Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.957
Filter
1.
Behav Pharmacol ; 35(6): 314-326, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39094014

ABSTRACT

Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15 th to the 22 nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29 th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1ß) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1ß levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.


Subject(s)
Antidepressive Agents , Astrocytes , Depression , Disease Models, Animal , Hippocampus , Microglia , Neuroinflammatory Diseases , Stress, Psychological , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Mice , Male , Microglia/drug effects , Microglia/metabolism , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Fluoxetine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Neuroprotective Agents/pharmacology , Behavior, Animal/drug effects , Glial Fibrillary Acidic Protein/metabolism
2.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054537

ABSTRACT

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Subject(s)
Neoplastic Stem Cells , Norepinephrine , Olanzapine , Animals , Olanzapine/pharmacology , Mice , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Norepinephrine/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Male , Cell Line, Tumor , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice, Inbred C57BL , Anxiety/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Carcinogenesis/drug effects , Depression/drug therapy
3.
J Mol Neurosci ; 74(3): 61, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954245

ABSTRACT

Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/ß-catenin pathway which was associated with activation of glycogen synthase kinase 3ß (GSK3ß). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.


Subject(s)
Anxiety , Brain-Derived Neurotrophic Factor , Caffeic Acids , Diet, High-Fat , Glycogen Synthase Kinase 3 beta , Hippocampus , Neuroprotective Agents , Stress, Psychological , Animals , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Anxiety/drug therapy , Anxiety/etiology , Male , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Hippocampus/drug effects , Stress, Psychological/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , beta Catenin/metabolism , Wnt Signaling Pathway/drug effects , Cognition/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Nitric Oxide Synthase Type II/metabolism
4.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38977897

ABSTRACT

Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.


Subject(s)
Depression , NF-kappa B , Probiotics , Animals , Mice , Probiotics/administration & dosage , Probiotics/pharmacology , NF-kappa B/metabolism , Depression/etiology , Depression/drug therapy , Depression/metabolism , Male , Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism , Stress, Psychological/drug therapy , Down-Regulation , Up-Regulation , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
5.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063020

ABSTRACT

Chronic fatigue syndrome (CFS) is a heterogeneous disorder with a genetically associated vulnerability of the catecholamine metabolism (e.g., catechol O-methyltransferase polymorphisms), in which environmental factors have an important impact. Alpha-methyl-p-tyrosine (AMPT; also referred to as metyrosine) is an approved medication for the treatment of pheochromocytoma. As a tyrosine hydroxylase inhibitor, AMPT may be a potential candidate for the treatment of diseases involving catecholamine alterations. However, only small-scale clinical trials have tested AMPT repurposing in a few other illnesses. The current case report compiles genetic and longitudinal biochemical data for over a year of follow-up of a male patient sequentially diagnosed with sustained overstress, neurasthenia, CFS (diagnosed in 2012 as per the Center for Disease Control (CDC/Fukuda)), and postural orthostatic tachycardia syndrome (POTS) over a 10-year period and reports the patient's symptom improvement in response to low-medium doses of AMPT. This case was recognized as a stress-related CFS case. Data are reported from medical records provided by the patient to allow a detailed response to treatment targeting the hyperadrenergic state presented by the patient. We highlight the lack of a positive response to classical approaches to treating CFS, reflecting the limitations of CFS diagnosis and available treatments to alleviate patients' symptoms. The current pathomechanism hypothesis emphasizes monoamine alterations (hyperadrenergic state) in the DA/adrenergic system and a dysfunctional autonomic nervous system resulting from sympathetic overactivity. The response of the patient to AMPT treatment highlights the relevance of pacing with regard to stressful situations and increased activity. Importantly, the results do not indicate causality between AMPT and its action on the monoamine system, and future studies should evaluate the implications of other targets.


Subject(s)
Fatigue Syndrome, Chronic , alpha-Methyltyrosine , Humans , Fatigue Syndrome, Chronic/drug therapy , Male , alpha-Methyltyrosine/therapeutic use , alpha-Methyltyrosine/pharmacology , Adult , Stress, Psychological/drug therapy
6.
Behav Pharmacol ; 35(6): 327-337, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39051912

ABSTRACT

Emerging evidence suggests that crocin rescues stress-induced depressive symptoms in mice via stimulation of hippocampal neurogenesis. Glutamate modulators mainly involving N-methyl- d -aspartate (NMDA) receptors (NMDARs) have highlighted a role in neural development, synaptic plasticity, and depression. The research presented here was designed to appraise the interaction between NMDAR agents and crocin on depressive-related behaviors in the NMRI male mice exposed to acute restraint stress (ARS) for a period of 4 h. The mice were submitted to the splash test, forced swimming test, and tail suspension test to evaluate depressive-like behavior. The ARS decreased the grooming duration in the splash test and increased immobility time in the forced swimming test and tail suspension test, suggesting a depressive-like phenotype. NMDA (0.25 and 0.5 µg/mouse, intracerebroventricular) did not alter depression-related profiles in both non-acute restraint stress (NARS) and ARS mice, while the same doses of NMDAR antagonist D-AP5 potentiated the antidepressive-like activities in the ARS mice compared with the NARS mice. Moreover, a low dose of NMDA did not change depression-related parameters in the crocin-treated NARS or ARS mice, while D-AP5 enhanced the crocin response in the NARS and ARS mice. Isobologram analysis noted a synergism between crocin and D-AP5 on antidepressive-like behavior in the NARS and ARS mice. Collectively, the combination of crocin and D-AP5 was shown to mitigate depression symptoms and can be potentially used for the treatment of depression disorders.


Subject(s)
Antidepressive Agents , Carotenoids , Depression , Drug Synergism , Restraint, Physical , Stress, Psychological , Animals , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/drug therapy , Antidepressive Agents/pharmacology , Carotenoids/pharmacology , 2-Amino-5-phosphonovalerate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Disease Models, Animal , Hindlimb Suspension , Behavior, Animal/drug effects , Swimming , Dose-Response Relationship, Drug
7.
Behav Brain Res ; 471: 115142, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38972486

ABSTRACT

Depression is a life-threatening neurodegenerative disease lacking a complete cure. Cajaninstilbene acid (CSA), a potent stilbene compound, has demonstrated neuroprotective effects, however, studies on its antidepressant mechanisms are still scarce. This study examined the effects of CSA on lipopolysaccharide (LPS)-induced and chronic unpredictable mild stress (CUMS)-induced depression in mice, investigating its mechanisms related to inflammation and autophagy. Mice were treated with CSA (7.5, 15, and 30 mg/kg) daily for 3 weeks before intraperitoneal LPS injection (0.8 mg/kg). Another cohort underwent the same doses of CSA (7.5-30 mg/kg) daily for 6 weeks in accompany with CUMS stimulation. Behavioral assessments were conducted, and cortical samples were collected for molecular analysis. Findings indicate that CSA ameliorated depressive behaviors induced by both LPS and CUMS. Notably, CSA (15 mg/kg) reversed despair behavior in mice more persistently than amitriptyline, indicating that optimal doses of CSA may effectively decelerate the procession of mood despair and yield a good compliance. CSA countered CUMS-induced activation of TLR4/NF-κB pathway and the reduction in autophagy levels. Furthermore, CSA attenuated the CUMS-induced decline in neuroplasticity. Collectively, these findings suggest that CSA mitigates depression-like behaviors in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation and enhancing autophagy. This research provides further insights into CSA's mechanisms of action in ameliorating depressive behaviors, offering a scientific foundation for developing CSA-based antidepressants.


Subject(s)
Autophagy , Behavior, Animal , Depression , NF-kappa B , Neuroinflammatory Diseases , Salicylates , Stilbenes , Toll-Like Receptor 4 , Animals , Mice , Autophagy/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/drug effects , Depression/drug therapy , Male , NF-kappa B/metabolism , NF-kappa B/drug effects , Stilbenes/pharmacology , Stilbenes/administration & dosage , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Salicylates/pharmacology , Behavior, Animal/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/complications , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Disease Models, Animal , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Inflammation/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Signal Transduction/drug effects
8.
Sci Rep ; 14(1): 16163, 2024 07 13.
Article in English | MEDLINE | ID: mdl-39003387

ABSTRACT

Cannabigerol (CBG) is a phytocannabinoid increasing in popularity, with preclinical research indicating it has anxiolytic and antidepressant effects. However, there are no published clinical trials to corroborate these findings in humans. The primary objective of this study was to examine acute effects of CBG on anxiety, stress, and mood. Secondary objectives were to examine whether CBG produces subjective drug effects or motor and cognitive impairments. A double-blind, placebo-controlled cross-over field trial was conducted with 34 healthy adult participants. Participants completed two sessions (with a one-week washout period) via Zoom. In each, they provided ratings of anxiety, stress, mood, and subjective drug effects prior to double-blind administration of 20 mg hemp-derived CBG or placebo tincture (T0). These ratings were collected again after participants ingested the product and completed an online survey (T1), the Trier Social Stress Test (T2), a verbal memory test and the DRUID impairment app (T3). Relative to placebo, there was a significant main effect of CBG on overall reductions in anxiety as well as reductions in stress at T1. CBG also enhanced verbal memory relative to placebo. There was no evidence of subjective drug effects or impairment. CBG may represent a novel option to reduce stress and anxiety in healthy adults.


Subject(s)
Affect , Anxiety , Cross-Over Studies , Stress, Psychological , Humans , Male , Adult , Female , Double-Blind Method , Anxiety/drug therapy , Affect/drug effects , Stress, Psychological/drug therapy , Young Adult , Cannabinoids/pharmacology , Cannabinoids/therapeutic use
9.
J Tradit Chin Med ; 44(4): 670-679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066527

ABSTRACT

OBJECTIVE: To investigate the effects of luteolin on chronic unpredictable mild stress (CUMS)-induced depressive rats and corticosterone (CORT)-induced depressive primary hippocampal neurons, and to elucidate the mechanism behind the action. METHODS: The antidepressant mechanism of luteolin was studied by using CUMS rat model and primary hippocampal neurons in fetal rats. In vivo, novelty suppressed feeding, open-field and sucrose preference tests as well as Morris water maze were evaluated. The content of brain derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), norepinephrine (NE), and dopamine (DA) in serum were detected by enzyme-linked immunosorbent assay. The mechanisms of luteolin were explored based on neurotrophin and hippocampal neurogenesis, and proliferation. Survival of the septo-temporal axis in hippocampus was assayed using the 5-bromo-2-deoxyuridine (BrdU), the expression of BDNF, neurotrophin-3 (NT-3), and nerve growth factor (NGF) in hippocampus dentate gyrus region were measured by Western-blotting. In vitro, BDNF, NT-3, tropomyosin receptor kinase B (TrkB), and phosphorylated cyclic adenosine monophosphate responsive element binding protein (p-CREB) were detected through the high content analysis (HCA) to investigate neurotrophin and apoptosis. RESULTS: Induction of CUMS in rats induced depressive symptoms, while luteolin significantly enhanced sucrose consumption, decreased feeding latency, increased locomotor activity, escape latency, distance of target quadrant and regulated the content of depressive-like biomarkers. Histology analysis revealed that luteolin increased the abundance of new born neurons that had been labeled with BrdU, BrdU + neuronal nuclear antigen, and BrdU + doublecortin in septo-temporal axis of S2 (mid-septal) and T3 (mid-temporal). Moreover, expression of BDNF, NT-3, and NGF increased significantly in the septo-temporal axis of S2 and T3. HCA showed increased expression of BDNF, NT-3, TrkB and p-CREB in primary hippocampal neurons. CONCLUSION: The results provided direct evidence that luteolin has an antidepressant effect and could effectively promote the regeneration of the septotemporal axis nerve and hippocampal neuronutrition, which suggested that the antidepressant effect of luteolin may be related to hippocampal neurogenesis.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Luteolin , Neurogenesis , Neurons , Rats, Sprague-Dawley , Animals , Luteolin/pharmacology , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Neurogenesis/drug effects , Male , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Neurons/drug effects , Neurons/metabolism , Humans , Stress, Psychological/physiopathology , Stress, Psychological/drug therapy , Female , Depression/drug therapy , Depression/metabolism , Depression/physiopathology , Antidepressive Agents/pharmacology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics
10.
J Agric Food Chem ; 72(30): 16726-16738, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39039032

ABSTRACT

Background: Dandouchi polypeptide (DDCP) is derived from Semen Sojae Praeparatum (Dandouchi in Chinese), a fermented product of Glycine max (L.) Merr. Semen Sojae Praeparatum is widely used in the food industry for its unique flavor and nutritional value, and DDCP, as its derivative, also shows potential health benefits in food applications. However, the specific active substances responsible for Semen Sojae Praeparatum and the underlying mechanisms involved have not been fully elucidated. Methods: DDCP was extracted from Semen Sojae Praeparatum using enzymes, and its antidepressant effects were tested in chronic unpredictable mild stress (CUMS)-induced mice. Immunohistochemistry, immunofluorescence, and western blotting were used to analyze neurogenesis and the nuclear factor κB (NF-κB) pathway. Moreover, an adeno-associated virus (AAV) shRNA was used to induce tripartite motif-containing 67 (TRIM67) deficiency to examine the function of TRIM67 in the neuroprotective effects of DDCP in depressive disorders. Results: DDCP reduced depressive behaviors in CUMS mice and the expression of proinflammatory markers in the hippocampus. DDCP promoted neurogenesis and modulated the TRIM67/NF-κB pathway, with TRIM67 deficiency impairing its antidepressant effect. Conclusions: This research revealed that DDCP has a protective effect on countering depression triggered by CUMS. Notably, TRIM67 plays a crucial role in mitigating depression through DDCP, positioning DDCP as a potential therapeutic option for treating depressive disorders.


Subject(s)
Depression , Hippocampus , NF-kappa B , Neurogenesis , Animals , Humans , Male , Mice , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Depression/metabolism , Depression/drug therapy , Depression/genetics , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Neurogenesis/drug effects , NF-kappa B/metabolism , NF-kappa B/genetics , Peptides/administration & dosage , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Article in English | MEDLINE | ID: mdl-38882046

ABSTRACT

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Subject(s)
Anti-Anxiety Agents , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Metabolomics , Rats, Sprague-Dawley , Animals , Rats , Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Restraint, Physical , Hippocampus/drug effects , Hippocampus/metabolism
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 810-817, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862438

ABSTRACT

OBJECTIVE: To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS: Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS: Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1ß, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION: Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.


Subject(s)
Depression , Disease Models, Animal , Hippocampus , Pyroptosis , Restraint, Physical , Signal Transduction , Stress, Psychological , Ubiquinone , Animals , Mice , Pyroptosis/drug effects , Depression/drug therapy , Depression/etiology , Depression/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Hippocampus/metabolism , Hippocampus/drug effects , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Down-Regulation/drug effects , Caspase 1/metabolism , Glial Fibrillary Acidic Protein/metabolism , Behavior, Animal/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
13.
Biomed Pharmacother ; 176: 116850, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834006

ABSTRACT

Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.


Subject(s)
Adenosine Triphosphate , Behavior, Animal , Depression , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Prefrontal Cortex , Stress, Psychological , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Male , Adenosine Triphosphate/metabolism , Nicotinamide Mononucleotide/pharmacology , Depression/drug therapy , Depression/prevention & control , Depression/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Mice , Behavior, Animal/drug effects , Social Defeat , NAD/metabolism , Disease Models, Animal
14.
Eur J Pharmacol ; 976: 176693, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38834095

ABSTRACT

ß-arrestin2 is a versatile protein for signaling transduction in brain physiology and pathology. Herein, we investigated the involvement of ß-arrestin2 in pharmacological effects of fluoxetine for depression. A chronic mild stress (CMS) model was established using wild-type (WT) and ß-arrestin2-/- mice. Behavioral results demonstrated that CMS mice showed increased immobility time in the tail suspension test and forced swimming test, elevated concentrations of pro-inflammatory factors in peripheral blood, increased expression of pyroptosis-related proteins, and increased co-labeling of glial fibrillary acidic protein and Caspase1 p10 in the hippocampus compared to the CON group. Treatment with fluoxetine (FLX) ameliorated these conditions. However, compared with the ß-arrestin2-/- CMS group, these results of the ß-arrestin2-/- CMS + FLX group showed no significant changes. These results suggested that the above effects of FLX could be eliminated by knocking out ß-arrestin2. Mass spectrometry implying that FLX promoted the binding of ß-arrestin2 to the NLRP2 inflammasome of depressed mice. Subsequently, the results of the cellular experiments suggested that the 5HT2B receptor antagonist may attenuate L-kynurenine + ATP-induced cell pyroptosis by attenuating NLRP2 binding to ß-arrestin2. We further found that the lack of ß-arrestin2 eliminated the anti-pyroptosis effect of fluoxetine. In conclusion, ß-arrestin2 is an essential protein for fluoxetine to alleviate pyroptosis in the hippocampal astrocytes of CMS mice. Mechanistically, we found that the 5-HT2BR-ß-arrestin2-NLRP2 axis is vital for maintaining the antidepressant effects of fluoxetine.


Subject(s)
Antidepressive Agents , Astrocytes , Depression , Disease Models, Animal , Fluoxetine , Pyroptosis , Stress, Psychological , beta-Arrestin 2 , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Pyroptosis/drug effects , beta-Arrestin 2/metabolism , Mice , Depression/drug therapy , Depression/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Male , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Mice, Inbred C57BL , Hippocampus/drug effects , Hippocampus/metabolism , Mice, Knockout , Behavior, Animal/drug effects , Inflammasomes/metabolism , Chronic Disease
15.
Int Immunopharmacol ; 136: 112330, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823180

ABSTRACT

An inflammatory response is one of the pathogeneses of depression. The anti-inflammatory and neuroprotective effects of auraptene have previously been confirmed. We established an inflammatory depression model by lipopolysaccharide (LPS) injection combined with unpredictable chronic mild stress (uCMS), aiming to explore the effects of auraptene on depressive-like behaviors in adult mice. Mice were divided into a control group, vehicle group, fluoxetine group, celecoxib group, and auraptene group. Then, behavioral tests were conducted to evaluate the effectiveness of auraptene in ameliorating depressive-like behavior. Cyclooxygenase-2 (COX-2), C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were examined by ELISA. Interleukin-10 (IL-10), interleukin-4 (IL-4), and transforming growth factor-ß (TGF-ß) were examined by protein chip technology. The morphology of microglia was observed by the immunohistochemical method. The data showed that, compared with the control group, the vehicle group mice exhibited a depressive-like behavioral phenotype, accompanied by an imbalance in inflammatory cytokines and the activation of microglia in the hippocampus. The depressive behaviors of the auraptene group's mice were significantly alleviated, along with the decrease in pro-inflammatory factors and increase in anti-inflammatory factors, while the activation of microglia was inhibited in the hippocampus. Subsequently, we investigated the role of auraptene in vitro-cultured BV-2 cells treated with LPS. The analysis showed that auraptene downregulated the expression of IL-6, TNF-α, and NO, and diminished the ratio of CD86/CD206. The results showed that auraptene reduced the excessive phagocytosis and ROS production of LPS-induced BV2 cells. In conclusion, auraptene relieved depressive-like behaviors in mice probably via modulating hippocampal neuroinflammation mediated by microglia.


Subject(s)
Coumarins , Cytokines , Depression , Hippocampus , Lipopolysaccharides , Microglia , Stress, Psychological , Animals , Microglia/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Depression/drug therapy , Depression/immunology , Depression/chemically induced , Mice , Stress, Psychological/drug therapy , Stress, Psychological/immunology , Coumarins/pharmacology , Coumarins/therapeutic use , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Disease Models, Animal , Behavior, Animal/drug effects , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Mice, Inbred C57BL , Inflammation Mediators/metabolism
16.
Nat Commun ; 15(1): 5321, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909051

ABSTRACT

Psychedelics have experienced renewed interest following positive clinical effects, however the neurobiological mechanisms underlying effects remain unclear. The paraventricular nucleus of the hypothalamus (PVN) plays an integral role in stress response, autonomic function, social behavior, and other affective processes. We investigated the effect of psilocin, the psychoactive metabolite of psilocybin, on PVN reactivity in Sprague Dawley rats. Psilocin increased stimulus-independent PVN activity as measured by c-Fos expression in male and female rats. Psilocin increased PVN reactivity to an aversive air-puff stimulus in males but not females. Reactivity was restored at 2- and 7-days post-injection with no group differences. Additionally, prior psilocin injection did not affect PVN reactivity following acute restraint stress. Experimental groups sub-classified by baseline threat responding indicate that increased male PVN reactivity is driven by active threat responders. These findings identify the PVN as a significant site of psychedelic drug action with implications for threat responding behavior.


Subject(s)
Hallucinogens , Paraventricular Hypothalamic Nucleus , Psilocybin , Rats, Sprague-Dawley , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Psilocybin/analogs & derivatives , Psilocybin/pharmacology , Psilocybin/administration & dosage , Female , Rats , Hallucinogens/pharmacology , Hallucinogens/administration & dosage , Proto-Oncogene Proteins c-fos/metabolism , Behavior, Animal/drug effects , Stress, Psychological/physiopathology , Stress, Psychological/drug therapy
17.
Neurosci Lett ; 836: 137870, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38852764

ABSTRACT

Depression is considered a crucial psychiatric disease correlated with neuronal-dysfunctions induced by stress-stimuli. This study aimed to investigate effect of Fluoxetine (FL) on chronic unpredictable mild stress (CUMS) and explore the associated mechanisms. CUMS rat model was established by treating with lots of stresses. CUMS rats were administered FL, SB216763 (SB), Wortmannin (WT) alone or in combination. CUMS rats were administered 1 % sugar water to conduct sugar water consumption experiment. Acet-Tub, Tyr-Tub, tau46, p-tau-Ser199/202, p-tau-Ser396, p-tau-Ser231, expression was examined using immunohistochemical assay and western blotassay. Interaction between tau and tubulin was evaluated with immunoprecipitation assay. Double immunohistochemical assay was used to identify interaction between Nestin and Tau. The results indicated that FL treatment only increased sugar consumption of CUMS rats (P < 0.05), but also strengthened effects of SB and WT. FL significantly treatment decreased tau phosphorylation (p-tau) in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). FL treatment markedly decreased Acet-Tub and increased Tyr-Tub expression in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). The effects of FL treatment on p-tau down-regulation and tubulin modulation in hippocampal tissues were independent from PI3K and GSK-3 signaling pathways. FL treatment could also enhance proliferation and total tau of newborn neurons of CUMS rats. FL treatment strengthened interaction between tau and botulin in hippocampal tissues of CUMS rats. In conclusion, Fluoxetin suppressed phosphorylation of tau and modulated the interaction between tau and tubulin in hippocampus of adult CUMS rats.


Subject(s)
Hippocampus , Rats, Sprague-Dawley , Stress, Psychological , Tubulin , tau Proteins , Animals , tau Proteins/metabolism , Tubulin/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Phosphorylation/drug effects , Male , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Rats
18.
Int Immunopharmacol ; 137: 112414, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897132

ABSTRACT

BACKGROUND: Chronic stress-induced neuroinflammation plays a pivotal role in the development and exacerbation of mental disorders, such as anxiety and depression. Dimethyl Fumarate (DMF), an effective therapeutic agent approved for the treatment of multiple sclerosis, has been widely reported to display anti-inflammatory and anti-oxidative effects. However, the impact of DMF on chronic stress-induced anxiety disorders and the exact underlying mechanisms remain largely unknown. METHODS: We established a mouse model of chronic social defeat stress (CSDS). DMF was administered orally 1 h before daily stress session for 10 days in CSDS + DMF group. qRT-PCR and western blotting were used to analyze mRNA and protein expression of NLRP3, Caspase-1 and IL-1ß. Immunofluorescence staining was carried out to detect the expression of Iba 1 and c-fos positive cells as well as morphological change of Iba 1+ microglia. Whole-cell patch-clamp recording was applied to evaluate synaptic transmission and intrinsic excitability of neurons. RESULTS: DMF treatment significantly alleviated CSDS-induced anxiety-like behaviors in mice. Mechanistically, DMF treatment prevented CSDS-induced neuroinflammation by inhibiting the activation of microglia and NLRP3/Caspase-1/IL-1ß signaling pathway in basolateral amygdala (BLA), a brain region important for emotional processing. Furthermore, DMF treatment effectively reversed the CSDS-caused disruption of excitatory and inhibitory synaptic transmission balance, as well as the increased intrinsic excitability of BLA neurons. CONCLUSIONS: Our findings provide new evidence that DMF may exert anxiolytic effect by preventing CSDS-induced activation of NLRP3/Caspase-1/IL-1ß signaling pathway and alleviating hyperactivity of BLA neurons.


Subject(s)
Anxiety , Dimethyl Fumarate , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Stress, Psychological , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Male , Stress, Psychological/drug therapy , Stress, Psychological/immunology , Mice , Anxiety/drug therapy , Neurons/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amygdala/drug effects , Amygdala/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Disease Models, Animal , Interleukin-1beta/metabolism , Microglia/drug effects , Behavior, Animal/drug effects , Caspase 1/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Social Defeat
19.
Behav Pharmacol ; 35(5): 303-314, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38869060

ABSTRACT

Riparin A is a synthetic form of natural riparins. Acute scale studies that take into consideration the structure-activity relationship have shown preliminary evidence of antidepressant and anxiolytic effects of riparin A, similar to that already known for other riparins. However, for better pharmacological characterization of this new compound, further studies are required. The aim of this work was to evaluate the effect of chronic treatment with riparin A (10 mg/kg; intraperitoneally) on depressive-like behavior in the forced swimming test and tail suspension test, as well as the reduction of anhedonia in the sucrose preference test, and on anxiety-like behavior in the open field and elevated plus maze apparatus, triggered in rats previously subjected to unpredictable chronic mild stress by 4 weeks. In addition, a pentobarbital-induced sleep time test was also used. Riparin A reduced the duration of immobility in both the forced swimming test and tail suspension test, as well as attenuated the anhedonia in the sucrose preference test. Furthermore, riparin A appears to produce anxiolytic effects in rats exposed to an open field and elevated plus maze, while increasing the alertness/vigilance in rats submitted to pentobarbital-induced sleep time test, without altering their locomotor integrity. Our results suggest that chronic riparin A appears to be a potential pharmacological target for new studies on the control of depression- and anxiety-like behaviors in stressed rats.


Subject(s)
Antidepressive Agents , Anxiety , Depression , Disease Models, Animal , Rats, Wistar , Animals , Antidepressive Agents/pharmacology , Male , Depression/drug therapy , Rats , Anxiety/drug therapy , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Swimming/psychology , Anhedonia/drug effects , Stress, Psychological/drug therapy , Hindlimb Suspension , Maze Learning/drug effects , Mice , Open Field Test/drug effects
20.
Eur J Pharmacol ; 978: 176801, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38945285

ABSTRACT

Depression is a serious medical illness characterized by persistent feelings of sadness, hopelessness, and lack of interest in daily activities. It can interfere with daily functioning and quality of life. Despite decades of research, the pathophysiology of depression remains incompletely understood. The correlation between depression and inflammation has recently attracted considerable attention. This study investigated the potential antidepressant effect of etanercept, a tumor necrosis factor-alpha (TNF-α) inhibitor, utilizing a chronic mild stress (CMS) model in rats. Male Wistar rats were divided into two groups; one following a non-stressed protocol and the other a stressed protocol for 5 weeks. From the beginning of the third week, rats were treated either with saline daily or with etanercept twice a week (0.3 mg/kg, i.p.) or with fluoxetine daily (10 mg/kg, i.p) as a reference. Etanercept exhibited comparable effects to those of fluoxetine in counteracting CMS-induced behavioral manifestation in the forced swimming and splash tests. Etanercept also restored serotonin and norepinephrine levels to control values in the prefrontal cortex (PFC). Moreover, the current study verified the antioxidant and anti-inflammatory effects of etanercept. Interestingly, etanercept halted the expression of both norepinephrine and serotonin transporters in stressed rats. This could be attributed to abrogation of the p38 mitogen-activated protein kinase (p38 MAPK) and signal transducer and activator of transcription 3 (STAT-3) pathways in the PFC. The findings of the present study contribute to the understanding of the potential of etanercept as an antidepressant and provide insights into the neurobiological mechanisms underlying its therapeutic effects.


Subject(s)
Antidepressive Agents , Behavior, Animal , Depression , Etanercept , Rats, Wistar , STAT3 Transcription Factor , Serotonin Plasma Membrane Transport Proteins , Stress, Psychological , Animals , Etanercept/pharmacology , Etanercept/therapeutic use , Male , Depression/drug therapy , Depression/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Stress, Psychological/psychology , Rats , STAT3 Transcription Factor/metabolism , Behavior, Animal/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Serotonin Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , MAP Kinase Signaling System/drug effects , Serotonin/metabolism , Chronic Disease , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL