Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.155
Filter
1.
Cell Commun Signal ; 22(1): 388, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095886

ABSTRACT

Acidic microenvironments is a cancer progression driver, unclear core mechanism hinders the discovery of new diagnostic or therapeutic targets. ASIC3 is an extracellular proton sensor and acid-sensitive, but its role in acidic tumor microenvironment of colorectal cancer is not reported. Functional analysis data show that colorectal cancer cells respond to specific concentration of lactate to accelerate invasion and metastasis, and ASIC3 is the main actor in this process. Mechanism reveal de novo lipid synthesis is a regulatory process of ASIC3, down-regulated ASIC3 increases and interacts with ACC1 and SCD1, which are key enzymes in de novo lipid synthesis pathway, this interaction results in increased unsaturated fatty acids, which in turn induce EMT to promote metastasis, and overexpression of ASIC3 reduces acidic TME-enhanced colorectal cancer metastasis. Clinical samples of colorectal cancer also exhibit decreased ASIC3 expression, and low ASIC3 expression is associated with metastasis and stage of colorectal cancer. This study is the first to identify the role of the ASIC3-ACC1/SCD1 axis in acid-enhanced colorectal cancer metastasis. The expression pattern of ASIC3 in colorectal cancer differs significantly from that in other types of cancers, ASIC3 may serve as a novel and reliable marker for acidic microenvironmental in colorectal cancer, and potentially a therapeutic target.


Subject(s)
Acid Sensing Ion Channels , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Lactic Acid , Neoplasm Metastasis , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Lactic Acid/metabolism , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Tumor Microenvironment , Animals , Lipids , Gene Expression Regulation, Neoplastic
2.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064715

ABSTRACT

Iron is a vital trace element for our bodies and its imbalance can lead to various diseases. The progression of metabolic-associated fatty liver disease (MAFLD) is often accompanied by disturbances in iron metabolism. Alisma orientale extract (AOE) has been reported to alleviate MAFLD. However, research on its specific lipid metabolism targets and its potential impact on iron metabolism during the progression of MAFLD remains limited. To establish a model of MAFLD, mice were fed either a standard diet (CON) or a high-fat diet (HFD) for 9 weeks. The mice nourished on the HFD were then randomly assigned to the HF group and the HFA group, with the HFA group receiving AOE by gavage on a daily basis for 13 weeks. Supplementation with AOE remarkably reduced overabundant lipid accumulation in the liver and restored the iron content of the liver. AOE partially but significantly reversed dysregulated lipid metabolizing genes (SCD1, PPAR γ, and CD36) and iron metabolism genes (TFR1, FPN, and HAMP) induced by HFD. Chromatin immunoprecipitation assays indicated that the reduced enrichment of FXR on the promoters of SCD1 and FPN genes induced by HFD was significantly reversed by AOE. These findings suggest that AOE may alleviate HFD-induced disturbances in liver lipid and iron metabolism through FXR-mediated gene repression.


Subject(s)
Diet, High-Fat , Iron , Lipid Metabolism , Liver , Plant Extracts , Receptors, Cytoplasmic and Nuclear , Animals , Plant Extracts/pharmacology , Liver/metabolism , Liver/drug effects , Iron/metabolism , Mice , Male , Lipid Metabolism/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Diet, High-Fat/adverse effects , Alisma/chemistry , Mice, Inbred C57BL , Disease Models, Animal , Gene Expression Regulation/drug effects , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism
3.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062622

ABSTRACT

This study involved 45 Holstein and 60 Holstein-Charolaise steers, tailored with specific diets according to breed and rearing systems. DNA genotyping was conducted for DGAT1, LEP, SCD1, SREBF1, and TG genes to investigate their impact on carcass conformation traits, beef quality traits, and sensory quality traits. The results showed associations between the genetic variants and the analyzed traits. Specifically, DGAT1 was found to affect drip loss, meat brightness, and color saturation. The TG gene was associated with marbling and meat color. LEP influenced trim fat and pH levels, while SCD1 was linked to metabolic energy live weight gains, and pH levels. SREBF1 was related to fatness.


