Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.679
Filter
1.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003086

ABSTRACT

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Subject(s)
Oxidation-Reduction , Oxygen Isotopes , Sulfates , Sulfur Isotopes , Sulfur Isotopes/analysis , Sulfates/chemistry , Oxygen Isotopes/analysis , Antimony/chemistry , Models, Chemical , Aerobiosis , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Oxides
2.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999169

ABSTRACT

The progressive decline of the coal industry necessitates the development of effective treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and elevated concentrations of heavy metals. This study proposes an innovative approach leveraging sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research focused on elucidating the physiological characteristics and optimal growth conditions of SRB, particularly in relation to the pH level and temperature. The experimental findings reveal that the SRB exhibited a sulfate removal rate of 88.86% at an optimal temperature of 30 °C. Additionally, SRB gel particles were formulated using sodium alginate (SA) and carboxymethyl cellulose (CMC), and their performance was assessed under specific conditions (pH = 6, C/S = 1.5, T = 30 °C, CMC = 4.5%, BSNa = 0.4 mol/L, and cross-linking time = 9 h). Under these conditions, the SRB gel particles demonstrated an enhanced sulfate removal efficiency of 91.6%. Thermal analysis via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) provided further insights into the stability and properties of the SRB gel spheres. The findings underscore the potential of SRB-based bioremediation as a sustainable and efficient method for AMD treatment, offering a novel and environmentally friendly solution to mitigating the adverse effects of environmental contamination.


Subject(s)
Biodegradation, Environmental , Mining , Hydrogen-Ion Concentration , Alginates/chemistry , Sulfates/chemistry , Bacteria/metabolism , Temperature , Gels/chemistry , Carboxymethylcellulose Sodium/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
3.
Environ Sci Pollut Res Int ; 31(31): 44415-44430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954338

ABSTRACT

Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.


Subject(s)
Oxidation-Reduction , Phenanthrenes , Pseudomonas aeruginosa , Soil Pollutants , Soil , Phenanthrenes/metabolism , Soil/chemistry , Soil Microbiology , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Sulfates/chemistry
4.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969443

ABSTRACT

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Subject(s)
Coke , Polymerization , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Sulfates/chemistry , Polymers/chemistry , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods
5.
J Environ Sci (China) ; 146: 163-175, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969445

ABSTRACT

Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature, the lack of secondary pollution to the environment, and their low cost over the last a few years. In this paper, the latest progress in the research on the activation of persulfate by heterogeneous iron-based catalysts is reviewed from two aspects, in terms of synthesized catalysts (Fe0, Fe2O3, Fe3O4, FeOOH) and natural iron ore catalysts (pyrite, magnetite, hematite, siderite, goethite, ferrohydrite, ilmenite and lepidocrocite) focusing on efforts made to improve the performance of catalysts. The advantages and disadvantages of the synthesized catalysts and natural iron ore were summarized. Particular interests were paid to the activation mechanisms in the catalyst/PS/pollutant system for removal of organic pollutants. Future research challenges in the context of field application were also discussed.


Subject(s)
Iron , Sulfates , Water Pollutants, Chemical , Catalysis , Iron/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods
6.
Water Res ; 259: 121869, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38851113

ABSTRACT

This work aims to explore the ability of molten salt to solve salt deposition in supercritical water (SCW) related technologies including supercritical water oxidation and supercritical water gasification, with KNO3 and Na2SO4 as examples. In the pure KNO3 solution, the two-phase layering of high-density KNO3 molten salt (settling at the reactor bottom) and low-density saturated KNO3-SCW salt solution (flowing out at the top outlet of the reactor) was formed in a kettle-reactor with about 6.5 ratio of depth to inner diameter, thereby improving the accuracy of measured solubilities. The precipitation macro-characteristics of mixed KNO3 and Na2SO4 in SCW were investigated under different feed concentration conditions. The results showed that Na2SO4 deposition on the reactor sidewall could be reduced by more than 90 % when the mass ratio of KNO3 to Na2SO4 in the feed was only 0.167. No visible salt deposition was observed on the sidewall when the ratio was 0.374. All solid deposited salts were converted into the liquid molten salt as the ratio reached 3.341, and thus could easily flow out of the reactor, without plugging. 'Molten salt dissolution' mechanism may provide a more plausible explanation for mixed KNO3 and Na2SO4 in SCW. In addition, the precipitation micro-mechanisms of mixed KNO3 and Na2SO4, and the critical conditions of avoiding sidewall deposition and reactor plugging were proposed. This work is valuable for overcoming the salt deposition problem in SCW-related technologies.


Subject(s)
Chemical Precipitation , Potassium Compounds , Sulfates , Water , Sulfates/chemistry , Water/chemistry , Potassium Compounds/chemistry , Nitrates/chemistry , Solubility
7.
Mar Drugs ; 22(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921576

ABSTRACT

Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.


Subject(s)
Anticoagulants , Molecular Weight , Oligosaccharides , Polysaccharides , Animals , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Stichopus/chemistry , Sea Cucumbers/chemistry , Sulfates/chemistry , Magnetic Resonance Spectroscopy , Blood Coagulation/drug effects
8.
Environ Res ; 257: 119293, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38838749

ABSTRACT

Recently, photocatalysis combined peroxydisulfate activation under visible light (PC-PDS/Vis) was developed as a promising technology for removing antibiotics in water. Herein, Mn doped FeOOH (Mn-FeOOH) nanoclusters were grown in-situ on the surface of graphitic carbon nitride nanosheets (CNNS) using a wet chemical method, which served as a visible-light-driven photocatalyst for peroxydisulfate (PDS) activation. Photovoltaic property characterizations revealed that Mn-FeOOH/CNNS owned superior light capture ability and carrier separation efficiency. According to DFT calculations, the synergistic effect between Mn and Fe species was proved to enhance the adsorption and activation of PDS. 99.7% of tetracycline (TC) was rapidly removed in 50 min in the PC-PDS/Vis system. In addition, Mn-FeOOH/CNNS exhibited high recycling stability with low iron leaching, attributed to the interaction between Mn-FeOOH clusters and carbon species. Quenching experiments and electron spin resonance (ESR) tests unveiled that •O2- played a significant role in TC removal, while •OH and SO4•- acted as additional roles contributing to the overall process. These findings given a new strategy for antibiotics degradation by photocatalysis, offering deeper insights for the advancement of sustainable and cutting-edge wastewater treatment technologies.


Subject(s)
Graphite , Light , Tetracycline , Water Pollutants, Chemical , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Graphite/chemistry , Catalysis , Anti-Bacterial Agents/chemistry , Manganese/chemistry , Sulfates/chemistry , Nitrogen Compounds/chemistry , Iron/chemistry , Photochemical Processes
9.
Environ Sci Process Impacts ; 26(7): 1147-1155, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38856669

ABSTRACT

Isoprene is the most relevant volatile organic compound emitted during the biosynthesis of metabolism processes. The oxidation of isoprene by a hydroxy radical (OH) is one of the main consumption schemes that generate six isomers of isoprene hydroxy hydroperoxide radicals (ISOPOOs). In this study, the rate constants of ISOPOOs + sulphur dioxide (SO2) reactions that eventually generate sulphur trioxide (SO3), the precursor of sulphate aerosol (SO42-(p)), are determined using microcanonical kinetic theories coupled with molecular structures and energies estimated by quantum chemical calculations. The results show that the reaction rates range from 10-27 to 10-20 cm3 molecule-1 s-1, depending on the atmospheric temperature and structure of the six ISOPOO isomers. The effect of SO3 formation from SO2 oxidation by ISOPOOs on the atmosphere is evaluated by a global chemical transport model, along with the rate constants obtained from microcanonical kinetic theories. The results show that SO3 formation is enhanced in regions with high SO2 or low nitrogen oxide (NO), such as China, the Middle East, and Amazon rainforests. However, the production rates of SO3 formation by ISOPOOs + SO2 reactions are eight orders of magnitude lower than that from the OH + SO2 reaction. This is indicative of SO42-(p) formation from the direct oxidation of SO2 by ISOPOOs, which is almost negligible in the atmosphere. The results of this study entail a detailed analysis of SO3 formation from gas-phase reactions of isoprene-derived products.


Subject(s)
Air Pollutants , Atmosphere , Butadienes , Hemiterpenes , Sulfates , Sulfur Dioxide , Sulfur Dioxide/chemistry , Hemiterpenes/chemistry , Kinetics , Butadienes/chemistry , Air Pollutants/chemistry , Atmosphere/chemistry , Sulfates/chemistry , Models, Chemical , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Pentanes/chemistry , Hydroxyl Radical/chemistry
10.
Int J Biol Macromol ; 273(Pt 1): 133121, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876229

ABSTRACT

GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.


Subject(s)
Antineoplastic Agents , Fluorouracil , Folic Acid , Polysaccharides , Fluorouracil/pharmacology , Fluorouracil/chemistry , Humans , Folic Acid/chemistry , Folic Acid/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Sulfates/chemistry , HeLa Cells , Drug Liberation , Drug Delivery Systems , Drug Carriers/chemistry , Cell Survival/drug effects
11.
Environ Sci Pollut Res Int ; 31(30): 43249-43261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898350

ABSTRACT

Carbon materials have been receiving considerable attention as effective green catalysts for peroxydisulfate (PDS) activation to degrade organic pollutants. Herein, the porous graphene-like carbons (PGCs) were synthesized by pyrolyzing a nitrogen-rich biomass (peanut shell, PS) in the eutectic mixture of FeCl3 and ZnCl2. The results suggested that involvement of molten salts attributed the biochar the amazing properties such as high specific surface area (SBET = 2529.4 m2 g-1), abundant structural defects, high nitrogen content (6.5%), and oxygen-containing functional groups on its surface. Especially when pyrolyzed at activation temperature of 800 °C, mass ratio of 1:3:15 (PS:ZnCl2:FeCl3), and activation time of 2 h, the optimized PGCs-op exhibited outstanding performance in the catalytic degradation of rhodamine B (RhB). Almost all of RhB (99.02%) was removed in 40 min and basically not influenced by initial pH in the range of 3.00 to 9.98. Although the RhB degradation was influenced by anions (Cl-, HCO3-, HPO42-), the inhibition would be significantly alleviated within 120 min unless these substances were high in concentration. Furthermore, the quenching tests revealed that the reactive species were involved in RhB degradation in the sequence of 1O2 > O2∙- > SO4∙- > ∙OH, among which singlet oxygen played a crucial role. Combined with characterization analysis, a possible mechanism of RhB degradation in PGCs-op/PDS system was proposed. Overall, this study provided a promising metal-free catalyst for the removal of organic pollutants while achieving reutilization of the waste biomass.


Subject(s)
Graphite , Rhodamines , Rhodamines/chemistry , Graphite/chemistry , Catalysis , Porosity , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Sulfates/chemistry
12.
Int J Biol Macromol ; 273(Pt 2): 132882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848853

ABSTRACT

Ulvan, a sulfated polysaccharide extracted from Ulva spp., has garnered significant attention in the food and pharmaceutical industries due to its potential health benefits. These include immunomodulation, antiviral, anti-inflammatory, anti-hyperlipidemic, and anti-cancer effects. Nonetheless, practical applications in these fields remain limited due to an incomplete understanding of its gelation mechanisms. Additionally, the underlying mechanisms of its gelation have not been completely understood and thoroughly reviewed. The primary objective is to provide current insights into ulvan's gelling mechanisms and potential health impacts. This review also delves into the existing applications of ulvan polysaccharides. By unraveling these aspects, the information provided in this work is expected to deepen our understanding of ulvan's gelation mechanisms and its prospective role in enhancing health, holding promise for advancements in the fields of food science and disease prevention. This work's theoretical insights contribute significantly to a deeper understanding of these aspects, which holds paramount importance in unleashing the full potential of ulvan and elevating its scientific significance.


Subject(s)
Gels , Polysaccharides , Sulfates , Ulva , Ulva/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gels/chemistry , Humans , Sulfates/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
13.
J Proteome Res ; 23(7): 2386-2396, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38900499

ABSTRACT

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.


Subject(s)
Fibrinogen , Tandem Mass Spectrometry , Tyrosine , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Tandem Mass Spectrometry/methods , Fibrinogen/chemistry , Fibrinogen/metabolism , Chromatography, Liquid/methods , Humans , Protein Processing, Post-Translational , Trypsin/chemistry , Trypsin/metabolism , Sulfates/chemistry , Amino Acid Sequence , Peptides/chemistry , Peptides/analysis , Electrons
14.
Biofouling ; 40(5-6): 333-347, 2024.
Article in English | MEDLINE | ID: mdl-38836545

ABSTRACT

The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm-2 and 1.26 mg cm-2, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm-2 and 0.03 mg cm-2, respectively. In comparison to Mo (2.2 × 106 cells cm-2) or Cr (1.4 × 106 cells cm-2) surface, the sessile cell counts on Fe (4.0 × 107 cells cm-2) or Ni (3.1 × 107 cells cm-2) surface was higher.


Subject(s)
Bacterial Adhesion , Sulfates , Corrosion , Sulfates/chemistry , Metals/chemistry , Seawater/microbiology , Seawater/chemistry , Biofilms/drug effects , Biofilms/growth & development , Bacteria/drug effects , Biofouling/prevention & control
15.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876715

ABSTRACT

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Subject(s)
Polysaccharides , Sea Cucumbers , Sea Cucumbers/chemistry , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Structure-Activity Relationship , Sulfates/chemistry , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology
16.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830495

ABSTRACT

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Subject(s)
Antioxidants , Polysaccharides , Seaweed , Polysaccharides/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Upper Gastrointestinal Tract/metabolism , Upper Gastrointestinal Tract/drug effects , Molecular Weight , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Digestion/drug effects , Sulfates/chemistry , Glucans/chemistry , Glucans/pharmacology , Phaeophyceae/chemistry , Humans
17.
Environ Sci Technol ; 58(24): 10415-10444, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848315

ABSTRACT

Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.


Subject(s)
Oxidation-Reduction , Sulfates/chemistry
18.
J Hazard Mater ; 475: 134907, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878442

ABSTRACT

In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.


Subject(s)
Anti-Bacterial Agents , Charcoal , Graphite , Iron , Sulfadiazine , Sulfates , Charcoal/chemistry , Sulfadiazine/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Iron/chemistry , Iron/metabolism , Graphite/chemistry , Sulfates/chemistry , Sulfates/metabolism , Water Pollutants, Chemical/chemistry , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Bacteria/metabolism , Bacteria/drug effects , Bacteria/genetics , Water Purification/methods , Peroxides/chemistry
19.
Nat Chem ; 16(6): 881-892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844638

ABSTRACT

Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.


Subject(s)
Gangliosides , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/metabolism , Gangliosides/chemistry , Gangliosides/metabolism , Sialyltransferases/metabolism , Sialyltransferases/chemistry , Sulfates/chemistry , Sulfates/metabolism , Glycomics/methods
20.
ACS Chem Biol ; 19(7): 1426-1432, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38941516

ABSTRACT

Chemokines are an important family of small proteins integral to leukocyte recruitment during inflammation. Dysregulation of the chemokine-chemokine receptor axis is implicated in many diseases, and both chemokines and their cognate receptors have been the targets of therapeutic development. Analysis of the antigen-binding regions of chemokine-binding nanobodies revealed a sequence motif suggestive of tyrosine sulfation. Given the well-established importance of post-translational tyrosine sulfation of receptors for chemokine affinity, it was hypothesized that the sulfation of these nanobodies may contribute to chemokine binding and selectivity. Four nanobodies (16C1, 9F1, 11B1, and 11F2) were expressed using amber codon suppression to incorporate tyrosine sulfation. The sulfated variant of 16C1 demonstrated significantly improved chemokine binding compared to the non-sulfated counterpart, while the other nanobodies displayed equipotent or reduced affinity upon sulfation. The ability of tyrosine sulfation to modulate chemokine binding, both positively and negatively, could be leveraged for chemokine-targeted sulfo-nanobody therapeutics in the future.


Subject(s)
Chemokines , Single-Domain Antibodies , Tyrosine , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Chemokines/metabolism , Chemokines/chemistry , Humans , Protein Binding , Sulfates/metabolism , Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL