Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.275
1.
PLoS One ; 19(5): e0300751, 2024.
Article En | MEDLINE | ID: mdl-38717999

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Animals, Newborn , Pulmonary Alveoli , Animals , Mice , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Female , Repressor Proteins/genetics , Repressor Proteins/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Male , Fatty Acids/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Apoptosis Regulatory Proteins
2.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758779

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Cellular Senescence , Mitochondria , Non-alcoholic Fatty Liver Disease , Stearoyl-CoA Desaturase , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Mice , Cellular Senescence/genetics , Acetylation , Mitochondria/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Male , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Gene Knock-In Techniques , Liver/metabolism , Liver/pathology , Lipid Metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Disease Models, Animal , Coenzyme A Ligases , Fatty Acid Synthase, Type I
4.
Phytomedicine ; 129: 155689, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728921

BACKGROUND: Cisplatin (DDP) as the first-line drug has been used in cancer therapy. However, side effects and drug resistance are the challenges of DDP. Disordered lipid metabolism is related to DDP resistance. STUDY DESIGN: In this study, formosanin C (FC) as the main compound of Rhizoma Paridis saponins (RPS) inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. METHODS AND RESULTS: RPS prolonged the survival period of mice, reduced pulmonary metastases and alleviated colon toxicity caused by DDP. FC as the main compound of RPS enhanced the anti-tumor and anti-metastatic effects of DDP. FC decreased the mRNA level of SCD1 and the content of lipid droplets (LDs) in lung cancer cells. Molecular dynamics and isothermal titration calorimetry verified the binding stability and spontaneously between FC and SCD1. SiSCD1 reduced the content of LDs in cell lines and increased mitochondria (mtROS), which was consistent with the results of FC treatment. The combination group decreased DNA repair associated protein as well as DDP resistance markers such as ERCC1 and 53bp1, and increased DNA damage marker like γH2AX, which indirectly confirmed the occurrence of mtROS. In addition, FC combination with DDP also affected epithelial-mesenchymal transition-related protein like VIM and CDH1 in vivo experiments, and thereby inhibited pulmonary metastasis. CONCLUSION: Our research indicated that the FC as the main compound of RPS targeted the CY2 domain of SCD1, inhibited lipid metabolism in mice, and thereby suppressed cancer metastases. This provided support for use of FC to treat cancer based on lipid metabolism pathway.


Cisplatin , Lung Neoplasms , Saponins , Stearoyl-CoA Desaturase , Animals , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Humans , Mice , Cisplatin/pharmacology , Saponins/pharmacology , Cell Line, Tumor , Male , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Lipid Metabolism/drug effects
5.
Sci Rep ; 14(1): 7742, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565895

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Alzheimer Disease , Stearoyl-CoA Desaturase , Mice , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Lipid Metabolism/physiology , Lipogenesis , Disease Models, Animal , Mice, Transgenic
6.
J Ovarian Res ; 17(1): 73, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566208

Ovarian cancer is a leading cause of death among gynecologic tumors, often detected at advanced stages. Metabolic reprogramming and increased lipid biosynthesis are key factors driving cancer cell growth. Stearoyl-CoA desaturase 1 (SCD1) is a crucial enzyme involved in de novo lipid synthesis, producing mono-unsaturated fatty acids (MUFAs). Here, we aimed to investigate the expression and significance of SCD1 in epithelial ovarian cancer (EOC). Comparative analysis of normal ovarian surface epithelial (NOSE) tissues and cell lines revealed elevated SCD1 expression in EOC tissues and cells. Inhibition of SCD1 significantly reduced the proliferation of EOC cells and patient-derived organoids and induced apoptotic cell death. Interestingly, SCD1 inhibition did not affect the viability of non-cancer cells, indicating selective cytotoxicity against EOC cells. SCD1 inhibition on EOC cells induced endoplasmic reticulum (ER) stress by activating the unfolded protein response (UPR) sensors and resulted in apoptosis. The addition of exogenous oleic acid, a product of SCD1, rescued EOC cells from ER stress-mediated apoptosis induced by SCD1 inhibition, underscoring the importance of lipid desaturation for cancer cell survival. Taken together, our findings suggest that the inhibition of SCD1 is a promising biomarker as well as a novel therapeutic target for ovarian cancer by regulating ER stress and inducing cancer cell apoptosis.


Ovarian Neoplasms , Stearoyl-CoA Desaturase , Female , Humans , Stearoyl-CoA Desaturase/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Carcinoma, Ovarian Epithelial , Lipids
7.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Article En | MEDLINE | ID: mdl-38460164

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Ferroptosis , Stearoyl-CoA Desaturase , Stomach Neoplasms , Ubiquitin-Specific Peptidase 7 , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Animals , Mice , Humans , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Cell Line, Tumor , Disease Models, Animal
8.
Mol Metab ; 83: 101916, 2024 May.
Article En | MEDLINE | ID: mdl-38492843

OBJECTIVE: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS: Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION: This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.


Adipocytes , Autophagy , Fatty Acids, Monounsaturated , Mice, Knockout , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Mice , Adipocytes/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Monounsaturated/pharmacology , Mice, Inbred C57BL , Lysosomes/metabolism , Cell Survival , 3T3-L1 Cells , Male , Lipid Metabolism , Autophagosomes/metabolism
9.
Mol Microbiol ; 121(5): 940-953, 2024 May.
Article En | MEDLINE | ID: mdl-38419272

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Liver , Malaria , Merozoites , Organelle Biogenesis , Plasmodium berghei , Sporozoites , Stearoyl-CoA Desaturase , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium berghei/enzymology , Animals , Mice , Liver/parasitology , Merozoites/growth & development , Merozoites/metabolism , Malaria/parasitology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Sporozoites/growth & development , Sporozoites/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Anopheles/parasitology , Female , Endoplasmic Reticulum/metabolism
10.
Cell Mol Life Sci ; 81(1): 81, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38334797

Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.


Lipid Metabolism , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , DNA Methylation , Cell Line, Tumor , Cell Proliferation , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
11.
Mol Med ; 30(1): 28, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383297

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. The sex differences in the occurrence and fatality rates of non-small cell lung cancer (NSCLC), along with its association with estrogen dependence, suggest that estrogen receptors (ERs) contribute to the development of NSCLC. However, the influence of G protein-coupled estrogen receptor (GPER1) on NSCLC remains to be determined. Escape from ferroptosis is one of the hallmarks of tumor discovered in recent years. In this context, the present study evaluated whether GPER1 promotes NSCLC progression by preventing ferroptosis, and the underlying mechanism through which GPER1 protects against ferroptosis was also explored. METHODS: The effects of GPER1 on the cytotoxicity of H2O2, the ferroptosis inducer RSL3, and Erastin were assessed using the CCK8 assay and plate cloning. Lipid peroxidation levels were measured based on the levels of MDA and BODIPY™581/591C11. GPER1 overexpression and knockdown were performed and G1 was used, and the expression of SCD1 and PI3K/AKT/mTOR signaling factors was measured. Immunofluorescence analysis and immunohistochemistry were performed on paired specimens to measure the correlation between the expression of GPER1 and SCD1 in NSCLC tissues. The effect of GPER1 on the cytotoxicity of cisplatin was measured in vitro using the CCK8 assay and in vivo using xenograft tumor models. RESULTS: GPER1 and G1 alleviated the cytotoxicity of H2O2, reduced sensitivity to RSL3, and impaired lipid peroxidation in NSCLC tissues. In addition, GPER1 and G1 promoted the protein and mRNA expression of SCD1 and the activation of PI3K/AKT/mTOR signaling. GPER1 and SCD1 expression were elevated and positively correlated in NSCLC tissues, and high GPER1 expression predicted a poor prognosis. GPER1 knockdown enhanced the antitumor activity of cisplatin in vitro and in vivo. CONCLUSION: GPER1 prevents ferroptosis in NSCLC by promoting the activation of PI3K/AKT/mTOR signaling, thereby inducing SCD1 expression. Therefore, treatments targeting GPER1 combined with cisplatin would exhibit better antitumor effects.


Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Female , Male , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cisplatin/pharmacology , Lipogenesis , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , TOR Serine-Threonine Kinases/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Estrogens , Receptors, Estrogen/metabolism , GTP-Binding Proteins , Stearoyl-CoA Desaturase/metabolism
12.
Clin Transl Med ; 14(2): e1587, 2024 02.
Article En | MEDLINE | ID: mdl-38372484

Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.


Colonic Neoplasms , Lipid Metabolism , Humans , Lipid Metabolism/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Stearoyl-CoA Desaturase/metabolism
13.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38354249

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Aorta , Motor Activity , Animals , Mice , Aorta/metabolism , Diet, High-Fat , Endothelium, Vascular/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
14.
Neuropharmacology ; 249: 109865, 2024 May 15.
Article En | MEDLINE | ID: mdl-38342377

Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.


Parkinson Disease , Synucleinopathies , Humans , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Stearoyl-CoA Desaturase/metabolism , Fatty Acids/metabolism
15.
Sci Rep ; 14(1): 177, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167845

Overnutrition and genetic predisposition are major risk factors for various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) plays a key role in these conditions by synthesizing unsaturated fatty acids (FAs), thereby promoting fat storage and alleviating lipotoxicity. Expression of SCD1 is influenced by various saturated and cis-unsaturated FAs, but the possible role of dietary trans FAs (TFAs) and SCD1 promoter polymorphisms in its regulations has not been addressed. Therefore, we aimed to investigate the impact of the two main TFAs, vaccenate and elaidate, and four common promoter polymorphisms (rs1054411, rs670213, rs2275657, rs2275656) on SCD1 expression in HEK293T and HepG2 cell cultures using luciferase reporter assay, qPCR and immunoblotting. We found that SCD1 protein and mRNA levels as well as SCD1 promoter activity are markedly elevated by elaidate, but not altered by vaccenate. The promoter polymorphisms did not affect the basal transcriptional activity of SCD1. However, the minor allele of rs1054411 increased SCD1 expression in the presence of various FAs. Moreover, this variant was predicted in silico and verified in vitro to reduce the binding of ETS1 transcription factor to SCD1 promoter. Although we could not confirm an association with type 2 diabetes mellitus, the FA-dependent and ETS1-mediated effect of rs1054411 polymorphism deserves further investigation as it may modulate the development of lipid metabolism-related conditions.


Diabetes Mellitus, Type 2 , Transcription Factors , Humans , Transcription Factors/genetics , Diabetes Mellitus, Type 2/genetics , Alleles , HEK293 Cells , Fatty Acids/metabolism , Fatty Acids, Unsaturated , Fatty Acids, Monounsaturated , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Proto-Oncogene Protein c-ets-1/genetics
16.
Transl Res ; 268: 51-62, 2024 Jun.
Article En | MEDLINE | ID: mdl-38244769

Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.


Lipid Metabolism , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Stearoyl-CoA Desaturase , Sterol Regulatory Element Binding Protein 1 , Animals , Humans , Male , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Diet, High-Fat/adverse effects , Fatty Liver/metabolism , Fatty Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
17.
Eur J Pharmacol ; 963: 176249, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38070637

Osteosarcoma (OS) is the most common malignant bone tumor. Fatty acid reprogramming plays an essential role in OS progression. However, new fatty acid related therapeutic targets of OS have not been completely elucidated. Therefore, we firstly identified 113 differentially expressed fatty acid metabolism genes using bioinformatic analysis, 19 of which were found to be associated with OS prognosis. Then, 7 hub genes were screened out and yielded a strong prediction accuracy (AUC value = 0.88, at 3 years) for predicting the survival status of OS patients. Furthermore, we confirmed that SCD was highly expressed in OS cells and patients. And Knock-down of SCD impaired proliferation and migration of OS cells. Moreover, SCD was transcriptionally activated by c-Myc to promote proliferation and migration of OS cells. Finally, SCD inhibitor could significantly induce OS ferroptosis in vitro and in vivo. In conclusion, we identified that SCD was a reliable risk factor for OS patients. And SCD was activated by c-Myc. The inhibitor of SCD could significantly impaired OS growth and induce OS ferroptosis, which indicated that SCD was a potential drug target for OS treatment.


Osteosarcoma , Stearoyl-CoA Desaturase , Humans , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Fatty Acids/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics
18.
Cancer Gene Ther ; 31(2): 237-249, 2024 02.
Article En | MEDLINE | ID: mdl-38072968

Circular RNAs (circRNAs) are covalently closed noncoding RNA molecules that play multiple roles in tumorigenesis and metastasis. Ferroptosis is an iron-dependent, regulated form of cell death and has emerged as a promising target for cancer treatment. However, whether and how circRNAs regulate ferroptotic cell death in colorectal cancer (CRC) remains largely unknown. Three circRNA microarrays were used to screen differentially expressed circRNAs in CRC tissues. A series of functional experiments were conducted to investigate the effects of circRNA on CRC cell proliferation, migration and ferroptosis. We found that hsa_circ_0058495 (circRHBDD1), a novel circRNA, was significantly upregulated in colorectal cancer tissues and cells. The expression levels of circRHBDD1 in serum samples were strongly associated with the advancement of CRC. Silencing of circRHBDD1 remarkably suppressed the proliferation and migration of CRC cells in vitro. Moreover, the depletion of circRHBDD1 notably increased ferroptotic cell death and enhanced RSL3-induced ferroptosis in CRC cells. Mechanistically, circRHBDD1 upregulated the expression of stearoyl-CoA desaturase (SCD), a ferroptosis suppressor mediating lipid remodelling, by enhancing the ELAVL1/SCD mRNA interaction. Finally, circRHBDD1 knockdown repressed the tumorigenesis and ferroptosis of CRC cells in vivo. In conclusion, circRHBDD1 facilitates tumour progression and obstructs ferroptosis in CRC by regulating SCD expression in an ELAVL1-dependent manner.


Colorectal Neoplasms , Ferroptosis , MicroRNAs , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , Stearoyl-CoA Desaturase/metabolism , Ferroptosis/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Carcinogenesis/genetics , MicroRNAs/genetics , ELAV-Like Protein 1/genetics , Serine Endopeptidases/metabolism
19.
Toxicol Appl Pharmacol ; 482: 116788, 2024 01.
Article En | MEDLINE | ID: mdl-38086441

Environmental chemicals, such as plasticizers, have been linked to increased rates of obesity, according to epidemiological studies. Acetyl triethyl citrate (ATEC) is a plasticizer that is commonly utilized in pharmaceutical products and food packaging as a non-phthalate alternative. Due to its direct contact with the human body and high leakage rate from the polymers, assessment of the potential risk of ATEC exposure at environmentally relevant low doses to human health is needed. Male C57BL/6 J mice were fed diets containing ATEC at doses of either 0.1 or 10 µg/kg per day in a period of 12 weeks to mimic the real exposure environment. The findings suggest that in C57BL/6 J mice, ATEC exposure resulted in increased body weight gain, body fat percentage, and benign hepatocytes, as well as adipocyte size. Consistent with in vivo models, ATEC treatment obviously stimulated the increase of intracellular lipid load in both mouse and human hepatocytes. Mechanically, ATEC induced the transcriptional expression of genes involved in de novo lipogenesis and lipid uptake. Using both enzyme inhibitor and small interfering RNA (siRNA) transfection, we found that stearoyl-coenzyme A desaturase 1 (SCD1) played a significant role in ATEC-induced intracellular lipid accumulation. This study for the first time provided initial evidence suggesting the obesogenic and fatty liver-inducing effect of ATEC at low doses near human exposure levels, and ATEC might be a potential environmental obesogen and its effect on human health need to be further evaluated.


Citrates , Lipogenesis , Plasticizers , Male , Mice , Humans , Animals , Plasticizers/toxicity , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/metabolism , Lipids , Liver , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
20.
Biofactors ; 50(1): 89-100, 2024.
Article En | MEDLINE | ID: mdl-37470206

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Fatty Acid Desaturases , Fatty Acids, Omega-3 , Humans , Male , Animals , Mice , Fatty Acid Desaturases/genetics , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Testis/metabolism , Liver/metabolism , Fatty Acids, Unsaturated/metabolism , Stearoyl-CoA Desaturase/metabolism , Brain/metabolism , Kidney/metabolism
...