Subject(s)
Red Meat , Animals , Cattle/genetics , Genetic Markers , Red Meat/standards , Red Meat/analysis , Male , Diacylglycerol O-Acyltransferase/genetics , Meat/analysis , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Leptin/genetics , Leptin/metabolism , Genotype
4.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38970404

ABSTRACT

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Subject(s)
Ferroptosis , Lipogenesis , Lipoproteins, LDL , Sterol Regulatory Element Binding Protein 1 , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/metabolism , Atherosclerosis/pathology , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipid Peroxidation , Lipoproteins, LDL/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
5.
Medicine (Baltimore) ; 103(25): e38597, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905386

ABSTRACT

Breast invasive carcinoma (BRCA) is one of the most common cancers in women, with its malignant progression significantly influenced by intracellular fatty acid (FA) desaturation. Stearoyl-coenzyme A desaturase (SCD) and fatty acid desaturase 2 (FADS2) are two key rate-limiting enzymes that catalyze the FA desaturation process and cooperate to accelerate lipid metabolic activities. In this study, we investigated the potential functions of SCD and FADS2 in BRCA using bioinformatic analysis and experimental validation. The gene expression profiling interactive analysis database showed that the expression of SCD or FADS2 genes was positively linked to worse overall survival and disease-free survival in the Cancer Genome Atlas database-BRCA. The University of Alabama at Birmingham cancer data analysis portal database indicates that the expression and methylation levels of SCD or FADS2 are associated with various clinicopathological factors in patients with BRCA. Moreover, the tumor immune estimation resource and TISCH databases showed a significant positive correlation between the expression of SCD and the abundance of CD8+ T cells and macrophage cell infiltration, while the expression of FADS2 was positively correlated with the abundance of B cells. Meanwhile, SCD or FADS2 had a higher expression in monocytes/macrophages analyzed the BRCA_GSE143423 and BRCA_GSE114727_inDrop datasets. Mechanistically, the Search Tool for the Retrieval of Distant Genes and CancerSEA databases showed that SCD and FADS2 were upregulated in several cell biology signaling pathways, particularly in inflammation, apoptosis, and DNA repair. Finally, SCD or FADS2 knockdown inhibited the proliferation of MCF-7 and MDA-MB-231 cells. In summary, SCD and FADS2 play significant roles in BRCA development, suggesting that they may serve as potential therapeutic targets for BRCA treatment.


Subject(s)
Breast Neoplasms , Fatty Acid Desaturases , Tumor Microenvironment , Humans , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Mutation , Gene Expression Regulation, Neoplastic
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928125

ABSTRACT

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Subject(s)
Adipose Tissue , Fatty Liver , Leptin , Liver , Omentum , Humans , Leptin/metabolism , Female , Male , Liver/metabolism , Middle Aged , Omentum/metabolism , Omentum/pathology , Adipose Tissue/metabolism , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Insulin Resistance , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
7.
Sci Rep ; 14(1): 13116, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849435

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Subject(s)
Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Fatty Acid Desaturases , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Humans , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Cell Line, Tumor , A549 Cells , Palmitic Acid/pharmacology , Cell Death/drug effects , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy
8.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
9.
Cancer Res ; 84(14): 2333-2351, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38885087

ABSTRACT

The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.


Subject(s)
Melanoma , Oleic Acid , PTEN Phosphohydrolase , Stearoyl-CoA Desaturase , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Melanoma/pathology , Melanoma/drug therapy , Melanoma/therapy , Humans , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Immunotherapy/methods , Disease Progression , Mice, Inbred C57BL , Female , Cell Line, Tumor , Combined Modality Therapy , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Apoptosis/drug effects , Diet , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/therapy
10.
Biomolecules ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927010

ABSTRACT

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Subject(s)
Keratinocytes , PPAR delta , PPAR-beta , Stearoyl-CoA Desaturase , Keratinocytes/metabolism , Keratinocytes/drug effects , PPAR-beta/metabolism , PPAR-beta/genetics , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , PPAR delta/metabolism , PPAR delta/genetics , Fatty Acids/metabolism , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Humans , Oleic Acid/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology
11.
Int Immunopharmacol ; 137: 112461, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897128

