Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.487
Filter
1.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955831

ABSTRACT

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Subject(s)
Anti-Bacterial Agents , Biofilms , Croton , Microbial Sensitivity Tests , Oils, Volatile , Plant Leaves , Biofilms/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Croton/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Leaves/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Membrane/drug effects
2.
PLoS One ; 19(6): e0296140, 2024.
Article in English | MEDLINE | ID: mdl-38900759

ABSTRACT

Implant-associated osteomyelitis remains a major orthopaedic problem. As neutrophil swarming to the surgical site is a critical host response to prevent infection, visualization and quantification of this dynamic behavior at the native microenvironment of infection will elucidate previously unrecognized mechanisms central to understanding the host response. We recently developed longitudinal intravital imaging of the bone marrow (LIMB) to visualize host cells and fluorescent S. aureus on a contaminated transfemoral implant in live mice, which allows for direct visualization of bacteria colonization of the implant and host cellular responses using two-photon laser scanning microscopy. To the end of rigorous and reproducible quantitative outcomes of neutrophil swarming kinetics in this model, we developed a protocol for robust segmentation, tracking, and quantifications of neutrophil dynamics adapted from Trainable Weka Segmentation and TrackMate, two readily available Fiji/ImageJ plugins. In this work, Catchup mice with tdTomato expressing neutrophils received a transfemoral pin with or without ECFP/EGFP-expressing USA300 methicillin-resistant Staphylococcus aureus (MRSA) to obtain 30-minute LIMB videos at 2-, 4-, and 6-hours post-implantation. The developed semi-automated neutrophil tracking protocol was executed independently by two users to quantify the distance, displacement, speed, velocity, and directionality of the target cells. The results revealed high inter-user reliability for all outcomes (ICC > 0.96; p > 0.05). Consistent with the established paradigm on increased neutrophil swarming during active infection, the results also demonstrated increased neutrophil speed and velocity at all measured time points, and increased displacement at later time points (6 hours) in infected versus uninfected mice (p < 0.05). Neutrophils and bacteria also exhibit directionality during migration in the infected mice. The semi-automated cell tracking protocol provides a streamlined approach to robustly identify and track individual cells across diverse experimental settings and eliminates inter-observer variability.


Subject(s)
Cell Tracking , Femur , Neutrophils , Animals , Neutrophils/immunology , Mice , Femur/microbiology , Cell Tracking/methods , Staphylococcal Infections/microbiology , Staphylococcal Infections/immunology , Disease Models, Animal , Osteomyelitis/microbiology , Methicillin-Resistant Staphylococcus aureus/physiology , Prosthesis-Related Infections/microbiology , Prostheses and Implants/microbiology , Staphylococcus aureus/physiology , Female
3.
Front Cell Infect Microbiol ; 14: 1400648, 2024.
Article in English | MEDLINE | ID: mdl-38903938

ABSTRACT

Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA's structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication.


Subject(s)
Biofilms , DNA, Bacterial , Staphylococcus aureus , Biofilms/growth & development , Biofilms/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Staphylococcal Infections/microbiology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology
4.
ACS Appl Mater Interfaces ; 16(25): 32017-32026, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875314

ABSTRACT

Bacteria-infected wound healing is one of the most challenging issues in health management that is attracting worldwide concerns. Despite great achievements with antibiotics, emergence of antibiotic-resistance retarded the wound healing process and also led to severe outcomes. Exploration of novel antibiotics together with amelioration of wound healing efficacy is desirable. Herein, a degradable microneedle patch (AAZH@MNs) was fabricated through incorporating near-infrared light responsive photothermal agents for sustained bacteria killing and prevention of biofilm formation. In addition, the antibacterial microneedle patch could even remold the microenvironment of bacteria-infected wounds through an antibacterial effect, significantly facilitating the wound healing process.


Subject(s)
Anti-Bacterial Agents , Needles , Wound Healing , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Biofilms/drug effects , Biofilms/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Photothermal Therapy , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Infrared Rays
5.
Curr Microbiol ; 81(7): 205, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831167

