Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.399
1.
Int J Mol Sci ; 25(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38791301

Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.


Inflammation , Neutrophils , Restraint, Physical , Stress, Psychological , Animals , Mice , Neutrophils/immunology , Neutrophils/metabolism , Stress, Psychological/complications , Stress, Psychological/immunology , Inflammation/pathology , Male , Mice, Inbred C57BL , Extracellular Traps/metabolism , Gastrointestinal Diseases/etiology , Disease Models, Animal , Reactive Oxygen Species/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791423

The relationship between psychological stress, altered skin immunity, and autophagy-related genes (ATGs) is currently unclear. Psoriasis is a chronic skin inflammation of unclear etiology that is characterized by persistence and recurrence. Immune dysregulation and emotional disturbances are recognized as significant risk factors. Emerging clinical evidence suggests a possible connection between anxiety disorders, heightened immune system activation, and altered skin immunity, offering a fresh perspective on the initiation of psoriasis. The aim of this study was to explore the potential shared biological mechanisms underlying the comorbidity of psoriasis and anxiety disorders. Psoriasis and anxiety disorders data were obtained from the GEO database. A list of 3254 ATGs was obtained from the public database. Differentially expressed genes (DEGs) were obtained by taking the intersection of DEGs between psoriasis and anxiety disorder samples and the list of ATGs. Five machine learning algorithms used screening hub genes. The ROC curve was performed to evaluate diagnostic performance. Then, GSEA, immune infiltration analysis, and network analysis were carried out. The Seurat and Monocle algorithms were used to depict T-cell evolution. Cellchat was used to infer the signaling pathway between keratinocytes and immune cells. Four key hub genes were identified as diagnostic genes related to psoriasis autophagy. Enrichment analysis showed that these genes are indeed related to T cells, autophagy, and immune regulation, and have good diagnostic efficacy validated. Using single-cell RNA sequencing analysis, we expanded our understanding of key cellular participants, including inflammatory keratinocytes and their interactions with immune cells. We found that the CASP7 gene is involved in the T-cell development process, and correlated with γδ T cells, warranting further investigation. We found that anxiety disorders are related to increased autophagy regulation, immune dysregulation, and inflammatory response, and are reflected in the onset and exacerbation of skin inflammation. The hub gene is involved in the process of immune signaling and immune regulation. The CASP7 gene, which is related with the development and differentiation of T cells, deserves further study. Potential biomarkers between psoriasis and anxiety disorders were identified, which are expected to aid in the prediction of disease diagnosis and the development of personalized treatments.


Anxiety Disorders , Autophagy , Computational Biology , Machine Learning , Psoriasis , Single-Cell Analysis , Stress, Psychological , Psoriasis/genetics , Psoriasis/immunology , Humans , Autophagy/genetics , Computational Biology/methods , Stress, Psychological/genetics , Stress, Psychological/immunology , Anxiety Disorders/genetics , Gene Regulatory Networks , Gene Expression Profiling , Skin/pathology , Skin/metabolism , Skin/immunology
3.
Breast Dis ; 43(1): 119-126, 2024.
Article En | MEDLINE | ID: mdl-38758989

INTRODUCTION: Housewives are a population at high risk of breast cancer due to repeated or chronic exposure to stress. Prevention in a simple yet evidence-based manner is needed. METHODS: This study is a narrative review of the potential of massage as breast cancer prevention through stress and immune system mechanisms. RESULTS: Massage is able to prevent chronic stress through improved sleep and fatigue and lower stress levels. Prevention of chronic stress will maximize the function of cells that eliminate cancer cells, such as B cells, T cells, and natural killer (NK) cells, and improve the balance of Foxp3 Tregulator cells. Partnered delivery massage will bring effective benefits for stress reduction. CONCLUSIONS: Massage can provide indirect prevention of breast cancer, and partnered delivery massage can be a good choice to reduce stress.


Breast Neoplasms , Massage , Stress, Psychological , Humans , Breast Neoplasms/prevention & control , Breast Neoplasms/immunology , Massage/methods , Female , Stress, Psychological/prevention & control , Stress, Psychological/immunology , Immune System , Killer Cells, Natural/immunology
4.
Front Immunol ; 15: 1365871, 2024.
Article En | MEDLINE | ID: mdl-38756771

More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.


Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Mental Disorders , Mental Health , Stress, Psychological , Humans , Gastrointestinal Microbiome/immunology , Brain-Gut Axis/immunology , Stress, Psychological/immunology , Stress, Psychological/microbiology , Dysbiosis/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Brain/immunology , Animals , Neuroimmunomodulation
5.
J Integr Neurosci ; 23(5): 101, 2024 May 15.
Article En | MEDLINE | ID: mdl-38812387

The feeling of emotional tension, restlessness, pressure, and inability to relax is referred to as psychological stress. Although it is unclear how psychological stress affects neurobiological processes, several factors are thought to be involved, including central and peripheral neuroinflammation, structural degeneration in the prefrontal cortex and hippocampus, alterations in fear neurocircuitry, and neuroplasticity. Aside from data relating cognitive impairment to chronic low-grade inflammatory stress, there is growing evidence linking mental stress, oxidative stress, and systemic inflammation to the development of psychological disorders. After chronic and acute illnesses, insomnia, depression, anxiety, posttraumatic stress disorder, and cognitive impairment were reported. Cognitive impairment is exacerbated by systemic and central inflammatory processes. There is uncertainty about the potential mechanisms causing these symptoms, although they are likely complex, with systemic inflammation playing a significant role. Therefore, this review aims to investigate the role of inflammation in stress-induced cognitive impairment. Depicting the inflammatory mechanisms of cognitive impairment is critical for understanding and treating illnesses, such as chronic stress exposure and anxiety disorders.


Cognitive Dysfunction , Inflammation , Stress, Psychological , Humans , Stress, Psychological/physiopathology , Stress, Psychological/immunology , Stress, Psychological/complications , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Inflammation/physiopathology , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Animals
7.
Behav Pharmacol ; 35(4): 211-226, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651984

Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.


Depression , Hippocampus , Stress, Psychological , Zymosan , Animals , Zymosan/pharmacology , Mice , Stress, Psychological/immunology , Male , Depression/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Cytokines/metabolism , Behavior, Animal/drug effects , Social Defeat , Immunization/methods , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Mice, Inbred C57BL , Disease Models, Animal , Minocycline/pharmacology , Dose-Response Relationship, Drug
8.
Int Immunopharmacol ; 132: 111942, 2024 May 10.
Article En | MEDLINE | ID: mdl-38565045

Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.


Anxiety , Depression , Endometriosis , Neuroglia , Humans , Female , Endometriosis/immunology , Endometriosis/pathology , Depression/immunology , Depression/etiology , Depression/metabolism , Anxiety/immunology , Animals , Neuroglia/immunology , Inflammation/immunology , Stress, Psychological/immunology , Cytokines/metabolism , Brain/immunology , Brain/pathology , Brain/metabolism
10.
Cancer Immunol Res ; 12(5): 516-529, 2024 May 02.
Article En | MEDLINE | ID: mdl-38437646

As understanding of cancer has deepened, increasing attention has been turned to the roles of psychological factors, especially chronic stress-induced depression, in the occurrence and development of tumors. However, whether and how depression affects the progression of gliomas are still unclear. In this study, we have revealed that chronic stress inhibited the recruitment of tumor-associated macrophages (TAM) and other immune cells, especially M1-type TAMs and CD8+ T cells, and decreased the level of proinflammatory cytokines in gliomas, leading to an immunosuppressive microenvironment and glioma progression. Mechanistically, by promoting the secretion of stress hormones, chronic stress inhibited the secretion of the chemokine CCL3 and the recruitment of M1-type TAMs in gliomas. Intratumoral administration of CCL3 reprogrammed the immune microenvironment of gliomas and abolished the progression of gliomas induced by chronic stress. Moreover, levels of CCL3 and M1-type TAMs were decreased in the tumor tissues of glioma patients with depression, and CCL3 administration enhanced the antitumor effect of anti-PD-1 therapy in orthotopic models of gliomas undergoing chronic stress. In conclusion, our study has revealed that chronic stress exacerbates the immunosuppressive microenvironment and progression of gliomas by reducing the secretion of CCL3. CCL3 alone or in combination with an anti-PD-1 may be an effective immunotherapy for the treatment of gliomas with depression. See related Spotlight by Cui and Kang, p. 514.


Chemokine CCL3 , Disease Progression , Glioma , Stress, Psychological , Tumor Microenvironment , Animals , Humans , Male , Mice , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Chemokine CCL3/metabolism , Glioma/immunology , Glioma/metabolism , Glioma/pathology , Glioma/drug therapy , Mice, Inbred C57BL , Stress, Psychological/immunology , Stress, Psychological/complications , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
11.
Immunology ; 172(2): 210-225, 2024 Jun.
Article En | MEDLINE | ID: mdl-38366844

Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.


Interleukin-10 , Mice, Transgenic , Ovalbumin , Stress, Psychological , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ovalbumin/immunology , Stress, Psychological/immunology , Mice , Interleukin-10/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Corticosterone/blood , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Endoplasmic Reticulum Stress/immunology , Disease Models, Animal , Restraint, Physical , Mice, Knockout , Mice, Inbred C57BL , Respiratory Hypersensitivity/immunology
12.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Article En | MEDLINE | ID: mdl-38326622

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Depressive Disorder, Major , Matrix Metalloproteinase 8 , Monocytes , Stress, Psychological , Animals , Humans , Mice , Depressive Disorder, Major/blood , Depressive Disorder, Major/enzymology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Extracellular Space/metabolism , Matrix Metalloproteinase 8/blood , Matrix Metalloproteinase 8/deficiency , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Mice, Inbred C57BL , Monocytes/chemistry , Monocytes/immunology , Monocytes/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Parenchymal Tissue/metabolism , Single-Cell Gene Expression Analysis , Social Behavior , Social Isolation , Stress, Psychological/blood , Stress, Psychological/genetics , Stress, Psychological/immunology , Stress, Psychological/metabolism
14.
Med Sci Sports Exerc ; 55(3): 548-557, 2023 03 01.
Article En | MEDLINE | ID: mdl-36563092

PURPOSE: Initial military training (IMT) is a transitionary period wherein immune function may be suppressed and infection risk heightened due to physical and psychological stress, communal living, and sleep deprivation. This study characterized changes in biomarkers of innate and adaptive immune function, and potential modulators of those changes, in military recruits during IMT. METHODS: Peripheral leukocyte distribution and mitogen-stimulated cytokine profiles were measured in fasted blood samples, Epstein-Barr (EBV), varicella zoster (VZV), and herpes simplex 1 (HSV1) DNA was measured in saliva by quantitative polymerase chain reaction as an indicator of latent herpesvirus reactivation, and diet quality was determined using the healthy eating index measured by food frequency questionnaire in 61 US Army recruits (97% male) at the beginning (PRE) and end (POST) of 22-wk IMT. RESULTS: Lymphocytes and terminally differentiated cluster of differentiation (CD)4+ and CD8+ T cells increased PRE to POST, whereas granulocytes, monocytes, effector memory CD4+ and CD8+ T cells, and central memory CD8+ T cells decreased ( P ≤ 0.02). Cytokine responses to anti-CD3/CD28 stimulation were higher POST compared with PRE, whereas cytokine responses to lipopolysaccharide stimulation were generally blunted ( P < 0.05). Prevalence of EBV reactivation was higher at POST ( P = 0.04), but neither VZV nor HSV1 reactivation was observed. Diet quality improvements were correlated with CD8+ cell maturation and blunted proinflammatory cytokine responses to anti-CD3/CD28 stimulation. CONCLUSIONS: Lymphocytosis, maturation of T-cell subsets, and increased T-cell reactivity were evident POST compared with PRE IMT. Although EBV reactivation was more prevalent at POST, no evidence of VZV or HSV1 reactivation, which are more common during severe stress, was observed. Findings suggest increases in the incidence of EBV reactivation were likely appropriately controlled by recruits and immune-competence was not compromised at the end of IMT.


Military Personnel , Physical Exertion , Sleep Deprivation , Stress, Psychological , Female , Humans , Male , CD28 Antigens/blood , CD8-Positive T-Lymphocytes/metabolism , Cytokines/blood , Stress, Psychological/immunology , Sleep Deprivation/immunology , CD4-Positive T-Lymphocytes/metabolism , Physical Exertion/immunology
15.
Proc Natl Acad Sci U S A ; 119(25): e2202780119, 2022 06 21.
Article En | MEDLINE | ID: mdl-35696572

Exposure to stress is a risk factor for poor health and accelerated aging. Immune aging, including declines in naïve and increases in terminally differentiated T cells, plays a role in immune health and tissue specific aging, and may contribute to elevated risk for poor health among those who experience high psychosocial stress. Past data have been limited in estimating the contribution of life stress to the development of accelerated immune aging and investigating mediators such as lifestyle and cytomegalovirus (CMV) infection. This study utilizes a national sample of 5,744 US adults over age 50 to assess the relationship of social stress (viz., everyday discrimination, stressful life events, lifetime discrimination, life trauma, and chronic stress) with flow cytometric estimates of immune aging, including naïve and terminally differentiated T cell percentages and the ratio of CD4+ to CD8+ cells. Experiencing life trauma and chronic stress was related to a lower percentage of CD4+ naïve cells. Discrimination and chronic stress were each associated with a greater percentage of terminally differentiated CD4+ cells. Stressful life events, high lifetime discrimination, and life trauma were related to a lower percentage of CD8+ naïve cells. Stressful life events, high lifetime discrimination, and chronic stress were associated with a higher percentage of terminally differentiated CD8+ cells. High lifetime discrimination and chronic stress were related to a lower CD4+:CD8+ ratio. Lifestyle factors and CMV seropositivity partially reduced these effects. Results identify psychosocial stress as a contributor to accelerating immune aging by decreasing naïve and increasing terminally differentiated T cells.


Aging , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cytomegalovirus Infections , Retirement , Stress, Psychological , Adult , Aged , Aging/immunology , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/psychology , Female , Humans , Male , Middle Aged , Retirement/psychology , Stress, Psychological/immunology
16.
Nature ; 607(7919): 578-584, 2022 07.
Article En | MEDLINE | ID: mdl-35636458

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Brain , Fear , Leukocytes , Motor Neurons , Neural Pathways , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Brain/cytology , Brain/physiology , COVID-19/immunology , Chemokines/immunology , Disease Susceptibility , Fear/physiology , Glucocorticoids/metabolism , Humans , Leukocytes/cytology , Leukocytes/immunology , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Mice , Monocytes/cytology , Monocytes/immunology , Motor Neurons/cytology , Motor Neurons/physiology , Neutrophils/cytology , Neutrophils/immunology , Optogenetics , Orthomyxoviridae Infections/immunology , Paraventricular Hypothalamic Nucleus/physiology , SARS-CoV-2/immunology , Stress, Psychological/immunology , Stress, Psychological/physiopathology
17.
Sci Rep ; 12(1): 4073, 2022 03 08.
Article En | MEDLINE | ID: mdl-35260749

The chronic inflammatory process that characterizes inflammatory bowel diseases (IBD) is mainly driven by T-cell response to microbial and environmental antigens. Psychological stress is a potential trigger of clinical flares of IBD, and sphingosine-1-phosphate (S1P) is involved in T-cell recruitment. Hence, stress impact and the absence of sphingosine kinase 2 (Sphk2), an enzyme of S1P metabolism, were evaluated in the colon of mice after sub-chronic stress exposure. Here, we show that sub-chronic stress increased S1P in the mouse colon, possibly due to a decrease in its degradation enzymes and Sphk2. S1P accumulation could lead to inflammation and immune dysregulation reflected by upregulation of toll-like receptor 4 (TLR4) pathway, inhibition of anti-inflammatory mechanisms, cytokine-expression profile towards a T-helper lymphocyte 17 (Th17) polarization, plasmacytosis, decrease in IgA+ lymphoid lineage cells (CD45+)/B cells/plasmablasts, and increase in IgM+ B cells. Stress also enhanced intestinal permeability. Sphk2 knockout mice presented a cytokine-expression profile towards a boosted Th17 response, lower expression of claudin 3,4,7,8, and structural abnormalities in the colon. Intestinal pathophysiology should consider stress and S1P as modulators of the immune response. S1P-based drugs, including Sphk2 potentiation, represent a promising approach to treat IBD.


Colitis , Inflammatory Bowel Diseases , Phosphotransferases (Alcohol Group Acceptor) , Stress, Psychological , Th17 Cells , Animals , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Cytokines/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/immunology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/metabolism , Stress, Psychological/immunology , Stress, Psychological/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
18.
Int J Mol Sci ; 23(2)2022 Jan 08.
Article En | MEDLINE | ID: mdl-35054876

Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) and Cancer-Related Fatigue (CRF) are syndromes with considerable overlap with respect to symptoms. There have been many studies that have compared the two conditions, and some of this research suggests that the etiologies of the conditions are linked in some cases. In this narrative review, CFS/ME and cancer are introduced, along with their known and putative mechanistic connections to multiple stressors including ionizing radiation. Next, we summarize findings from the literature that suggest the involvement of HPA-axis dysfunction, the serotonergic system, cytokines and inflammation, metabolic insufficiency and mitochondrial dysfunction, and genetic changes in CRF and CFS/ME. We further suspect that the manifestation of fatigue in both diseases and its causes could indicate that CRF and CFS/ME lie on a continuum of potential biological effects which occur in response to stress. The response to this stress likely varies depending on predisposing factors such as genetic background. Finally, future research ideas are suggested with a focus on determining if common biomarkers exist in CFS/ME patients and those afflicted with CRF. Both CFS/ME and CRF are relatively heterogenous syndromes, however, it is our hope that this review assists in future research attempting to elucidate the commonalities between CRF and CFS/ME.


Neoplasms/psychology , Stress, Psychological/pathology , Circadian Clocks , Humans , Inflammation/immunology , Inflammation/pathology , Neoplasms/immunology , Phenotype , Practice Patterns, Physicians' , Stress, Psychological/immunology
19.
Neuropharmacology ; 207: 108950, 2022 04 01.
Article En | MEDLINE | ID: mdl-35074304

Anxiety is a common psychological disease which can induce severe social burdens. Searching methods that prevent the onset of anxiety is of great significance for ameliorating the social and individual problems induced by this type of disease. In this study, we investigated how innate immune pre-stimulation influences the anxiety-like behaviors in chronically stressed mice. Our results showed that a single injection of an innate immune stimulant lipopolysaccharide (LPS) at the dose of 50, 100, and 500 µg/kg 1 day before stress exposure prevented chronic social defeat stress (CSDS)-induced anxiety-like behaviors in mice. A single injection of LPS (100 µg/kg) 5 days before stress exposure produced similar preventive effects on CSDS-induced anxiety-like behaviors, while similar effects were not observed at the condition of 10-days interval between LPS injection and stress exposure. A second LPS injection 10 days after the first LPS injection or a 4 × LPS injection 10 days before stress exposure also prevented CSDS-induced anxiety-like behaviors. Moreover, a single injection of LPS (100 µg/kg) 1 day before stress exposure prevented the production of pro-inflammatory cytokines in the hippocampus and prefrontal cortex of CSDS mice. Suppression of innate immune stimulation by minocycline pretreatment simultaneously abrogated the preventive effect of LPS pre-injection (100 µg/kg) on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine production in the brain. Our results demonstrated that the pre-stimulation of the innate immune system can prevent the development of anxiety-like behaviors and the progression of the neuroinflammatory responses in the brain in chronically stressed mice.


Anxiety/immunology , Anxiety/prevention & control , Hippocampus/immunology , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Prefrontal Cortex/immunology , Stress, Psychological , Animals , Anxiety/etiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cytokines , Disease Models, Animal , Hippocampus/drug effects , Lipopolysaccharides/administration & dosage , Mice , Prefrontal Cortex/drug effects , Stress, Psychological/complications , Stress, Psychological/immunology , Stress, Psychological/prevention & control
20.
J Neuroinflammation ; 19(1): 12, 2022 Jan 07.
Article En | MEDLINE | ID: mdl-34996472

BACKGROUND: Innate immune pre-stimulation can prevent the development of depression-like behaviors in chronically stressed mice; however, whether the same stimulation prevents the development of anxiety-like behaviors in animals remains unclear. We addressed this issue using monophosphoryl lipid A (MPL), a derivative of lipopolysaccharide (LPS) that lacks undesirable properties of LPS but still keeps immune-enhancing activities. METHODS: The experimental mice were pre-injected intraperitoneally with MPL before stress exposure. Depression was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify anxiety-like behaviors. Real-time polymerase chain reaction (PCR) and biochemical assays were employed to examine the gene and protein expression levels of pro-inflammatory markers. RESULTS: A single MPL injection at the dose of 400 and 800 µg/kg 1 day before stress exposure prevented CSDS-induced anxiety-like behaviors, and a single MPL injection (400 µg/kg) five but not 10 days before stress exposure produced similar effect. The preventive effect of MPL on anxiety-like behaviors was also observed in CSDS mice who received a second MPL injection 10 days after the first MPL injection or a 4 × MPL injection 10 days before stress exposure. MPL pre-injection also prevented the production of pro-inflammatory cytokines in the hippocampus and medial prefrontal cortex in CSDS mice, and inhibiting the central immune response by minocycline pretreatment abrogated the preventive effect of MPL on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine productions in the brain. CONCLUSIONS: Pre-stimulation of the innate immune system by MPL can prevent chronic stress-induced anxiety-like behaviors and neuroinflammatory responses in the brain in mice.


Anxiety/immunology , Immunity, Innate/drug effects , Lipid A/analogs & derivatives , Prefrontal Cortex/drug effects , Social Defeat , Stress, Psychological/immunology , Animals , Depression/immunology , Lipid A/pharmacology , Lipopolysaccharides/pharmacology , Male , Mice , Prefrontal Cortex/immunology , Social Behavior
...