ABSTRACT

Ovarian cancer (OC) is a gynecological malignancy that results in a global threat to women's lives. Lactic acid, a key metabolite produced from the glycolytic metabolism of glucose molecules, is correlated with tumor immune infiltration and platinum resistance. In our previous study, we found that endothelial cell-specific molecule 1 (ESM1) plays a key role in OC progression. This study revealed that lactate could upregulate ESM1, which enhances SCD1 to attenuate the antitumor CD8+ T-cell response. ESM1 and SCD1 expression levels were significantly greater in OC patients with high lactic acid levels than in those with low lactic acid levels. Further mechanistic studies suggested that the Wnt/ß-catenin pathway was inactivated after ESM1 knockdown and rescued by SCD1 overexpression. IC50 analysis indicated that the ESM1-SCD1 axis induces the resistance of OC cells to platinum agents, including cisplatin, carboplatin, and oxaliplatin, by upregulating P-gp. In conclusion, our study indicated that the induction of SCD1 by lactic acid-induced ESM1 can impede the CD8+ T-cell response against tumors and promote resistance to cisplatin by activating the Wnt/ß-catenin pathway in ovarian cancer. Consequently, targeting ESM1 may have considerable therapeutic potential for modulating the tumor immune microenvironment and enhancing drug sensitivity in OC patients.


Subject(s)
Antineoplastic Agents , CD8-Positive T-Lymphocytes , Cisplatin , Drug Resistance, Neoplasm , Lactic Acid , Neoplasm Proteins , Ovarian Neoplasms , Proteoglycans , Wnt Signaling Pathway , Female , Humans , Ovarian Neoplasms/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Cisplatin/pharmacology , Wnt Signaling Pathway/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Lactic Acid/metabolism , Proteoglycans/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Proteins/metabolism , Neoplasm Proteins/immunology , Animals , Mice , Stearoyl-CoA Desaturase
12.
Phytomedicine ; 129: 155689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728921

ABSTRACT

BACKGROUND: Cisplatin (DDP) as the first-line drug has been used in cancer therapy. However, side effects and drug resistance are the challenges of DDP. Disordered lipid metabolism is related to DDP resistance. STUDY DESIGN: In this study, formosanin C (FC) as the main compound of Rhizoma Paridis saponins (RPS) inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. METHODS AND RESULTS: RPS prolonged the survival period of mice, reduced pulmonary metastases and alleviated colon toxicity caused by DDP. FC as the main compound of RPS enhanced the anti-tumor and anti-metastatic effects of DDP. FC decreased the mRNA level of SCD1 and the content of lipid droplets (LDs) in lung cancer cells. Molecular dynamics and isothermal titration calorimetry verified the binding stability and spontaneously between FC and SCD1. SiSCD1 reduced the content of LDs in cell lines and increased mitochondria (mtROS), which was consistent with the results of FC treatment. The combination group decreased DNA repair associated protein as well as DDP resistance markers such as ERCC1 and 53bp1, and increased DNA damage marker like γH2AX, which indirectly confirmed the occurrence of mtROS. In addition, FC combination with DDP also affected epithelial-mesenchymal transition-related protein like VIM and CDH1 in vivo experiments, and thereby inhibited pulmonary metastasis. CONCLUSION: Our research indicated that the FC as the main compound of RPS targeted the CY2 domain of SCD1, inhibited lipid metabolism in mice, and thereby suppressed cancer metastases. This provided support for use of FC to treat cancer based on lipid metabolism pathway.


Subject(s)
Cisplatin , Lung Neoplasms , Saponins , Stearoyl-CoA Desaturase , Animals , Humans , Male , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Lipid Metabolism/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mice, Inbred BALB C , Saponins/pharmacology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
13.
PLoS One ; 19(5): e0300751, 2024.
Article in English | MEDLINE | ID: mdl-38717999

ABSTRACT

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Subject(s)
Apoptosis Regulatory Proteins , Pulmonary Alveoli , Repressor Proteins , Animals , Female , Male , Mice , Animals, Newborn , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Fatty Acids/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
14.
J Biol Chem ; 300(6): 107351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718868

ABSTRACT

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.


Subject(s)
Fatty Acids , Membrane Proteins , STAT3 Transcription Factor , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Up-Regulation , Mice
15.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758779

ABSTRACT

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Subject(s)
Cellular Senescence , Mitochondria , Non-alcoholic Fatty Liver Disease , Stearoyl-CoA Desaturase , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Mice , Cellular Senescence/genetics , Acetylation , Mitochondria/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Male , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Gene Knock-In Techniques , Liver/metabolism , Liver/pathology , Lipid Metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Disease Models, Animal , Coenzyme A Ligases , Fatty Acid Synthase, Type I
17.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652544

ABSTRACT

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Phosphatidylethanolamines , Pyruvic Acid , Animals , Mice , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Mitochondria, Muscle/metabolism , Phosphatidylethanolamines/metabolism , Sedentary Behavior , Male , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Mice, Knockout , Stearoyl-CoA Desaturase
18.
Adv Sci (Weinh) ; 11(25): e2306253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582510

ABSTRACT

The extensive application of nuclear technology has increased the potential of uncontrolled radiation exposure to the public. Since skin is the largest organ, radiation-induced skin injury remains a serious medical concern. Organisms evolutionally develop distinct strategies to protect against environment insults and the related research may bring novel insights into therapeutics development. Here, 26 increased peptides are identified in skin tissues of frogs (Pelophylax nigromaculatus) exposed to electron beams, among which four promoted the wound healing of irradiated skin in rats. Specifically, radiation-induced frog skin peptide-2 (RIFSP-2), from histone proteolysis exerted membrane permeability property, maintained cellular homeostasis, and reduced pyroptosis of irradiated cells with decreased TBK1 phosphorylation. Subsequently, stearyl-CoA desaturase 1 (SCD1) is identified, a critical enzyme in biogenesis of monounsaturated fatty acids (MUFAs) as a direct target of RIFSP-2 based on streptavidin-biotin system. The lipidomic analysis further assured the restrain of MUFAs biogenesis by RIFSP-2 following radiation. Moreover, the decreased MUFA limited radiation-induced and STING-mediated inflammation response. In addition, genetic depletion or pharmacological inhibition of STING counteracted the decreased pyroptosis by RIFSP-2 and retarded tissue repair process. Altogether, RIFSP-2 restrains radiation-induced activation of SCD1-MUFA-STING axis. Thus, the stress-induced amphibian peptides can be a bountiful source of novel radiation mitigators.


Subject(s)
Inflammation , Skin , Animals , Skin/metabolism , Skin/radiation effects , Skin/drug effects , Rats , Inflammation/metabolism , Radiation-Protective Agents/pharmacology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Peptides/pharmacology , Peptides/metabolism , Ranidae/metabolism , Disease Models, Animal , Wound Healing/drug effects , Anura/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
19.
Sci Rep ; 14(1): 7742, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565895

ABSTRACT

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Subject(s)
Alzheimer Disease , Stearoyl-CoA Desaturase , Mice , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Lipid Metabolism/physiology , Lipogenesis , Disease Models, Animal , Mice, Transgenic
20.
J Ovarian Res ; 17(1): 73, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566208

ABSTRACT

Ovarian cancer is a leading cause of death among gynecologic tumors, often detected at advanced stages. Metabolic reprogramming and increased lipid biosynthesis are key factors driving cancer cell growth. Stearoyl-CoA desaturase 1 (SCD1) is a crucial enzyme involved in de novo lipid synthesis, producing mono-unsaturated fatty acids (MUFAs). Here, we aimed to investigate the expression and significance of SCD1 in epithelial ovarian cancer (EOC). Comparative analysis of normal ovarian surface epithelial (NOSE) tissues and cell lines revealed elevated SCD1 expression in EOC tissues and cells. Inhibition of SCD1 significantly reduced the proliferation of EOC cells and patient-derived organoids and induced apoptotic cell death. Interestingly, SCD1 inhibition did not affect the viability of non-cancer cells, indicating selective cytotoxicity against EOC cells. SCD1 inhibition on EOC cells induced endoplasmic reticulum (ER) stress by activating the unfolded protein response (UPR) sensors and resulted in apoptosis. The addition of exogenous oleic acid, a product of SCD1, rescued EOC cells from ER stress-mediated apoptosis induced by SCD1 inhibition, underscoring the importance of lipid desaturation for cancer cell survival. Taken together, our findings suggest that the inhibition of SCD1 is a promising biomarker as well as a novel therapeutic target for ovarian cancer by regulating ER stress and inducing cancer cell apoptosis.


Subject(s)
Ovarian Neoplasms , Stearoyl-CoA Desaturase , Female , Humans , Stearoyl-CoA Desaturase/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Carcinoma, Ovarian Epithelial , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL