Vet Microbiol ; 294: 110133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820726

ABSTRACT

Non-aureus staphylococci (NAS) are an essential group of bacteria causing antimicrobial resistant intramammary infections in livestock, particularly dairy cows. Therefore, bacteriophages emerge as a potent bactericidal agent for NAS mastitis. This study aimed to obtain NAS-specific bacteriophages using bacterial strains isolated from cows with mastitis, subsequently evaluating their morphological, genomic, and lytic characteristics. Four distinct NAS bacteriophages were recovered from sewage or the environment of Chinese dairy farms; PT1-1, PT94, and PT1-9 were isolated using Staphylococcus chromogenes and PT1-4 using Staphylococcus gallinarum. Both PT1-1 (24/54, 44 %) and PT94 (28/54, 52 %) had broader lysis than PT1-4 (3/54, 6 %) and PT1-9 (10/54, 19 %), but PT1-4 and PT1-9 achieved cross-species lysis. All bacteriophages had a short latency period and good environmental tolerance, including surviving at pH=4-10 and at 30-60℃. Except for PT1-9, all bacteriophages had excellent bactericidal efficacy within 5 h of co-culture with host bacteria in vitro at various multiplicity of infection (MOIs). Based on whole genome sequencing, average nucleotide identity (ANI) analysis of PT1-1 and PT94 can be classified as the same species, consistent with whole-genome synteny analysis. Although motifs shared by the 4 bacteriophages differed little from those of other bacteriophages, a phylogenetic tree based on functional proteins indicated their novelty. Moreover, based on whole genome comparisons, we inferred that cross-species lysis of bacteriophage may be related to the presence of "phage tail fiber." In conclusion 4 novel NAS bacteriophages were isolated; they had good biological properties and unique genomes, with potential for NAS mastitis therapy.


Subject(s)
Genome, Viral , Mastitis, Bovine , Sewage , Staphylococcus , Sewage/virology , Sewage/microbiology , Animals , Staphylococcus/virology , Staphylococcus/drug effects , Staphylococcus/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Staphylococcus Phages/genetics , Staphylococcus Phages/physiology , Staphylococcus Phages/classification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteriophages/physiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Phylogeny , Genomics , Whole Genome Sequencing
9.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739120

ABSTRACT

Cutaneous ulcers are common in yaws-endemic areas. Although often attributed to 'Treponema pallidum subsp. pertenue' and Haemophilus ducreyi, quantitative PCR has highlighted a significant proportion of these ulcers are negative for both pathogens and are considered idiopathic. This is a retrospective analysis utilising existing 16S rRNA sequencing data from two independent yaws studies that took place in Ghana and the Solomon Islands. We characterized bacterial diversity in 38 samples to identify potential causative agents for idiopathic cutaneous ulcers. We identified a diverse bacterial profile, including Arcanobacterium haemolyticum, Campylobacter concisus, Corynebacterium diphtheriae, Staphylococcus spp. and Streptococcus pyogenes, consistent with findings from previous cutaneous ulcer microbiome studies. No single bacterial species was universally present across all samples. The most prevalent bacterium, Campylobacter ureolyticus, appeared in 42% of samples, suggesting a multifactorial aetiology for cutaneous ulcers in yaws-endemic areas. This study emphasizes the need for a nuanced understanding of potential causative agents. The findings prompt further exploration into the intricate microbial interactions contributing to idiopathic yaw-like ulcers, guiding future research toward comprehensive diagnostic and therapeutic strategies.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Skin Ulcer , Humans , RNA, Ribosomal, 16S/genetics , Skin Ulcer/microbiology , Ghana , Male , Yaws/microbiology , Yaws/diagnosis , Retrospective Studies , Female , Adult , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Melanesia , Middle Aged , Staphylococcus/genetics , Staphylococcus/isolation & purification , Staphylococcus/classification , Streptococcus pyogenes/genetics , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/classification , Arcanobacterium/genetics , Arcanobacterium/isolation & purification , Campylobacter/genetics , Campylobacter/isolation & purification , Campylobacter/classification
10.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38817159

ABSTRACT

Milk is a source of essential nutrients, but food safety across the milk supply chain has emerged as an integral part of food trade. Of the several food safety hazards, antimicrobial-resistant Staphylococcus species have emerged as one of the major microbial hazards with significant public health concerns. The present crosssectional study was undertaken with the objective to isolate Staphylococcus species from the milk supply chain, characterize isolates for antimicrobial resistance, and trace the origin of isolates using molecular techniques. Samples collected from the formal and informal milk supply chains showed prevalence of Staphylococcus species of 4.3% (n=720); isolates were identified as coagulase-positive (S. aureus 67.7% and S. intermedius 6.4%) and coagulase-negative (S. lentus 9.6%, S. sciuri 3.2%, S. xylosus 3.2%, S. schleiferi 3.2%, S. felis 3.2%, and S. gallinarum 3.2%) species. Staphylococcus isolates showed antimicrobial resistance to methicillin (32.2%), ß-lactam (41.9%), and macrolide-lincosamide-streptogramin B (3.2%). Staphylococcus isolates phenotypically resistant to methicillin also carried the mecA gene and displayed diverse pulsed field gel electrophoresis (PFGE) profiles, indicating their diverse origins in the milk supply chain. Based on the similarity of PFGE profile, the origin of one of the Staphylococcus isolates was traced to the soil in contact with milch cows. The findings of this study highlight the need for more comprehensive microbial risk analysis studies across the milk supply chain, capacity building, creation of awareness among stakeholders about the judicious use of antimicrobials, and protection of public health using a One-Health approach.


Subject(s)
Anti-Bacterial Agents , Milk , Staphylococcus , Milk/microbiology , Animals , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Food Microbiology , Humans , Cattle , Bacterial Proteins/genetics , Coagulase/genetics , Coagulase/metabolism , Drug Resistance, Bacterial/genetics
11.
Vet J ; 305: 106153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821205

ABSTRACT

Staphylococcus spp. are growing pathogens in humans and companion animals. The emergence of multidrug-resistant bacterial infections, such as methicillin-resistant Staphylococcus-associated infections, due to zoonotic transmission, is a major public health concern. Domestic animals, such as dogs and cats, are possible reservoirs of multi-resistant bacterial species, which makes it relevant to monitor them due to their proximity to humans. However, there is a lack of information on the real scenario in Europe, especially in Portugal, particularly for animal infections caused by Staphylococcus spp. Therefore, this study aimed to investigate the antimicrobial resistance profile of Staphylococcus spp. isolated from cats and dogs diagnosed with infection in Northern Portugal. During 2021-2023, 96 Staphylococcus isolates from dogs and cats with symptoms of bacterial infection, including animals being treated in veterinary clinics/hospitals and cadavers submitted for necropsy at INIAV were included in the study collection. Of the 96 isolates, 63 were from dogs and 33 were Staphylococcus spp. from cats, most of which were isolated from ear (57% and 18%, respectively), skin (19 % and 27 %, respectively) and respiratory tract infections (6 % and 27 %, respectively). Among all the isolates, 12 different Staphylococcus spp. were identified, with Staphylococcus pseudintermedius being the most identified (61 % from dogs and 30 % from cats). It is noteworthy that 36 % of the isolates were multi-drug resistant and 25 % of the isolates showed a methicillin-resistant phenotype, with the mecA gene having been identified in all these isolates. This study highlights a high occurrence of multidrug-resistant Staphylococcus spp. in companion animals in Northern Portugal. This underlines the potential for cats and dogs to act as reservoirs of antimicrobial resistance, that can be transmitted to humans, posing a serious threat to public health.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Pets , Staphylococcal Infections , Staphylococcus , Animals , Cats , Dogs , Portugal/epidemiology , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Cat Diseases/microbiology , Cat Diseases/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Microbial Sensitivity Tests/veterinary , Drug Resistance, Multiple, Bacterial , Drug Resistance, Bacterial
12.
Vet Microbiol ; 294: 110104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768556

ABSTRACT

The evolutionary lineage and taxonomy of the Australian dingo is controversial, however recent genomic and gut metagenomic research has suggested that dingoes are evolutionarily distinct from modern dogs. Staphylococcus species are known commensal organisms of dogs and other mammals. In this study we took the opportunity to determine the carriage rate and antimicrobial resistance profiles of Staphylococcus species from 15 captive Australian dingoes. S. pseudintermedius was the only coagulase-positive species recovered, isolated from 6/15 (40%) and 9/13 (69%) of the animals during the 2020 (winter) and 2021 (summer) sampling times, respectively. Twenty-three coagulase-negative isolates were characterised, with S. equorum being the most frequently (20/23, 87%) recovered species. Two isolates of S. equorum had their genomes sequenced to learn more about this species. Antimicrobial resistance amongst both coagulase-positive and -negative isolates was low; with resistance to only 3 of 12 antimicrobials observed: penicillin, erythromycin, and trimethoprim. We have shown that the Australian dingo is a host organism for S. pseudintermedius much like it is in dogs, however the carriage rate was lower than has previously been reported from dogs in Australia.


Subject(s)
Anti-Bacterial Agents , Carrier State , Staphylococcal Infections , Staphylococcus , Animals , Staphylococcus/drug effects , Staphylococcus/classification , Staphylococcus/genetics , Staphylococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Carrier State/microbiology , Carrier State/veterinary , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Victoria/epidemiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Dogs/microbiology , Canidae/microbiology , Male , Female
13.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704526

ABSTRACT

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Subject(s)
Prophages , Recombination, Genetic , Prophages/genetics , Campylobacter/virology , Campylobacter/genetics , Staphylococcus/virology , Staphylococcus/genetics , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Listeria/virology , Listeria/genetics , Salmonella/virology , Salmonella/genetics , Evolution, Molecular , Bacteria/virology , Bacteria/genetics
14.
Int J Food Microbiol ; 418: 110726, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38704995

ABSTRACT

Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 µg/mL) and teicoplanin (MICs <0.25-4 µg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.


Subject(s)
Anti-Bacterial Agents , Clindamycin , Coagulase , Microbial Sensitivity Tests , Staphylococcus , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Brazil , Anti-Bacterial Agents/pharmacology , Coagulase/metabolism , Animals , Clindamycin/pharmacology , Methicillin/pharmacology , Animal Feed/microbiology , Food Microbiology , Pets/microbiology , Drug Resistance, Multiple, Bacterial/genetics
15.
Int J Food Microbiol ; 418: 110740, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38754174

ABSTRACT

Antimicrobial resistance (AMR) poses a significant challenge to global health, and the presence of antibiotic resistance genes (ARGs) in food poses a potential threat to public health. Traditional Chinese fermented meat products (FMPs) are highly favored because of their unique flavors and cultural value. However, microbial safety and the potential distribution and composition of AMR in these products remain unclear. In this study, a comprehensive analysis of bacterial composition and antibiotic-resistant populations in 216 samples of traditional fermented meat products from different regions of China was conducted using a metagenomic approach. Staphylococcus was the most abundant genus in the samples, accounting for an average abundance of 29.9 %, followed by Tetragenococcus (17.1 %), and Latilactobacillus (3.6 %). A core resistome of FMP samples was constructed for the first time using co-occurrence network analysis, which revealed the distribution and interrelationships of ARGs and bio/metal-resistant genes (BMRGs). Random forest analysis identified the lincosamide nucleotidyltransferase lnuA and the multidrug and toxic compound extrusion (MATE) transporter abeM as potential indicators for assessing the overall abundance of the core resistome. Additionally, Staphylococcus, Acinetobacter, and Pseudomonas were identified as hosts constituting the core resistome. Despite their low abundance, the latter two still serve as major reservoirs of antibiotic resistance genes. Notably, Lactococcus cremoris was identified as the key host for tetracycline resistance genes in the samples, highlighting the need for enhanced resistance monitoring in lactic acid bacteria. Based on our findings, in the microbial safety assessment of fermented meat products, beyond common foodborne pathogens, attention should be focused on detecting and controlling coagulase-negative Staphylococcus, Acinetobacter, and Pseudomonas, and addressing bacterial resistance. The quantitative detection of lnuA and abeM could provide a convenient and rapid method for assessing the overall abundance of the core resistome. Our findings have important implications for the control of bacterial resistance and prevention of pathogenic bacteria in fermented meat products.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Fermented Foods , Food Microbiology , Meat Products , Metagenomics , Meat Products/microbiology , China , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purification , Drug Resistance, Bacterial/genetics , Fermented Foods/microbiology , Anti-Bacterial Agents/pharmacology , Fermentation , Metagenome , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , East Asian People
16.
BMC Infect Dis ; 24(1): 486, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730362

ABSTRACT

BACKGROUND: Recently, linezolid-resistant staphylococci have become an emerging problem worldwide. Understanding the mechanisms of resistance, molecular epidemiology and transmission of linezolid-resistant CoNS in hospitals is very important. METHODS: The antimicrobial susceptibilities of all isolates were determined by the microdilution method. The resistance mechanisms and molecular characteristics of the strains were determined using whole-genome sequencing and PCR. RESULTS: All the strains were resistant to oxacillin and carried the mecA gene; 13 patients (36.1%) had prior linezolid exposure. Most S. epidermidis and S. hominis isolates were ST22 and ST1, respectively. MLST typing and evolutionary analysis indicated most linezolid-resistant CoNS strains were genetically related. In this study, we revealed that distinct CoNS strains have different mechanisms of linezolid resistance. Among ST22-type S. epidermidis, acquisition of the T2504A and C2534T mutations in the V domain of the 23 S rRNA gene, as well as mutations in the ribosomal proteins L3 (L101V, G152D, and D159Y) and L4 (N158S), were linked to the development of linezolid resistance. In S. cohnii isolates, cfr, S158Y and D159Y mutations in the ribosomal protein L3 were detected. Additionally, emergence of the G2576T mutation and the cfr gene were major causes of linezolid resistance in S. hominis isolates. The cfr gene, G2576T and C2104T mutations, M156T change in L3 protein, and I188S change in L4 protein were found in S. capitis isolates. CONCLUSION: The emergence of linezolid-resistant CoNS in the environment is concerning because it involves clonal dissemination and frequently coexists with various drug resistance mechanisms.


Subject(s)
Anti-Bacterial Agents , Linezolid , Microbial Sensitivity Tests , Staphylococcal Infections , Tertiary Care Centers , Linezolid/pharmacology , Humans , China/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Female , Male , Middle Aged , Multilocus Sequence Typing , Aged , Whole Genome Sequencing , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/classification , Staphylococcus/enzymology , Coagulase/metabolism , Coagulase/genetics , RNA, Ribosomal, 23S/genetics , Adult , Methicillin Resistance/genetics , Mutation , Bacterial Proteins/genetics
17.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38806244

ABSTRACT

Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.


Subject(s)
Coagulase , Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Microbiota , Skin , Staphylococcus , Dermatitis, Atopic/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Skin/microbiology , Child , Coagulase/genetics , Coagulase/metabolism , Staphylococcus/genetics , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Child, Preschool , Microbial Sensitivity Tests
18.
J Antimicrob Chemother ; 79(6): 1303-1308, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38564255

ABSTRACT

BACKGROUND: Staphylococcus pseudintermedius is a common opportunistic pathogen of companion dogs and an occasional human pathogen. Treatment is hampered by antimicrobial resistance including methicillin resistance encoded by mecA within the mobile genetic element SCCmec. OBJECTIVES: SCCmec elements are diverse, especially in non-Staphyloccocus aureus staphylococci, and novel variants are likely to be present in S. pseudintermedius. The aim was to characterize the SCCmec elements found in four canine clinical isolates of S. pseudintermedius. MATERIAL AND METHODS: Isolates were whole-genome sequenced and SCCmec elements were assembled, annotated and compared to known SCCmec types. RESULTS AND DISCUSSION: Two novel SSCmec are present in these isolates. SCCmec7017-61515 is characterized by a novel combination of a Class A mec gene complex and a type 5 ccr previously only described in composite SCCmec elements. The other three isolates share a novel composite SCCmec with features of SCCmec types IV and VI. CONCLUSIONS: S. pseudintermedius is a reservoir of novel SSCmec elements that has implications for understanding antimicrobial resistant in veterinary and human medicine.


Subject(s)
Chromosomes, Bacterial , Dog Diseases , Methicillin Resistance , Staphylococcal Infections , Staphylococcus , Whole Genome Sequencing , Methicillin Resistance/genetics , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/classification , Staphylococcus/isolation & purification , Animals , Dogs , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Dog Diseases/microbiology , Chromosomes, Bacterial/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Genome, Bacterial , Genetic Variation , Interspersed Repetitive Sequences/genetics
19.
Sci Rep ; 14(1): 8245, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589670

ABSTRACT

The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , Coagulase/genetics , Genome, Viral , Skin/microbiology , Staphylococcus Phages/genetics , Staphylococcus/genetics
20.
BMC Microbiol ; 24(1): 77, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459514

ABSTRACT

BACKGROUND: Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS: AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS: In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.


Subject(s)
N-Acetylmuramoyl-L-alanine Amidase , Staphylococcus , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Staphylococcus/genetics , Staphylococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL