Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.960
Filter
2.
J Orthop Surg Res ; 19(1): 382, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943181

ABSTRACT

BACKGROUND: Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study. METHODS: Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats. RESULTS: We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence. CONCLUSION: In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.


Subject(s)
AMP-Activated Protein Kinases , Cellular Senescence , Exosomes , Ferroptosis , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Regeneration , Signal Transduction , Stem Cells , Tendons , Animals , Ferroptosis/physiology , Exosomes/metabolism , Exosomes/physiology , NF-E2-Related Factor 2/metabolism , Cellular Senescence/physiology , Rats , Signal Transduction/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Regeneration/physiology , AMP-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Stem Cells/physiology , Tendons/metabolism , Tendons/physiology , Male , Blood Platelets/metabolism , Rats, Sprague-Dawley , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/pathology , Disease Models, Animal
3.
Adv Exp Med Biol ; 1441: 103-124, 2024.
Article in English | MEDLINE | ID: mdl-38884707

ABSTRACT

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.


Subject(s)
Cell Lineage , Animals , Humans , Cell Differentiation/genetics , Cell Lineage/genetics , Heart/physiology , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Signal Transduction , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/physiology
4.
Ageing Res Rev ; 99: 102391, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914266

ABSTRACT

Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.


Subject(s)
Cellular Senescence , Extracellular Vesicles , Senotherapeutics , Humans , Extracellular Vesicles/physiology , Cellular Senescence/physiology , Animals , Senotherapeutics/pharmacology , Stem Cells/physiology , Aging/physiology
6.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38804592

ABSTRACT

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Subject(s)
Forkhead Box Protein M1 , Goats , Hair Follicle , MicroRNAs , Stem Cells , Wnt Signaling Pathway , Animals , Goats/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Wnt Signaling Pathway/genetics , Hair Follicle/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Stem Cells/physiology , Stem Cells/metabolism , Gene Knockdown Techniques
7.
J Periodontol ; 95(7): 662-672, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708919

ABSTRACT

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.


Subject(s)
Neovascularization, Physiologic , Periodontal Ligament , Vascular Endothelial Growth Factor A , Humans , Pilot Projects , Periodontal Ligament/cytology , Periodontal Ligament/blood supply , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/analysis , Mesenchymal Stem Cells , Maxilla , Mandible , Cell Proliferation , Stem Cells/physiology , Male , Cell Differentiation , Adult , Female , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Cells, Cultured , Young Adult
8.
Ceska Gynekol ; 89(2): 151-155, 2024.
Article in English | MEDLINE | ID: mdl-38704229

ABSTRACT

The human placenta serves as a vital barrier between the mother and the developing fetus during pregnancy. A defect in the early development of the placenta is associated with severe pregnancy disorders. Despite its complex development, various molecular processes control placental development, and the specialization of trophoblast cells is still not fully understood. One primary obstacle is the lack of suitable cell model systems. Traditional two-dimensional (2D) cell cultures fail to mimic in vivo conditions and do not capture the intricate intercellular interactions vital for studying placental development. However, three-dimensional (3D) organoid models derived from stem cells that replicate natural cell organization and architecture have greatly improved our understanding of trophoblast behavior and its medicinal applications. Organoids with relevant phenotypes provide a valuable platform to model both placental physiology and pathology, including the modeling of placental disorders. They hold great promise for personalized medicine, improved diagnostics, and the evaluation of pharmaceutical drug efficacy and safety. This article provides a concise overview of trophoblast stem cells, trophoblast invasion, and the evolving role of organoids in gynecology.


Subject(s)
Organoids , Stem Cells , Trophoblasts , Humans , Trophoblasts/physiology , Organoids/physiology , Female , Pregnancy , Stem Cells/physiology , Placenta/cytology , Placenta/physiology , Placenta/pathology , Placentation/physiology
9.
J Dent Res ; 103(6): 652-661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716736

ABSTRACT

The process of neovascularization during cell-based pulp regeneration is difficult to study. Here we developed a tube model that simulates root canal space and allows direct visualization of the vascularization process in vitro. Endothelial-like cells (ECs) derived from guiding human dental pulp stem cells (DPSCs) into expressing endothelial cell markers CD144, vWF, VEGFR1, and VEGFR2 were used. Human microvascular endothelial cells (hMVECs) were used as a positive control. DPSC-ECs formed tubules on Matrigel similar to hMVECs. Cells were mixed in fibrinogen/thrombin or mouse blood and seeded into wells of 96-well plates or injected into a tapered plastic tube (14 mm in length and 1 or 2 mm diameter of the apex opening) with the larger end sealed with MTA to simulate root canal space. Cells/gels in wells or tubes were incubated for various times in vitro and observed under the microscope for morphological changes. Samples were then fixed and processed for histological analysis to determine vessel formation. Vessel-like networks were observed in culture from 1 to 3 d after cell seeding. Cells/gels in 96-well plates were maintained up to 25 d. Histologically, both hMVECs and DPSC-ECs in 96-well plates or tubes showed intracellular vacuole formation. Some cells showed merged large vacuoles indicating the lumenization. Tubular structures were also observed resembling blood vessels. Cells appeared healthy throughout the tube except some samples (1 mm apical diameter) in the coronal third. Histological analysis also showed pulp-like soft tissue throughout the tube samples with vascular-like structures. hMVECs formed larger vascular lumen size than DPSC-ECs while the latter tended to have more lumen and tubular structure counts. We conclude that DPSC-ECs can form vascular structures and sustained in the 3-dimensional fibrin gel system in vitro. The tube model appears to be a proper and simple system simulating the root canal space for vascular formation and pulp regeneration studies.


Subject(s)
Dental Pulp , Drug Combinations , Endothelial Cells , Neovascularization, Physiologic , Proteoglycans , Regeneration , Stem Cells , Dental Pulp/cytology , Dental Pulp/blood supply , Dental Pulp/physiology , Neovascularization, Physiologic/physiology , Animals , Mice , Humans , Regeneration/physiology , Endothelial Cells/physiology , Stem Cells/physiology , Collagen , Cell Culture Techniques , Laminin , von Willebrand Factor/analysis , Vascular Endothelial Growth Factor Receptor-2 , Fibrinogen , Dental Pulp Cavity , Calcium Compounds , Aluminum Compounds , Root Canal Filling Materials , Microvessels/cytology , Cells, Cultured , Oxides , Silicates , CD146 Antigen
10.
Braz Oral Res ; 38: e037, 2024.
Article in English | MEDLINE | ID: mdl-38747824

ABSTRACT

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Subject(s)
Alkaline Phosphatase , Cell Differentiation , Dental Pulp , Lipopolysaccharides , NF-kappa B , Nitriles , Osteogenesis , Periodontal Ligament , Stem Cells , Humans , Lipopolysaccharides/pharmacology , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Dental Pulp/cytology , Dental Pulp/drug effects , NF-kappa B/metabolism , Alkaline Phosphatase/analysis , Cell Differentiation/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Cells, Cultured , Nitriles/pharmacology , Sulfones/pharmacology , Reproducibility of Results , Time Factors , Young Adult , Adolescent
11.
Curr Top Dev Biol ; 158: 179-201, 2024.
Article in English | MEDLINE | ID: mdl-38670705

ABSTRACT

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Subject(s)
Cellular Microenvironment , Extracellular Matrix , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/metabolism , Extracellular Matrix/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Adaptation, Physiological , Stem Cell Niche/physiology , Regeneration/physiology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Stem Cells/cytology , Stem Cells/physiology
12.
Curr Top Dev Biol ; 158: 151-177, 2024.
Article in English | MEDLINE | ID: mdl-38670704

ABSTRACT

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Subject(s)
Homeostasis , Muscle, Skeletal , Regeneration , Stem Cell Niche , Regeneration/physiology , Humans , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Animals , Stem Cell Niche/physiology , Stem Cells/cytology , Stem Cells/physiology , Stem Cells/metabolism
13.
Curr Top Dev Biol ; 158: 279-306, 2024.
Article in English | MEDLINE | ID: mdl-38670710

ABSTRACT

Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.


Subject(s)
Muscle, Skeletal , Stem Cells , Humans , Animals , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Stem Cells/cytology , Stem Cells/physiology , Stem Cells/metabolism , Biomechanical Phenomena
14.
Brain Res ; 1836: 148936, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38649134

ABSTRACT

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Subject(s)
Cell Differentiation , Milk, Human , Humans , Cell Differentiation/physiology , Cells, Cultured , Tissue Scaffolds , Neural Stem Cells/physiology , Neurons/cytology , Neurons/physiology , Neurons/metabolism , Hydrogels , Cell Survival/physiology , Glial Fibrillary Acidic Protein/metabolism , Female , Microtubule-Associated Proteins/metabolism , Stem Cells/physiology , Stem Cells/cytology , Tissue Engineering/methods , Tubulin/metabolism , Cell Culture Techniques/methods , Extracellular Matrix/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Peptides , Antigens, Nuclear
15.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648494

ABSTRACT

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Subject(s)
Alveolar Epithelial Cells , Lung Injury , Regeneration , Humans , Regeneration/physiology , Animals , Lung Injury/metabolism , Lung Injury/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Stem Cells/metabolism , Stem Cells/physiology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/metabolism , Signal Transduction , Cell Differentiation
16.
Life Sci Space Res (Amst) ; 41: 1-17, 2024 May.
Article in English | MEDLINE | ID: mdl-38670635

ABSTRACT

Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.


Subject(s)
Regenerative Medicine , Stem Cells , Tissue Engineering , Weightlessness , Regenerative Medicine/methods , Tissue Engineering/methods , Humans , Stem Cells/cytology , Stem Cells/physiology , Cell Differentiation , Animals , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques/methods
17.
J Cosmet Dermatol ; 23(6): 2279-2287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429909

ABSTRACT

BACKGROUND: Injury to skin tissue is devastating for human health, making it imperative to devise strategies for hastening wound healing. Normal wound healing is a complex process comprising overlapping steps, including hemostasis, inflammatory response, proliferation, and matrix remodeling. This study investigated the effects of adipose stem cell-derived exosomes (ADSC-exos) on wound healing and the underlying mechanisms. METHODS: In vitro hydrogen peroxide (H2O2)-treated human keratinocyte (HaCaT) cell lines and in vivo animal wound models were established for this purpose. The cell migration was assessed using transwell and wound healing assays, while exosome biomarker expressions were studied using western blot. Moreover, adipose stem cells were identified using flow cytometry, alizarin red S and oil red O staining, and transmission electron microscopy. RESULTS: Results indicated that H2O2 treatment inhibited the cell viability and migration of HaCaT cells while being promoted by ADSC-exos. Mechanistic investigations revealed that microRNA-let-7i-5p (let-7i-5p) in ADSC-exos was carried into the HaCaT cells, inhibiting the expression of growth arrest-specific-7 (GAS7). Rescue experiments further verified these results, which indicated that GAS7 overexpression reversed the effect of let-7i-5p on the viability and migration of HaCaT cells, suggesting ADSC-exos promoted wound healing via the let-7i-5p/GAS7 axis. CONCLUSION: Adipose stem cell-derived-exos enhanced the viability and migration of HaCaT via carrying let-7i-5p and targeting GAS7, ultimately promoting wound healing in rats.


Subject(s)
Adipose Tissue , Cell Movement , Exosomes , Hydrogen Peroxide , MicroRNAs , Wound Healing , Animals , Humans , Rats , Adipose Tissue/cytology , Cell Movement/drug effects , Cell Survival/drug effects , Disease Models, Animal , Exosomes/metabolism , HaCaT Cells , Hydrogen Peroxide/pharmacology , Keratinocytes/physiology , Keratinocytes/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Rats, Sprague-Dawley , Stem Cells/metabolism , Stem Cells/physiology , Wound Healing/drug effects
18.
Glia ; 72(7): 1236-1258, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38515287

ABSTRACT

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Subject(s)
Cell Proliferation , Ependymoglial Cells , Inhibitor of Differentiation Proteins , Retina , Animals , Cell Proliferation/physiology , Cell Proliferation/drug effects , Inhibitor of Differentiation Proteins/metabolism , Inhibitor of Differentiation Proteins/genetics , Retina/metabolism , Retina/cytology , Ependymoglial Cells/metabolism , Ependymoglial Cells/physiology , Neurogenesis/physiology , Neurogenesis/drug effects , Chick Embryo , Neural Stem Cells/metabolism , Chickens , Neuroglia/metabolism , Stem Cells/metabolism , Stem Cells/physiology
19.
Exerc Sport Sci Rev ; 52(3): 87-94, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38445901

ABSTRACT

Sexual dimorphism, driven by the sex hormones testosterone and estrogen, influences body composition, muscle fiber type, and inflammation. Research related to muscle stem cell (MuSC) responses to exercise has mainly focused on males. We propose a novel hypothesis that there are sex-based differences in MuSC regulation following exercise, such that males have more MuSCs, whereas females demonstrate a greater capacity for regeneration.


Subject(s)
Exercise , Muscle, Skeletal , Sex Characteristics , Animals , Female , Humans , Male , Estrogens/metabolism , Exercise/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Regeneration/physiology , Sex Factors , Stem Cells/physiology , Testosterone/metabolism , Testosterone/blood
20.
J Math Biol ; 88(4): 47, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520536

ABSTRACT

To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.


Subject(s)
Stem Cells , Homeostasis , Cell Differentiation , Stem Cells/physiology , Cell Division
SELECTION OF CITATIONS
SEARCH DETAIL