Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.755
Filter
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963051

ABSTRACT

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Lipogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Lipogenesis/genetics , Lipogenesis/drug effects , AMP-Activated Protein Kinases/metabolism , Hep G2 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , AMP-Activated Protein Kinase Kinases/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
2.
Cell Death Dis ; 15(7): 474, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956060

ABSTRACT

Colorectal cancer (CRC) is one of the most common tumors of the digestive system worldwide. KRAS mutations limit the use of anti-EGFR antibodies in combination with chemotherapy for the treatment of CRC. Therefore, novel targeted therapies are needed to overcome the KRAS-induced oncogenesis. Recent evidence suggests that inhibition of PI3K led to ferroptosis, a nonapoptotic cell death closely related to KRAS-mutant cells. Here, we showed that a selective PI3Kδ inhibitor TYM-3-98 can suppress the AKT/mTOR signaling and activate the ferroptosis pathway in KRAS-mutant CRC cells in a concentration-dependent manner. This was evidenced by the lipid peroxidation, iron accumulation, and depletion of GSH. Moreover, the overexpression of the sterol regulatory element-binding protein 1 (SREBP1), a downstream transcription factor regulating lipid metabolism, conferred CRC cells greater resistance to ferroptosis induced by TYM-3-98. In addition, the effect of TYM-3-98 was confirmed in a xenograft mouse model, which demonstrated significant tumor suppression without obvious hepatoxicity or renal toxicity. Taken together, our work demonstrated that the induction of ferroptosis contributed to the PI3Kδ inhibitor-induced cell death via the suppression of AKT/mTOR/SREBP1-mediated lipogenesis, thus displaying a promising therapeutic effect of TYM-3-98 in CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Lipogenesis , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Lipogenesis/drug effects , Lipogenesis/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Signal Transduction/drug effects , Mice, Nude , Cell Line, Tumor , Mutation/genetics , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology
3.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38970404

ABSTRACT

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Subject(s)
Ferroptosis , Lipogenesis , Lipoproteins, LDL , Sterol Regulatory Element Binding Protein 1 , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Male , Lipoproteins, LDL/metabolism , Female , Lipid Peroxidation , Human Umbilical Vein Endothelial Cells/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Middle Aged , Endothelial Cells/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Aged
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928125

ABSTRACT

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Subject(s)
Adipose Tissue , Fatty Liver , Leptin , Liver , Omentum , Humans , Leptin/metabolism , Female , Male , Liver/metabolism , Middle Aged , Omentum/metabolism , Omentum/pathology , Adipose Tissue/metabolism , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Insulin Resistance , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
5.
Aging (Albany NY) ; 16(11): 9410-9436, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38848145

ABSTRACT

Although platinum-based chemotherapy is the frontline regimen for colorectal cancer (CRC), drug resistance remains a major challenge affecting its therapeutic efficiency. However, there is limited research on the correlation between chemotherapy resistance and lipid metabolism, including PIK3CA mutant tumors. In this present study, we found that PIK3CA-E545K mutation attenuated cell apoptosis and increased the cell viability of CRC with L-OHP treatment in vitro and in vivo. Mechanistically, PIK3CA-E545K mutation promoted the nuclear accumulation of SREBP1, which promoted the transcription of Apolipoprotein A5 (APOA5). APOA5 activated the PPARγ signaling pathway to alleviate reactive oxygen species (ROS) production following L-OHP treatment, which contributed to cell survival of CRC cells. Moreover, APOA5 overexpression enhanced the stemness-related traits of CRC cells. Increased APOA5 expression was associated with PIK3CA mutation in tumor specimens and poor response to first-line chemotherapy, which was an independent detrimental factor for chemotherapy sensitivity in CRC patients. Taken together, this study indicated that PIK3CA-E545K mutation promoted L-OHP resistance by upregulating APOA5 transcription in CRC, which could be a potent target for improving L-OHP chemotherapeutic efficiency. Our study shed light to improve chemotherapy sensitivity through nutrient management in CRC.


Subject(s)
Apolipoprotein A-V , Class I Phosphatidylinositol 3-Kinases , Colorectal Neoplasms , Drug Resistance, Neoplasm , Mutation , Oxaliplatin , Reactive Oxygen Species , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Apolipoprotein A-V/genetics , Apolipoprotein A-V/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Reactive Oxygen Species/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Male , Apoptosis/drug effects , Apoptosis/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects
6.
J Agric Food Chem ; 72(26): 14620-14629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885170

ABSTRACT

Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Milk , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Milk/chemistry , Milk/metabolism , Mice , Cattle , Female , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fats/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Fatty Acids/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Triglycerides/metabolism
7.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892352

ABSTRACT

Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.


Subject(s)
Adipogenesis , Anti-Obesity Agents , Diet, High-Fat , Fermentation , Lactobacillus plantarum , Obesity , PPAR gamma , Rubus , Signal Transduction , Animals , Adipogenesis/drug effects , Rubus/chemistry , Mice , Obesity/metabolism , Anti-Obesity Agents/pharmacology , Male , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Mice, Inbred C57BL , Leptin/metabolism , Leptin/blood , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Triglycerides/blood , Triglycerides/metabolism , Body Weight/drug effects
8.
Arch Dermatol Res ; 316(7): 428, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904694

ABSTRACT

Cannabidiol (CBD), which is derived from hemp, is gaining recognition because of its anti-inflammatory and lipid-modulating properties that could be utilized to treat acne. We conducted experiments to quantitatively assess the effects of CBD on acne-related cellular pathways. SEB-1 sebocytes and HaCaT keratinocytes were exposed to various CBD concentrations. CBD exhibited a concentration-dependent impact on cell viability and notably reduced SEB-1 viability; furthermore, it induced apoptosis and a significant increase in the apoptotic area at higher concentrations. Additionally, CBD remarkably reduced pro-inflammatory cytokines, including CXCL8, IL-1α, and IL-1ß. Additionally, it inhibited lipid synthesis by modulating the AMPK-SREBP-1 pathway and effectively reduced hyperkeratinization-related protein keratin 16. Simultaneously, CBD stimulated the synthesis of elastin, collagen 1, and collagen 3. These findings emphasize the potential of CBD for the management of acne because of its anti-inflammatory, apoptotic, and lipid-inhibitory effects. Notably, the modulation of the Akt/AMPK-SREBP-1 pathway revealed a novel and promising mechanism that could address the pathogenesis of acne.


Subject(s)
Acne Vulgaris , Apoptosis , Cannabidiol , Cell Survival , Keratinocytes , Signal Transduction , Humans , Acne Vulgaris/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Apoptosis/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects , Cicatrix/drug therapy , Cicatrix/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sterol Regulatory Element Binding Protein 1/metabolism , HaCaT Cells , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Elastin/metabolism , Sebaceous Glands/pathology , Sebaceous Glands/drug effects , Sebaceous Glands/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Cell Line
9.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
10.
Obesity (Silver Spring) ; 32(7): 1349-1361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816990

ABSTRACT

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an escalating health problem in pediatric populations. This study aimed to investigate the role of N-acetyltransferase 10 (NAT10) in maternal high-fat diet (HFD)-induced MASLD in offspring at early life. METHODS: We generated male hepatocyte-specific NAT10 knockout (Nat10HKO) mice and mated them with female Nat10fl/fl mice under chow or HFD feeding. Body weight, liver histopathology, and expression of lipid metabolism-associated genes (Srebp1c, Fasn, Pparα, Cd36, Fatp2, Mttp, and Apob) were assessed in male offspring at weaning. Lipid uptake assays were performed both in vivo and in vitro. The mRNA stability assessment and RNA immunoprecipitation were performed to determine NAT10-regulated target genes. RESULTS: NAT10 deletion in hepatocytes of male offspring alleviated perinatal lipid accumulation induced by maternal HFD, decreasing expression levels of Srebp1c, Fasn, Cd36, Fatp2, Mttp, and Apob while enhancing Pparα expression. Furthermore, Nat10HKO male mice exhibited reduced lipid uptake. In vitro, NAT10 promoted lipid uptake by enhancing the mRNA stability of CD36 and FATP2. RNA immunoprecipitation assays exhibited direct interactions between NAT10 and CD36/FATP2 mRNA. CONCLUSIONS: NAT10 deletion in offspring hepatocytes ameliorates maternal HFD-induced hepatic steatosis through decreasing mRNA stability of CD36 and FATP2, highlighting NAT10 as a potential therapeutic target for pediatric MASLD.


Subject(s)
Diet, High-Fat , Fatty Liver , Hepatocytes , Lipid Metabolism , Liver , Mice, Knockout , Animals , Diet, High-Fat/adverse effects , Male , Female , Mice , Pregnancy , Liver/metabolism , Liver/pathology , Hepatocytes/metabolism , Fatty Liver/etiology , Fatty Liver/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Prenatal Exposure Delayed Effects , PPAR alpha/metabolism , PPAR alpha/genetics , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology
11.
J Biol Chem ; 300(6): 107351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718868

ABSTRACT

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.


Subject(s)
Fatty Acids , Membrane Proteins , STAT3 Transcription Factor , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Up-Regulation , Mice
12.
Metabolism ; 157: 155938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795769

ABSTRACT

BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.


Subject(s)
Arginine , Lipogenesis , Liver X Receptors , Liver , Protein-Arginine N-Methyltransferases , Lipogenesis/genetics , Lipogenesis/physiology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Mice , Methylation , Liver/metabolism , Arginine/metabolism , Liver X Receptors/metabolism , Liver X Receptors/genetics , Male , Humans , Hepatocytes/metabolism , Mice, Inbred C57BL , Hep G2 Cells , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788910

ABSTRACT

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Subject(s)
Body Weight , Diet, High-Fat , Lactation , Metformin , Prenatal Exposure Delayed Effects , Sterol Regulatory Element Binding Protein 1 , Animals , Metformin/pharmacology , Female , Pregnancy , Lactation/drug effects , Mice , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/chemically induced , Diet, High-Fat/adverse effects , Body Weight/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/pathology , Obesity/chemically induced , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Male , Mice, Inbred C57BL , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/chemically induced
14.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38806242

ABSTRACT

Recently, an increasing number of studies have investigated the mechanism of action of lactobacilli in the treatment of non-alcoholic fatty liver disease. Using four computational tools (NormFinder, geNorm, Delta Ct, and BestKeeper), six potential reference genes (RGs) were analyzed in the human liver cell line HepG2 cultivated 24 h in the presence of two strains of heat-killed lactobacilli, Limosilactobacillus reuteri E and Lactiplantibacillus plantarum KG4, respectively, in different cultivation media [Dulbecco´s Modified Eagle´s Medium (DMEM) high glucose or Roswell Park Memorial Institute (RPMI)]. The analysis revealed that the suitability of RG was similar between the two lactobacilli but quite different between the two media. The commonly used RGs, 18S rRNA and glyceraldehyde-3-phosphate dehydrogenase were the most unstable in DMEM high glucose. Normalization of the mRNA expression of the target gene encoding sterol regulatory element-binding protein 1c (SREBP-1c) to different RGs resulted in different expression profiles. This demonstrates that validation of candidate RGs under specific experimental conditions is crucial for the correct interpretation of quantitative polymerase chain reaction data. In addition, the choice of media has a profound impact on the effect of lactobacilli on lipogenesis at the gene expression level, as shown by the transcription factor SREBP-1c.


Subject(s)
Culture Media , Humans , Culture Media/chemistry , Hep G2 Cells , Lactobacillus/genetics , Real-Time Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Reference Standards , Gene Expression Profiling
15.
Plant Foods Hum Nutr ; 79(2): 374-380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750193

ABSTRACT

Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-ß1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-ß1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Mice, Inbred C57BL , Oxidative Stress , Plant Extracts , Sterol Regulatory Element Binding Protein 1 , Transforming Growth Factor beta1 , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Male , Sterol Regulatory Element Binding Protein 1/metabolism , Mice , Oxidative Stress/drug effects , Diet, High-Fat/adverse effects , Diabetes Mellitus, Experimental/drug therapy , Antioxidants/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Fabaceae/chemistry , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Actins/metabolism , Fatty Acid Synthases/metabolism , Fibrosis
16.
Clin Rheumatol ; 43(7): 2307-2316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727800

ABSTRACT

OBJECTIVE: This study investigated the effects of sericin on inflammation, oxidative stress, and lipid metabolism in female rats with experimental knee osteoarthritis (KOA), focusing on evaluating its effectiveness via the sterol regulatory protein (SREBP)-1C and SREBP-2 pathways. METHODS: The rats were randomly assigned to three experimental groups: the C group (control), the KOA group (KOA control), and the sericin group (KOA + sericin). The KOA model was created by injecting monosodium iodoacetate (MIA) into the knee joint. Sericin was administered intra-articularly to rats on days 1, 7, 14, and 21 (0.8 g/kg/mL, 50 µL). After 21 days, the rats were sacrificed, and serum samples were analyzed using an ELISA to measure tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), IL-10, SREBP-1c, SREBP-2, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), cholesterol, triglyceride, and total oxidant-antioxidant status (TOS-TAS) levels. RESULTS: The KOA group exhibited higher serum TNF-α, IL-1ß, TOS, SREBP-1C, ACC, FAS, triglyceride, SREBP-2, and cholesterol levels than the C group (P < 0.05). However, the levels of these cytokines, except cholesterol, were significantly lower in the sericin group than in the KOA group. The KOA group exhibited significantly lower serum TAS and IL-10 levels than the C group (P < 0.05). In the sericin group, there was a statistically significant increase (P < 0.05). CONCLUSION: Sericin shows promising potential for reducing inflammation, oxidative stress, and lipid metabolism in experimental models of KOA in rats. However, further clinical research is necessary to validate the potential of sericin as a therapeutic agent for treating KOA. Key Points • Sericin can reduce knee osteoarthritis (KOA) symptoms in an experimental rat model. • In particular, in the serum of an experimental KOA rat model, sericin specifically reduces the levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1ß), and increases the levels of anti-inflammatory cytokines, such as IL-10. • Sericin reduced lipid metabolism via the sterol regulatory protein (SREBP)-1C and SREBP-2 pathways and oxidative stress in the serum of the experimental KOA rat model. • The intra-articular administration of sericin has been shown to significantly reduce lipid metabolism, oxidative stress, and inflammation, as supported by biochemical analysis. These findings suggest its promising potential as an alternative treatment option for KOA.


Subject(s)
Disease Models, Animal , Inflammation , Lipid Metabolism , Osteoarthritis, Knee , Oxidative Stress , Sericins , Animals , Female , Oxidative Stress/drug effects , Rats , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Lipid Metabolism/drug effects , Sericins/pharmacology , Inflammation/drug therapy , Sterol Regulatory Element Binding Protein 1/metabolism , Rats, Sprague-Dawley
17.
Food Funct ; 15(12): 6424-6437, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38771619

ABSTRACT

Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.


Subject(s)
3T3-L1 Cells , AMP-Activated Protein Kinases , Anti-Obesity Agents , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Plant Extracts , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Adipogenesis/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Edible Seaweeds , Kelp
18.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
19.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731499

ABSTRACT

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Carbon , Maillard Reaction , Mesenchymal Stem Cells , PPAR gamma , Sterol Regulatory Element Binding Protein 1 , Humans , Carbon/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Quantum Dots/chemistry , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Sulfur/chemistry
20.
PLoS One ; 19(5): e0301966, 2024.
Article in English | MEDLINE | ID: mdl-38776280

ABSTRACT

The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 µg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Lipase , Ocimum basilicum , PPAR gamma , Peptides , Seeds , Sterol Regulatory Element Binding Protein 1 , Mice , Animals , Adipogenesis/drug effects , Seeds/chemistry , PPAR gamma/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Hydrolysis , Lipase/antagonists & inhibitors , Lipase/metabolism , Peptides/pharmacology , Peptides/chemistry , Peptides/isolation & purification , Sterol Regulatory Element Binding Protein 1/metabolism , Ocimum basilicum/chemistry , Down-Regulation/drug effects , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...