Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.084
Filter
1.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38970404

ABSTRACT

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Subject(s)
Ferroptosis , Lipogenesis , Lipoproteins, LDL , Sterol Regulatory Element Binding Protein 1 , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Male , Lipoproteins, LDL/metabolism , Female , Lipid Peroxidation , Human Umbilical Vein Endothelial Cells/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Middle Aged , Endothelial Cells/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Aged
2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928125

ABSTRACT

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Subject(s)
Adipose Tissue , Fatty Liver , Leptin , Liver , Omentum , Humans , Leptin/metabolism , Female , Male , Liver/metabolism , Middle Aged , Omentum/metabolism , Omentum/pathology , Adipose Tissue/metabolism , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Insulin Resistance , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
3.
Biomolecules ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927010

ABSTRACT

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Subject(s)
Keratinocytes , PPAR delta , PPAR-beta , Stearoyl-CoA Desaturase , Keratinocytes/metabolism , Keratinocytes/drug effects , PPAR-beta/metabolism , PPAR-beta/genetics , Animals , Mice , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , PPAR delta/metabolism , PPAR delta/genetics , Fatty Acids/metabolism , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Humans , Oleic Acid/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology
4.
Sci Rep ; 14(1): 13116, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849435

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Subject(s)
Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Fatty Acid Desaturases , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Humans , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Cell Line, Tumor , A549 Cells , Palmitic Acid/pharmacology , Cell Death/drug effects , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy
5.
Medicine (Baltimore) ; 103(25): e38597, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905386

ABSTRACT

Breast invasive carcinoma (BRCA) is one of the most common cancers in women, with its malignant progression significantly influenced by intracellular fatty acid (FA) desaturation. Stearoyl-coenzyme A desaturase (SCD) and fatty acid desaturase 2 (FADS2) are two key rate-limiting enzymes that catalyze the FA desaturation process and cooperate to accelerate lipid metabolic activities. In this study, we investigated the potential functions of SCD and FADS2 in BRCA using bioinformatic analysis and experimental validation. The gene expression profiling interactive analysis database showed that the expression of SCD or FADS2 genes was positively linked to worse overall survival and disease-free survival in the Cancer Genome Atlas database-BRCA. The University of Alabama at Birmingham cancer data analysis portal database indicates that the expression and methylation levels of SCD or FADS2 are associated with various clinicopathological factors in patients with BRCA. Moreover, the tumor immune estimation resource and TISCH databases showed a significant positive correlation between the expression of SCD and the abundance of CD8+ T cells and macrophage cell infiltration, while the expression of FADS2 was positively correlated with the abundance of B cells. Meanwhile, SCD or FADS2 had a higher expression in monocytes/macrophages analyzed the BRCA_GSE143423 and BRCA_GSE114727_inDrop datasets. Mechanistically, the Search Tool for the Retrieval of Distant Genes and CancerSEA databases showed that SCD and FADS2 were upregulated in several cell biology signaling pathways, particularly in inflammation, apoptosis, and DNA repair. Finally, SCD or FADS2 knockdown inhibited the proliferation of MCF-7 and MDA-MB-231 cells. In summary, SCD and FADS2 play significant roles in BRCA development, suggesting that they may serve as potential therapeutic targets for BRCA treatment.


Subject(s)
Breast Neoplasms , Fatty Acid Desaturases , Tumor Microenvironment , Humans , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Mutation , Gene Expression Regulation, Neoplastic
6.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
7.
J Biol Chem ; 300(6): 107351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718868

ABSTRACT

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.


Subject(s)
Fatty Acids , Membrane Proteins , STAT3 Transcription Factor , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Up-Regulation , Mice
8.
Phytomedicine ; 129: 155689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728921

ABSTRACT

BACKGROUND: Cisplatin (DDP) as the first-line drug has been used in cancer therapy. However, side effects and drug resistance are the challenges of DDP. Disordered lipid metabolism is related to DDP resistance. STUDY DESIGN: In this study, formosanin C (FC) as the main compound of Rhizoma Paridis saponins (RPS) inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. METHODS AND RESULTS: RPS prolonged the survival period of mice, reduced pulmonary metastases and alleviated colon toxicity caused by DDP. FC as the main compound of RPS enhanced the anti-tumor and anti-metastatic effects of DDP. FC decreased the mRNA level of SCD1 and the content of lipid droplets (LDs) in lung cancer cells. Molecular dynamics and isothermal titration calorimetry verified the binding stability and spontaneously between FC and SCD1. SiSCD1 reduced the content of LDs in cell lines and increased mitochondria (mtROS), which was consistent with the results of FC treatment. The combination group decreased DNA repair associated protein as well as DDP resistance markers such as ERCC1 and 53bp1, and increased DNA damage marker like γH2AX, which indirectly confirmed the occurrence of mtROS. In addition, FC combination with DDP also affected epithelial-mesenchymal transition-related protein like VIM and CDH1 in vivo experiments, and thereby inhibited pulmonary metastasis. CONCLUSION: Our research indicated that the FC as the main compound of RPS targeted the CY2 domain of SCD1, inhibited lipid metabolism in mice, and thereby suppressed cancer metastases. This provided support for use of FC to treat cancer based on lipid metabolism pathway.