ABSTRACT

Bacteria can form aggregates in synovial fluid that are resistant to antibiotics, but the ability to form aggregates in cerebral spinal fluid (CSF) is poorly defined. Consequently, the aims of this study were to assess the propensity of four bacterial species to form aggregates in CSF under various conditions. To achieve these aims, bacteria were added to CSF in microwell plates and small flasks at static and different dynamic conditions with the aid of an incubating shaker. The aggregates that formed were assessed for antibiotic resistance and the ability of tissue plasminogen activator (TPA) to disrupt these aggregates and reduce the number of bacteria present when used with antibiotics. The results of this study show that under dynamic conditions all four bacteria species formed aggregates that were resistant to high concentrations of antibiotics. Yet with static conditions, no bacteria formed aggregates and when the CSF volume was increased, only Staphylococcus aureus formed aggregates. Interestingly, the aggregates that formed were easily dispersed by TPA and significant (p < 0.005) decreases in colony-forming units were seen when a combination of TPA and antibiotics were compared to antibiotics alone. These findings have clinical significance in that they show bacterial aggregation does not habitually occur in central nervous system infections, but rather occurs under specific conditions. Furthermore, the use of TPA combined with antibiotics may be advantageous in recalcitrant central nervous system infections and this provides a pathophysiological explanation for an unusual finding in the CLEAR III clinical trial.


Subject(s)
Anti-Bacterial Agents , Cerebrospinal Fluid , Humans , Anti-Bacterial Agents/pharmacology , Cerebrospinal Fluid/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Tissue Plasminogen Activator , Drug Resistance, Bacterial , Microbial Sensitivity Tests
6.
Int J Nanomedicine ; 19: 5763-5780, 2024.
Article in English | MEDLINE | ID: mdl-38882537

ABSTRACT

Purpose: Owing to its noninvasive nature, broad-spectrum effectiveness, minimal bacterial resistance, and high efficiency, phototherapy has significant potential for antibiotic-free antibacterial interventions and combating antibacterial biofilms. However, finding effective strategies to mitigate the detrimental effects of excessive temperature and elevated concentrations of reactive oxygen species (ROS) remains a pressing issue that requires immediate attention. Methods: In this study, we designed a pH-responsive cationic polymer sodium nitroside dihydrate/branched polyethylenimine-indocyanine green@polyethylene glycol (SNP/PEI-ICG@PEG) nanoplatform using the electrostatic adsorption method and Schiff's base reaction. Relevant testing techniques were applied to characterize and analyze SNP/PEI-ICG@PEG, proving the successful synthesis of the nanomaterials. In vivo and in vitro experiments were performed to evaluate the antimicrobial properties of SNP/PEI-ICG@PEG. Results: The morphology and particle size of SNP/PEI-ICG@PEG were observed via TEM. The zeta potential and UV-visible (UV-vis) results indicated the synthesis of the nanomaterials. The negligible cytotoxicity of up to 1 mg/mL of SNP/PEI-ICG@PEG in the presence or absence of light demonstrated its biosafety. Systematic in vivo and in vitro antimicrobial assays confirmed that SNP/PEI-ICG@PEG had good water solubility and biosafety and could be activated by near-infrared (NIR) light and synergistically treated using four therapeutic modes, photodynamic therapy (PDT), gaseous therapy (GT), mild photothermal therapy (PTT, 46 °C), and cation. Ultimately, the development of Gram-positive (G+) Staphylococcus aureus (S. aureus) and Gram-negative (G-) Escherichia coli (E. coli) were both completely killed in the free state, and the biofilm that had formed was eliminated. Conclusion: SNP/PEI-ICG@PEG demonstrated remarkable efficacy in achieving controlled multimodal synergistic antibacterial activity and biofilm infection treatment. The nanoplatform thus holds promise for future clinical applications.


Subject(s)
Biofilms , Indocyanine Green , Infrared Rays , Photochemotherapy , Photothermal Therapy , Polyethylene Glycols , Biofilms/drug effects , Photochemotherapy/methods , Animals , Polyethylene Glycols/chemistry , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Photothermal Therapy/methods , Mice , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Escherichia coli/drug effects , Nitric Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Particle Size
7.
J Am Chem Soc ; 146(23): 15941-15954, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832917

ABSTRACT

The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.


Subject(s)
Biofilms , Quorum Sensing , Staphylococcus epidermidis , Quorum Sensing/drug effects , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
8.
J Vet Sci ; 25(3): e47, 2024 May.
Article in English | MEDLINE | ID: mdl-38834515

ABSTRACT

IMPORTANCE: Staphylococcus aureus and Escherichia coli contribute to global health challenges by forming biofilms, a key virulence element implicated in the pathogenesis of several infections. OBJECTIVE: The study examined the efficacy of various generations of cephalosporins against biofilms developed by pathogenic S. aureus and E. coli. METHODS: The development of biofilms by both bacteria was assessed using petri-plate and microplate methods. Biofilm hydrolysis and inhibition were tested using first to fourth generations of cephalosporins, and the effects were analyzed by crystal violet staining and phase contrast microscopy. RESULTS: Both bacterial strains exhibited well-developed biofilms in petri-plate and microplate assays. Cefradine (first generation) showed 76.78% hydrolysis of S. aureus biofilm, while significant hydrolysis (59.86%) of E. coli biofilm was observed by cefipime (fourth generation). Similarly, cefuroxime, cefadroxil, cefepime, and cefradine caused 78.8%, 71.63%, 70.63%, and 70.51% inhibition of the S. aureus biofilms, respectively. In the case of E. coli, maximum biofilm inhibition (66.47%) was again shown by cefepime. All generations of cephalosporins were more effective against S. aureus than E. coli, which was confirmed by phase contrast microscopy. CONCLUSIONS AND RELEVANCE: Cephalosporins exhibit dual capabilities of hydrolyzing and inhibiting S. aureus and E. coli biofilms. First-generation cephalosporins exhibited the highest inhibitory activity against S. aureus, while the third and fourth generations significantly inhibited E. coli biofilms. This study highlights the importance of tailored antibiotic strategies based on the biofilm characteristics of specific bacterial strains.


Subject(s)
Anti-Bacterial Agents , Biofilms , Cephalosporins , Escherichia coli , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Hydrolysis , Microbial Sensitivity Tests
9.
Arch Microbiol ; 206(7): 288, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834761

ABSTRACT

Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.


Subject(s)
Anti-Bacterial Agents , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Osteomyelitis/microbiology , Osteomyelitis/drug therapy , Humans , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Animals
10.
Pol J Microbiol ; 73(2): 199-206, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38905277

ABSTRACT

Negative Pressure Wound Therapy (NPWT) has been widely adopted in wound healing strategies due to its multimodal mechanism of action. While NPWT's positive impression on wound healing is well-established, its effect on bacterial load reduction remains equivocal. This study investigates NPWT's efficacy in reducing bioburden using an in vitro porcine skin model, focusing on the impact of Staphylococcus aureus and Staphylococcus epidermidis. Custom-made negative pressure chambers were employed to apply varying negative pressures. Porcine skin was cut into 5 × 5 cm squares and three standardized wounds of 6 mm each were created using a biopsy punch. Then, wounds were infected with S. aureus and S. epidermidis bacterial suspensions diluted 1:10,000 to obtain a final concentration of 1.5 × 104 CFU/ml and were placed in negative pressure chambers. After incubation, bacterial counts were expressed as colony-forming units (CFU) per ml. For S. aureus at 120 hours, the median CFU, mean area per colony, and total growth area were notably lower at -80 mmHg when compared to -250 mmHg and -50 mmHg, suggesting an optimal negative pressure for the pressure-dependent inhibition of the bacterial proliferation. While analyzing S. epidermidis at 120 hours, the response to the negative pressure was similar but less clear, with the minor CFU at -100 mmHg. The influence of intermittent negative pressure on the S. epidermidis growth showed notably lower median CFU with the interval therapy every hour compared to the S. aureus control group. This study contributes valuable insights into NPWT's influence on the bacterial load, emphasizing the need for further research to reformulate its role in managing contaminated wounds.


Subject(s)
Negative-Pressure Wound Therapy , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus epidermidis/growth & development , Staphylococcus epidermidis/physiology , Animals , Swine , Staphylococcus aureus/growth & development , Staphylococcus aureus/physiology , Wound Healing , Bacterial Load , Wound Infection/microbiology , Wound Infection/therapy , Kinetics , Staphylococcal Infections/microbiology , Skin/microbiology
11.
Microbiol Res ; 285: 127782, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833832

ABSTRACT

As a major human and animal pathogen, Staphylococcus aureus can attach to medical implants (abiotic surface) or host tissues (biotic surface), and further establish robust biofilms which enhances resistance and persistence to host immune system and antibiotics. Cell-wall-anchored proteins (CWAPs) covalently link to peptidoglycan, and largely facilitate the colonization of S. aureus on various surfaces (including adhesion and biofilm formation) and invasion into host cells (including adhesion, immune evasion, iron acquisition and biofilm formation). During biofilm formation, CWAPs function in adhesion, aggregation, collagen-like fiber network formation, and consortia formation. In this review, we firstly focus on the structural features of CWAPs, including their intracellular function and interactions with host cells, as well as the functions and ligand binding of CWAPs in different stages of S. aureus biofilm formation. Then, the roles of CWAPs in different biofilm processes with regards in development of therapeutic approaches are clarified, followed by the association between CWAPs genes and clonal lineages. By touching upon these aspects, we hope to provide comprehensive knowledge and clearer understanding on the CWAPs of S. aureus and their roles in biofilm formation, which may further aid in prevention and treatment infection and vaccine development.


Subject(s)
Bacterial Adhesion , Bacterial Proteins , Biofilms , Cell Wall , Staphylococcal Infections , Staphylococcus aureus , Biofilms/growth & development , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Humans , Staphylococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Wall/metabolism , Animals , Peptidoglycan/metabolism
12.
ACS Nano ; 18(24): 15681-15694, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848285

ABSTRACT

The prolonged wound-healing process caused by pathogen infection remains a major public health challenge. The developed electrical antibiotic administration typically requires metal electrodes wired to a continuous power supply, restricting their use beyond clinical environments. To obviate the necessity for antibiotics and an external power source, we have developed a wearable synergistic electroceutical device composed of an air self-charging Zn battery. This battery integrates sustained tissue regeneration and antibacterial modalities while maintaining more than half of the initial capacity after ten cycles of chemical charging. In vitro bacterial/cell coculture with the self-charging battery demonstrates inhibited bacterial activity and enhanced cell function by simulating the endogenous electric field and dynamically engineering the microenvironment with released chemicals. This electroceutical device provides accelerated healing of a bacteria-infected wound by stimulating angiogenesis and modulating inflammation, while effectively inhibiting bacterial growth at the wound site. Considering the simple structure and easy operation for long-term treatment, this self-charging electroceutical device offers great potential for personalized wound care.


Subject(s)
Anti-Bacterial Agents , Wearable Electronic Devices , Wound Healing , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Mice , Staphylococcus aureus/physiology , Zinc/chemistry , Escherichia coli , Microbial Sensitivity Tests
13.
Curr Microbiol ; 81(8): 245, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940852

ABSTRACT

Garlic (Allium sativum L.), particularly its volatile essential oil, is widely recognized for medicinal properties. We have evaluated the efficacy of Indian Garlic Essential Oil (GEO) for antimicrobial and antibiofilm activity and its bioactive constituents. Allyl sulfur-rich compounds were identified as predominant phytochemicals in GEO, constituting 96.51% of total volatile oils, with 38% Diallyl trisulphide (DTS) as most abundant. GEO exhibited significant antibacterial activity against eleven bacteria, including three drug-resistant strains with minimum inhibitory concentrations (MICs) ranging from 78 to 1250 µg/mL. In bacterial growth kinetic assay GEO effectively inhibited growth of all tested strains at its ½ MIC. Antibiofilm activity was evident against two important human pathogens, S. aureus and P. aeruginosa. Mechanistic studies demonstrated that GEO disrupts bacterial cell membranes, leading to the release of nucleic acids, proteins, and reactive oxygen species. Additionally, GEO demonstrated potent antioxidant activity at IC50 31.18 mg/mL, while its isolated constituents, Diallyl disulphide (DDS) and Diallyl trisulphide (DTS), showed effective antibacterial activity ranging from 125 to 500 µg/mL and 250-1000 µg/mL respectively. Overall, GEO displayed promising antimicrobial and antibiofilm activity against enteric bacteria, suggesting its potential application in the food industry.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Biofilms , Garlic , Microbial Sensitivity Tests , Oils, Volatile , Garlic/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Sulfides/pharmacology , Bacteria/drug effects , Pseudomonas aeruginosa/drug effects , Disulfides/pharmacology , India , Plant Oils/pharmacology , Plant Oils/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry
14.
Vet Med Sci ; 10(4): e1501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923315

ABSTRACT

INTRODUCTION: Silica-sprayed tubes (SSTs) are often used to transport synovial fluid samples in equine practice. They promote the coagulation of the sample. The objective of the study is to evaluate the effect of SST on bacterial culture. MATERIALS AND METHODS: The study was divided into two parts: sterile saline (Part A) and synovial fluid (Part B). Four common bacteria associated with equine synovial sepsis were used: Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Three collection tubes were used: STT, plain (no-additives) and brain and heart infusion (BHI) broth. Bacteria were cultured in horse blood agar plates for 48 h. Outcome variables were negative culture, positive culture and total number of colony-forming units (CFUs). Statistical analysis was performed using Mann-Whitney U test, and significance was set at p < 0.05. RESULTS: The total number of agar plates read was 1557 (779 saline; 778 synovial fluid). Total negative cultures were 25/779 on saline and 3/778 on synovial fluid. In broth, maximum growth CFU was achieved after 8 h for both saline and synovial fluid for all bacteria. S. pyogenesand E. coli produced a significantly lower number of CFU when in SST compared to plain or broth after 4 h, whereas S. aureus (American Type Culture Collection [ATCC] and MRSA) only after 24 h. DISCUSSION: Silica-containing tubes reduced bacterial proliferation, whereas the use of a BHI broth provided the highest bacterial load in the sample. The use of SST may have a negative effect on bacterial proliferation in samples obtained from clinical cases.


Subject(s)
Silicon Dioxide , Synovial Fluid , Synovial Fluid/microbiology , Animals , Horses , Silicon Dioxide/chemistry , Specimen Handling/methods , Specimen Handling/veterinary , Escherichia coli/drug effects , Escherichia coli/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus aureus/isolation & purification , Bacteriological Techniques/veterinary , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification
15.
Pestic Biochem Physiol ; 202: 105915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879296

ABSTRACT

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.


Subject(s)
Aphids , Janus Kinases , STAT Transcription Factors , Signal Transduction , Animals , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Staphylococcus aureus/physiology , Escherichia coli , Insect Proteins/metabolism , Insect Proteins/genetics , Beauveria/physiology
16.
Sci Rep ; 14(1): 14374, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909125

ABSTRACT

Metal-implant associated bacterial infections are a major clinical problem due to antibiotic treatment failure. As an alternative, we determined the effects of bacteriophage ISP on clinical isolates of Staphylococcus aureus in various stages of its life cycle in relation to biofilm formation and maturation. ISP effectively eliminated all planktonic phase bacteria, whereas its efficacy was reduced against bacteria attached to the metal implant and bacteria embedded within biofilms. The biofilm architecture hampered the bactericidal effects of ISP, as mechanical disruption of biofilms improved the efficacy of ISP against the bacteria. Phages penetrated the biofilm and interacted with the bacteria throughout the biofilm. However, most of the biofilm-embedded bacteria were phage-tolerant. In agreement, bacteria dispersed from mature biofilms of all clinical isolates, except for LUH15394, tolerated the lytic activity of ISP. Lastly, persisters within mature biofilms tolerated ISP and proliferated in its presence. Based on these findings, we conclude that ISP eliminates planktonic phase Staphylococcus aureus while its efficacy is limited against bacteria attached to the metal implant, embedded within (persister-enriched) biofilms, and dispersed from biofilms.


Subject(s)
Biofilms , Plankton , Staphylococcus Phages , Staphylococcus aureus , Biofilms/drug effects , Biofilms/growth & development , Staphylococcus aureus/virology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcus Phages/physiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Humans , Bacteriophages/physiology
17.
Front Cell Infect Microbiol ; 14: 1403289, 2024.
Article in English | MEDLINE | ID: mdl-38915921

ABSTRACT

Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.


Subject(s)
Anti-Bacterial Agents , Autophagy , Osteocytes , Rifampin , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Autophagy/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Osteocytes/drug effects , Osteocytes/microbiology , Anti-Bacterial Agents/pharmacology , Humans , Vancomycin/pharmacology , Rifampin/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Host-Pathogen Interactions , DNA, Bacterial/genetics
18.
Trop Anim Health Prod ; 56(5): 165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753181

ABSTRACT

In herds of dairy goats, mastitis represents a major health and economic problem due to the multiresistance of some microorganisms. In this context, the study aimed to determine the potential of antimicrobial action and antibiofilm of the crude ethanolic extract (CEE) of Hymenaea martiana (jatobá) leaves, as well its fractions, on Staphylococcus sp isolated from bacterial cultures of goat milk. In vitro assays were performed to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), as well as tests of the effect of CEE on biofilm formation and quantification and the consolidated biofilm. The experimental infection was performed in two groups, each consisting of five goat. Experimental Group 1 (G1) consisted of five females treated with an intramammary ointment based on the CEE, at a concentration of 5%. Experimental Group 2 (G2) consisted of five females treated with a commercial intramammary ointment based on gentamicin, once a day, for six consecutive days. The diagnosis of mastitis was performed using a bacterial culture. The dichloromethane fraction of CEE was the one with the lowest concentrations of MBC, ranging from 195.3 to 781 µg / ml. Concerning to the biofilm, interference of the tested extract was observed for two isolates. In the present study, the ointment prepared from H. martiana extract (jatobá) was able to reduce bacterial infection in mammary glands experimentally infected with S. aureus. Antibacterial activity may be related to the classes of secondary metabolites found.


Subject(s)
Anti-Bacterial Agents , Biofilms , Goat Diseases , Goats , Mastitis , Microbial Sensitivity Tests , Plant Extracts , Staphylococcal Infections , Staphylococcus aureus , Animals , Female , Goat Diseases/drug therapy , Goat Diseases/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Mastitis/veterinary , Mastitis/drug therapy , Mastitis/microbiology , Microbial Sensitivity Tests/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Biofilms/drug effects , Milk/microbiology , Plant Leaves/chemistry
19.
ACS Nano ; 18(23): 15114-15129, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38798240

ABSTRACT

Implant-related secondary infections are a challenging clinical problem. Sonodynamic therapy (SDT) strategies are promising for secondary biofilm infections by nonsurgical therapy. However, the inefficiency of SDT in existing acoustic sensitization systems limits its application. Therefore, we take inspiration from popular metamaterials and propose the design idea of a metainterface heterostructure to improve SDT efficiency. The metainterfacial heterostructure is defined as a periodic arrangement of heterointerface monoclonal cells that amplify the intrinsic properties of the heterointerface. Herein, we develop a TiO2/Ti2O3/vertical graphene metainterface heterostructure film on titanium implants. This metainterface heterostructure exhibits extraordinary sonodynamic and acoustic-to-thermal conversion effects under low-intensity ultrasound. The modulation mechanisms of the metainterface for electron accumulation and separation are revealed. The synergistic sonodynamic/mild sonothermal therapy disrupts biofilm infections (antibacterial rates: 99.99% for Staphylococcus aureus, 99.54% for Escherichia coli), and the osseointegration ability of implants is significantly improved in in vivo tests. Such a metainterface heterostructure film lays the foundation for the metainterface of manipulating electron transport to enhance the catalytic performance and holding promise for addressing secondary biofilm infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Escherichia coli , Staphylococcus aureus , Titanium , Ultrasonic Therapy , Biofilms/drug effects , Titanium/chemistry , Titanium/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Graphite/chemistry , Graphite/pharmacology , Mice , Animals , Microbial Sensitivity Tests
20.
ACS Appl Mater Interfaces ; 16(20): 25813-25824, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717992

ABSTRACT

To develop microbiologically safe nanofibrous materials, it is crucial to understand their interactions with microbial cells. Current research indicates that the morphology of nanofibers, particularly the diameter of the fibers, may play a significant role in biofilm formation and retention. However, it has not yet been determined how the fiber diameter of poly-ε-caprolactone (PCL), one of the most widely used biopolymers, affects these microbial interactions. In this study, two nanofibrous materials electrospun from PCL (PCL45 and PCL80) with different fiber diameter and characteristic distance δ between fibers were compared in terms of their ability to support or inhibit bacterial biofilm formation and retain bacterial cells. Strains of Escherichia coli (ATCC 25922 and ATCC 8739) and Staphylococcus aureus (ATCC 25923 and ATCC 6538) were used as model bacteria. Biofilm formation rate and retention varied significantly between the E. coli and S. aureus strains (p < 0.05) for the tested nanomaterials. In general, PCL showed a lower tendency to be colonized by the tested bacteria compared to the control material (polystyrene). Fiber diameter did not influence the biofilm formation rate of S. aureus strains and E. coli 25922 (p > 0.05), but it did significantly impact the biofilm formation rate of E. coli 8739 and biofilm morphology formed by all of the tested bacterial strains. In PCL45, thick uniform biofilm layers were formed preferably on the surface, while in PCL80 smaller clusters formed preferably inside the structure. Further, fiber diameter significantly influenced the retention of bacterial cells of all the tested strains (p < 0.001). PCL45, with thin fibers (average fiber diameter of 376 nm), retained up to 7 log (CFU mL-1) of staphylococcal cells (100% retention). The overall results indicate PCL45's potential for further research and highlight the nanofibers' morphology influence on bacterial interactions and differences in bacterial strains' behavior in the presence of nanomaterials.


Subject(s)
Biofilms , Escherichia coli , Nanofibers , Polyesters , Staphylococcus aureus , Biofilms/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Nanofibers/chemistry , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Escherichia coli/physiology , Escherichia coli/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...