Subject(s)
Cisplatin , Lung Neoplasms , Saponins , Stearoyl-CoA Desaturase , Animals , Humans , Male , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Lipid Metabolism/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mice, Inbred BALB C , Saponins/pharmacology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
9.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758779

ABSTRACT

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Subject(s)
Cellular Senescence , Mitochondria , Non-alcoholic Fatty Liver Disease , Stearoyl-CoA Desaturase , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Mice , Cellular Senescence/genetics , Acetylation , Mitochondria/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Male , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Gene Knock-In Techniques , Liver/metabolism , Liver/pathology , Lipid Metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Disease Models, Animal , Coenzyme A Ligases , Fatty Acid Synthase, Type I
10.
PLoS One ; 19(5): e0300751, 2024.
Article in English | MEDLINE | ID: mdl-38717999

ABSTRACT

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Subject(s)
Apoptosis Regulatory Proteins , Pulmonary Alveoli , Repressor Proteins , Animals , Female , Male , Mice , Animals, Newborn , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Fatty Acids/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
11.
Adv Sci (Weinh) ; 11(25): e2306253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582510

ABSTRACT

The extensive application of nuclear technology has increased the potential of uncontrolled radiation exposure to the public. Since skin is the largest organ, radiation-induced skin injury remains a serious medical concern. Organisms evolutionally develop distinct strategies to protect against environment insults and the related research may bring novel insights into therapeutics development. Here, 26 increased peptides are identified in skin tissues of frogs (Pelophylax nigromaculatus) exposed to electron beams, among which four promoted the wound healing of irradiated skin in rats. Specifically, radiation-induced frog skin peptide-2 (RIFSP-2), from histone proteolysis exerted membrane permeability property, maintained cellular homeostasis, and reduced pyroptosis of irradiated cells with decreased TBK1 phosphorylation. Subsequently, stearyl-CoA desaturase 1 (SCD1) is identified, a critical enzyme in biogenesis of monounsaturated fatty acids (MUFAs) as a direct target of RIFSP-2 based on streptavidin-biotin system. The lipidomic analysis further assured the restrain of MUFAs biogenesis by RIFSP-2 following radiation. Moreover, the decreased MUFA limited radiation-induced and STING-mediated inflammation response. In addition, genetic depletion or pharmacological inhibition of STING counteracted the decreased pyroptosis by RIFSP-2 and retarded tissue repair process. Altogether, RIFSP-2 restrains radiation-induced activation of SCD1-MUFA-STING axis. Thus, the stress-induced amphibian peptides can be a bountiful source of novel radiation mitigators.


Subject(s)
Inflammation , Skin , Animals , Skin/metabolism , Skin/radiation effects , Skin/drug effects , Rats , Inflammation/metabolism , Radiation-Protective Agents/pharmacology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Peptides/pharmacology , Peptides/metabolism , Ranidae/metabolism , Disease Models, Animal , Wound Healing/drug effects , Anura/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
12.
Sci Rep ; 14(1): 7742, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565895

ABSTRACT

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Subject(s)
Alzheimer Disease , Stearoyl-CoA Desaturase , Mice , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Lipid Metabolism/physiology , Lipogenesis , Disease Models, Animal , Mice, Transgenic
13.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Article in English | MEDLINE | ID: mdl-38460164

ABSTRACT

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Subject(s)
Ferroptosis , Stearoyl-CoA Desaturase , Stomach Neoplasms , Ubiquitin-Specific Peptidase 7 , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Animals , Mice , Humans , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Cell Line, Tumor , Disease Models, Animal
14.
Mol Metab ; 83: 101916, 2024 May.
Article in English | MEDLINE | ID: mdl-38492843

ABSTRACT

OBJECTIVE: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS: Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION: This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.


Subject(s)
Adipocytes , Autophagy , Fatty Acids, Monounsaturated , Mice, Knockout , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Mice , Adipocytes/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Monounsaturated/pharmacology , Mice, Inbred C57BL , Lysosomes/metabolism , Cell Survival , 3T3-L1 Cells , Male , Lipid Metabolism , Autophagosomes/metabolism
15.
Cell Mol Life Sci ; 81(1): 81, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334797

ABSTRACT

Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.


Subject(s)
Lipid Metabolism , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , DNA Methylation , Cell Line, Tumor , Cell Proliferation , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
16.
J Asthma ; 61(7): 707-716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38315158

ABSTRACT

Background: The prevalence of childhood asthma and obesity is increasing, while obesity increases the risk and severity of asthma. Lipid metabolism has been considered as an important factor in the pathogenesis of obesity-associated asthma. Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that catalyzes the production of monounsaturated fatty acids (MUFA).Methods: In the present study, the microarray data retrieved from the Gene Expression Comprehensive Database (GEO) was analyzed to further clarify the impact of SCD1 on Mast cell activation related lipid mediators and the correlation between SCD1 and obesity asthma in the population.Results: SCD1 was highly expressed in IgE-activated bone marrow-derived mast cells (BMMCs). Meanwhile, SCD1 was also verified expressed highly in dinitrophenyl human serum albumin (DNP-HAS) stimulated RBL-2H3 cells. The expression of SCD1 was up-regulated in peripheral blood leukocytes of asthmatic children, and was positively correlated with skinfold thickness of upper arm, abdominal skinfold and body mass index (BMI). Inhibition of SCD1 expression significantly suppressed the degranulation, lipid mediator production, as well as the migration ability in DNP-HAS-stimulated RBL-2H3 cells.Conclusion: SCD1 is involved in obese-related asthma through regulating mast cells.


Subject(s)
Asthma , Mast Cells , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mast Cells/immunology , Mast Cells/metabolism , Humans , Child , Asthma/immunology , Asthma/metabolism , Male , Female , Animals , Mice , Obesity/metabolism , Rats , Body Mass Index
17.
Mol Microbiol ; 121(5): 940-953, 2024 05.
Article in English | MEDLINE | ID: mdl-38419272

ABSTRACT

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Subject(s)
Liver , Malaria , Merozoites , Organelle Biogenesis , Plasmodium berghei , Sporozoites , Stearoyl-CoA Desaturase , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium berghei/enzymology , Animals , Mice , Liver/parasitology , Merozoites/growth & development , Merozoites/metabolism , Malaria/parasitology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Sporozoites/growth & development , Sporozoites/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Anopheles/parasitology , Female , Endoplasmic Reticulum/metabolism
18.
J Cell Biochem ; 125(4): e30542, 2024 04.
Article in English | MEDLINE | ID: mdl-38362828

ABSTRACT

Ferroptosis is a form of regulated cell death that is induced by inhibiting glutathione peroxidase 4 (GPX4), which eliminates lipid peroxidation. Ferroptosis induction is influenced by the cell environment. However, the cellular states altering ferroptosis susceptibility remain largely unknown. We found that melanoma cell lines became resistant to ferroptosis as cell density increased. Comparative transcriptome and metabolome analyses revealed that cell density-dependent ferroptosis resistance was coupled with a shift toward a lipogenic phenotype accompanied by strong induction of stearoyl-CoA desaturase (SCD). Database analysis of gene dependency across hundreds of cancer cell lines uncovered a negative correlation between GPX4 and SCD dependency. Importantly, SCD inhibition, either pharmacologically or through genetic knockout, sensitized melanoma cells to GPX4 inhibition, thereby attenuating ferroptosis resistance in cells at high density. Our findings indicate that transition to an SCD-inducing, lipogenic cell state produces density-dependent resistance to ferroptosis, which may provide a therapeutic strategy against melanoma.


Subject(s)
Ferroptosis , Melanoma , Stearoyl-CoA Desaturase , Humans , Cell Count , Cell Death/genetics , Melanoma/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Stearoyl-CoA Desaturase/genetics
19.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354249

ABSTRACT

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Subject(s)
Aorta , Motor Activity , Animals , Mice , Aorta/metabolism , Diet, High-Fat , Endothelium, Vascular/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
20.
Sci Rep ; 14(1): 177, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167845

ABSTRACT

Overnutrition and genetic predisposition are major risk factors for various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) plays a key role in these conditions by synthesizing unsaturated fatty acids (FAs), thereby promoting fat storage and alleviating lipotoxicity. Expression of SCD1 is influenced by various saturated and cis-unsaturated FAs, but the possible role of dietary trans FAs (TFAs) and SCD1 promoter polymorphisms in its regulations has not been addressed. Therefore, we aimed to investigate the impact of the two main TFAs, vaccenate and elaidate, and four common promoter polymorphisms (rs1054411, rs670213, rs2275657, rs2275656) on SCD1 expression in HEK293T and HepG2 cell cultures using luciferase reporter assay, qPCR and immunoblotting. We found that SCD1 protein and mRNA levels as well as SCD1 promoter activity are markedly elevated by elaidate, but not altered by vaccenate. The promoter polymorphisms did not affect the basal transcriptional activity of SCD1. However, the minor allele of rs1054411 increased SCD1 expression in the presence of various FAs. Moreover, this variant was predicted in silico and verified in vitro to reduce the binding of ETS1 transcription factor to SCD1 promoter. Although we could not confirm an association with type 2 diabetes mellitus, the FA-dependent and ETS1-mediated effect of rs1054411 polymorphism deserves further investigation as it may modulate the development of lipid metabolism-related conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Transcription Factors , Humans , Transcription Factors/genetics , Diabetes Mellitus, Type 2/genetics , Alleles , HEK293 Cells , Fatty Acids/metabolism , Fatty Acids, Unsaturated , Fatty Acids, Monounsaturated , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Proto-Oncogene Protein c-ets-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...