Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.825
Filter
1.
J Transl Med ; 22(1): 715, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090667

ABSTRACT

BACKGROUND: Synovial fibrosis is a common complication of knee osteoarthritis (KOA), a pathological process characterized by myofibroblast activation and excessive extracellular matrix (ECM) deposition. Fibroblast-like synoviocytes (FLSs) are implicated in KOA pathogenesis, contributing to synovial fibrosis through diverse mechanisms. Nuclear protein 1 (NUPR1) is a recently identified transcription factor with crucial roles in various fibrotic diseases. However, its molecular determinants in KOA synovial fibrosis remain unknown. This study aims to investigate the role of NUPR1 in KOA synovial fibrosis through in vivo and in vitro experiments. METHODS: We examined NUPR1 expression in the murine synovium and determined the impact of NUPR1 on synovial fibrosis by knockdown models in the destabilization of the medial meniscus (DMM)-induced KOA mouse model. TGF-ß was employed to induce fibrotic response and myofibroblast activation in mouse FLSs, and the role and molecular mechanisms in synovial fibrosis were evaluated under conditions of NUPR1 downexpression. Additionally, the pharmacological effect of NUPR1 inhibitor in synovial fibrosis was assessed using a surgically induced mouse KOA model. RESULTS: We found that NUPR1 expression increased in the murine synovium after DMM surgical operation. The adeno-associated virus (AAV)-NUPR1 shRNA promoted NUPR1 deficiency, attenuating synovial fibrosis, inhibiting synovial hyperplasia, and significantly reducing the expression of pro-fibrotic molecules. Moreover, the lentivirus-mediated NUPR1 deficiency alleviated synoviocyte proliferation and inhibited fibroblast to myofibroblast transition. It also decreased the expression of fibrosis markers α-SMA, COL1A1, CTGF, Vimentin and promoted the activation of the SMAD family member 3 (SMAD3) pathway. Importantly, trifluoperazine (TFP), a NUPR1 inhibitor, attenuated synovial fibrosis in DMM mice. CONCLUSIONS: These findings indicate that NUPR1 is an antifibrotic modulator in KOA, and its effect on anti-synovial fibrosis is partially mediated by SMAD3 signaling. This study reveals a promising target for developing novel antifibrotic treatment.


Subject(s)
Fibroblasts , Fibrosis , Signal Transduction , Smad3 Protein , Synoviocytes , Animals , Smad3 Protein/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Mice, Inbred C57BL , Synovial Membrane/pathology , Synovial Membrane/metabolism , Male , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Disease Models, Animal , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins , Neoplasm Proteins
2.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973151

ABSTRACT

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Subject(s)
Fibroblasts , Introns , Phospholipase C gamma , RNA, Messenger , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Cells, Cultured , Osteoarthritis/metabolism , Osteoarthritis/pathology , Synovial Membrane/metabolism , Synovial Membrane/cytology , Synovial Membrane/drug effects , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Synoviocytes/metabolism , Synoviocytes/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
3.
Clin Exp Rheumatol ; 42(7): 1387-1397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976290

ABSTRACT

OBJECTIVES: The imbalance between apoptosis and proliferation in fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of rheumatoid arthritis (RA). This study aims to investigate the potential of all-trans retinoic acid (ATRA) as a supplementary therapeutic agent alongside methotrexate (MTX) for RA, by examining its ability to inhibit synovial cell proliferation and enhance apoptosis through the ROS-JNK signalling pathway. METHODS: The viability, apoptosis, and autophagy levels of human rheumatoid arthritis fibroblast-like synovial cells (HFLS-RA) were evaluated, while ROS generation was measured through the DCFH-DA fluorescence microplate assay. Western blotting was used to analyse the expression levels of JNK signalling pathway-related proteins. To assess therapeutic potential in vivo, a collagen-induced arthritis (CIA) model was established in Wistar rats. RESULTS: Small doses of MTX did not significantly affect the viability of HFLS-RAs or induce apoptosis. However, when ATRA was added to the treatment, the therapy markedly inhibited cell proliferation and induced apoptosis and excessive autophagy. Mechanistically, ATRA activated the ROS/JNK signalling pathway in HFLS-RAs. ROS scavengers and JNK inhibitors significantly attenuated ATRA-induced apoptosis and autophagy. In vivo, the combination therapy demonstrated a remarkable enhancement of the anti-arthritic efficacy in CIA rats. CONCLUSIONS: The ability of ATRA to inhibit proliferation in RA FLSs through autophagy and apoptosis underscores its potential as a supplementary therapeutic agent alongside MTX for RA, particularly when compared to the limited impact of MTX on these processes. This combined strategy holds promise for enhancing therapeutic outcomes and warrants further investigation in the management of RA.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Cell Proliferation , Methotrexate , Rats, Wistar , Reactive Oxygen Species , Synoviocytes , Tretinoin , Tretinoin/pharmacology , Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Methotrexate/pharmacology , Autophagy/drug effects , Animals , Humans , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Reactive Oxygen Species/metabolism , Synoviocytes/drug effects , Synoviocytes/pathology , Synoviocytes/metabolism , Cell Proliferation/drug effects , Drug Therapy, Combination , Antirheumatic Agents/pharmacology , Synovial Membrane/drug effects , Synovial Membrane/pathology , Synovial Membrane/metabolism , Male , MAP Kinase Signaling System/drug effects , Rats , Cell Line
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1098-1108, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977339

ABSTRACT

OBJECTIVE: To identify the biomarkers for early rheumatoid arthritis (RA) diagnosis and explore the possible immune regulatory mechanisms. METHODS: The differentially expressed genesin RA were screened and functionally annotated using the limma, RRA, batch correction, and clusterProfiler. The protein-protein interaction network was retrieved from the STRING database, and Cytoscape 3.8.0 and GeneMANIA were used to select the key genes and predicting their interaction mechanisms. ROC curves was used to validate the accuracy of diagnostic models based on the key genes. The disease-specific immune cells were selected via machine learning, and their correlation with the key genes were analyzed using Corrplot package. Biological functions of the key genes were explored using GSEA method. The expression of STAT1 was investigated in the synovial tissue of rats with collagen-induced arthritis (CIA). RESULTS: We identified 9 core key genes in RA (CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL), which regulate synovial inflammation primarily through cytokines-related pathways. ROC curve analysis showed a high predictive accuracy of the 9 core genes, among which STAT1 had the highest AUC (0.909). Correlation analysis revealed strong correlations of CD3G, ITGAL, LCK, CD8A, and STAT1 with disease-specific immune cells, and STAT1 showed the strongest correlation with M1-type macrophages (R=0.68, P=2.9e-08). The synovial tissues of the ankle joints of CIA rats showed high expressions of STAT1 and p-STAT1 with significant differential expression of STAT1 between the nucleus and the cytoplasm of the synovial fibroblasts. The protein expressions of p-STAT1 and STAT1 in the cell nuclei were significantly reduced after treatment. CONCLUSION: CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL may serve as biomarkers for early diagnosis of RA. Gene-immune cell pathways such as CD3G/CD8A/LCK-γδ T cells, ITGAL-Tfh cells, and STAT1-M1-type macrophages may be closely related with the development of RA.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Protein Interaction Maps , STAT1 Transcription Factor , Synovial Membrane , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Animals , Rats , STAT1 Transcription Factor/metabolism , Biomarkers/metabolism , Synovial Membrane/metabolism , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Gene Expression Profiling , Databases, Genetic , Humans , CD8 Antigens/metabolism , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Syk Kinase/metabolism , Syk Kinase/genetics , ROC Curve
5.
Epigenetics ; 19(1): 2375011, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38956836

ABSTRACT

Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.


Subject(s)
Cell Differentiation , DNA Methylation , Mesenchymal Stem Cells , Osteogenesis , Synovial Membrane , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Swine , Synovial Membrane/cytology , Synovial Membrane/metabolism , Cells, Cultured , Epigenesis, Genetic
6.
Anal Cell Pathol (Amst) ; 2024: 1083143, 2024.
Article in English | MEDLINE | ID: mdl-38946863

ABSTRACT

Objectives: Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods: Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and ß-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/ß-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and ß-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion: Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.


Subject(s)
Chondrocytes , Chondrogenesis , Extracellular Vesicles , Flavonoids , Mesenchymal Stem Cells , Synovial Membrane , Wnt Signaling Pathway , Animals , Rabbits , Flavonoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wnt Signaling Pathway/drug effects , Extracellular Vesicles/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Synovial Membrane/metabolism , Synovial Membrane/cytology , Chondrogenesis/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects
7.
Biomolecules ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39062498

ABSTRACT

With the rise in longevity within the population, medicine continues to encounter fresh hurdles necessitating prompt actions, among which are those associated with hip joint aging. Age-related arthropathies encompass damage to bones' articulating extremities and their supporting structures, such as articular cartilage, and alterations in the quantity and quality of synovial fluid. This study aims to summarize the biomolecular methods of hip joint evaluation focused on its vascularization, using data correlated with biomolecular research on other joints and tissues, in order to reach an objective opinion of the study prospects in this field. Following a retrospective study on most modern biomolecular research methods on the synovium, the capsule, and the articular cartilage of the hip joint, we have hereby concretized certain future research directions in this field that will improve the qualitative and morphofunctional management of the hip joint at an advanced age, even within population categories at risk of developing various degenerative joint pathologies.


Subject(s)
Cartilage, Articular , Hip Joint , Humans , Hip Joint/pathology , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Synovial Membrane/pathology , Synovial Membrane/metabolism , Femoracetabular Impingement/pathology
8.
Exp Biol Med (Maywood) ; 249: 10122, 2024.
Article in English | MEDLINE | ID: mdl-38881847

ABSTRACT

Rheumatoid fibroblast-like synoviocytes (RFLS) have an important role in the inflammatory pathogenesis of rheumatoid arthritis (RA). Toll-like receptor 3 (TLR3) is upregulated in RFLS; its activation leads to the production of interferon-ß (IFN-ß), a type I IFN. IFN-stimulated gene 56 (ISG56) is induced by IFN and is involved in innate immune responses; however, its role in RA remains unknown. Therefore, the purpose of this study was to investigate the role of TLR3-induced ISG56 in human RFLS. RFLS were treated with polyinosinic-polycytidylic acid (poly I:C), which served as a TLR3 ligand. ISG56, melanoma differentiation-associated gene 5 (MDA5), and C-X-C motif chemokine ligand 10 (CXCL10) expression were measured using quantitative reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. Using immunohistochemistry, we found that ISG56 was expressed in synovial tissues of patients with RA and osteoarthritis. Under poly I:C treatment, ISG56 was upregulated in RFLS. In addition, we found that the type I IFN-neutralizing antibody mixture suppressed ISG56 expression. ISG56 knockdown decreased CXCL10 expression and MDA5 knockdown decreased ISG56 expression. In addition, we found that ISG56 was strongly expressed in the synovial cells of patients with RA. TLR3 signaling induced ISG56 expression in RFLS and type I IFN was involved in ISG56 expression. ISG56 was also found to be associated with CXCL10 expression, suggesting that ISG56 may be involved in TLR3/type I IFN/CXCL10 axis, and play a role in RA synovial inflammation.


Subject(s)
Arthritis, Rheumatoid , Chemokine CXCL10 , Poly I-C , Signal Transduction , Synoviocytes , Toll-Like Receptor 3 , Humans , Toll-Like Receptor 3/metabolism , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Poly I-C/pharmacology , Synoviocytes/metabolism , Chemokine CXCL10/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Cells, Cultured , Synovial Membrane/metabolism , Synovial Membrane/pathology , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , RNA-Binding Proteins , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins
9.
Med Sci Monit ; 30: e943369, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877693

ABSTRACT

BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease characterized by synovitis and has been implicated in sphingolipid metabolism disorder. However, the role of sphingolipid metabolism pathway (SMP)-related genes in the occurrence of OA and synovial immune dysregulation remains unclear. MATERIAL AND METHODS In this study, we obtained synovium-related databases from GEO (n=40 for both healthy controls and OA) and analyzed the expression levels of SMP-related genes. Using 2 algorithms, we identified hub genes and developed a diagnostic model incorporating these hub genes to predict the occurrence of OA. Subsequently, the hub genes were further validated in peripheral blood samples from OA patients. Additionally, CIBERSORT and MCP-counter analyses were employed to explore the correlation between hub genes and immune dysregulation in OA synovium. WGCNA was used to determine enriched modules in different clusters. RESULTS Overall, the expression levels of SMP genes were upregulated in OA synovium. We identified 6 hub genes of SMP and constructed an excellent diagnostic model (AUC=0.976). The expression of re-confirmed hub genes showed associations with immune-related cell infiltration and levels of inflammatory cytokines. Furthermore, we observed heterogeneity in the expression patterns of hub genes across different clusters of OA. Notably, older patients displayed increased susceptibility to elevated levels of pain-related inflammatory cytokines and infiltration of immune cells. CONCLUSIONS The SMP-related hub genes have the potential to serve as diagnostic markers for OA patients. Moreover, the 4 hub genes of SMP demonstrate wide participation in immune dysregulation in OA synovium. The activation of different pathways is observed among different populations of patients with OA.


Subject(s)
Osteoarthritis , Sphingolipids , Synovial Membrane , Humans , Synovial Membrane/metabolism , Osteoarthritis/genetics , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Osteoarthritis/immunology , Sphingolipids/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Male , Female , Transcriptome/genetics , Databases, Genetic , Middle Aged , Case-Control Studies
10.
Front Immunol ; 15: 1361606, 2024.
Article in English | MEDLINE | ID: mdl-38846937

ABSTRACT

Introduction: Pathological changes in the articular cartilage (AC) and synovium are major manifestations of osteoarthritis (OA) and are strongly associated with pain and functional limitations. Exosome-derived microRNAs (miRNAs) are crucial regulatory factors in intercellular communication and can influence the progression of OA by participating in the degradation of chondrocytes and the phenotypic transformation in the polarization of synovial macrophages. However, the specific relationships and pathways of action of exosomal miRNAs in the pathological progression of OA in both cartilage and synovium remain unclear. Methods: This study evaluates the effects of fibroblast-like synoviocyte (FLS)-derived exosomes (FLS-Exos), influenced by miR-146a, on AC degradation and synovial macrophage polarization. We investigated the targeted relationship between miR-146a and TRAF6, both in vivo and in vitro, along with the involvement of the NF-κB signaling pathway. Results: The expression of miR-146a in the synovial exosomes of OA rats was significantly higher than in healthy rats. In vitro, the upregulation of miR-146a reduced chondrocyte apoptosis, whereas its downregulation had the opposite effect. In vivo, exosomes derived from miR-146a-overexpressing FLSs (miR-146a-FLS-Exos) reduced AC injury and chondrocyte apoptosis in OA. Furthermore, synovial proliferation was reduced, and the polarization of synovial macrophages shifted from M1 to M2. Mechanistically, the expression of TRAF6 was inhibited by targeting miR-146a, thereby modulating the Toll-like receptor 4/TRAF6/NF-κB pathway in the innate immune response. Discussion: These findings suggest that miR-146a, mediated through FLS-Exos, may alleviate OA progression by modulating cartilage degradation and macrophage polarization, implicating the NF-κB pathway in the innate immune response. These insights highlight the therapeutic potential of miR-146a as a protective agent in OA, underscoring the importance of exosomal miRNAs in the pathogenesis and potential treatment of the disease.


Subject(s)
Exosomes , Macrophages , MicroRNAs , Osteoarthritis , Synoviocytes , TNF Receptor-Associated Factor 6 , MicroRNAs/genetics , Animals , Exosomes/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/immunology , Rats , Macrophages/immunology , Macrophages/metabolism , Synoviocytes/metabolism , Synoviocytes/pathology , Male , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Rats, Sprague-Dawley , Fibroblasts/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovial Membrane/immunology , Cells, Cultured , Apoptosis , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Macrophage Activation
11.
BMC Immunol ; 25(1): 36, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902605

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic immune system disease with a high disability rate threatening the living quality of patients. Identifying potential biomarkers for RA is of necessity to improve the prevention and management of RA. OBJECTIVES: This study focused on miR-146b-3p evaluating its clinical significance and revealing the underlying regulatory mechanisms. MATERIALS AND METHODS: A total of 107 RA patients were enrolled, and both serum and synovial tissues were collected. Another 78 osteoarthritis patients (OA, providing synovial tissues), and 72 healthy individuals (providing serum samples) were enrolled as the control group. The expression of miR-146b-3p was analyzed by PCR and analyzed with ROC and Pearson correlation analyses evaluating its significance in diagnosis and development prediction of RA patients. In vitro, MH7A cells were treated with TNF-α. The regulation of cell proliferation, motility, and inflammation by miR-146b-3p was assessed by CCK8, Transwell, and ELISA assays. RESULTS: Significant upregulation of miR-146b-3p was observed in serum and synovial tissues of RA patients, which distinguished RA patients and were positively correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP), and rheumatoid factor (RF) of RA patients. TNF-α promoted the proliferation and motility of MH7A cells and induced significant inflammation in cells. Silencing miR-146b-3p alleviated the effect of TNF-α and negatively regulated the expression of HMGCR. The knockdown of HMGCR reversed the protective effect of miR-146b-3p silencing on TNF-α-stimulated MH7A cells. CONCLUSIONS: Increased miR-146b-3p served as a biomarker for the diagnosis and severity of RA. Silencing miR-146b-3p could suppress TNF-α-induced excessive proliferation, motility, and inflammation via regulating HMGCR in MH7A cells.


Subject(s)
Arthritis, Rheumatoid , Cell Movement , Cell Proliferation , MicroRNAs , Tumor Necrosis Factor-alpha , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/diagnosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Necrosis Factor-alpha/metabolism , Male , Middle Aged , Female , Cell Line , Up-Regulation , Biomarkers/metabolism , Inflammation/immunology , Synovial Membrane/metabolism , Adult , Aged
12.
Front Immunol ; 15: 1385006, 2024.
Article in English | MEDLINE | ID: mdl-38895122

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.


Subject(s)
Fibroblasts , Fibrosis , Osteoarthritis , Phenotype , Synoviocytes , Humans , Osteoarthritis/pathology , Osteoarthritis/immunology , Osteoarthritis/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/immunology , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Synoviocytes/immunology , Synovial Membrane/pathology , Synovial Membrane/immunology , Synovial Membrane/metabolism
13.
J Orthop Surg Res ; 19(1): 357, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880910

ABSTRACT

BACKGROUND: This study aimed to validate alterations in the gene expression of DNA methylation-related enzymes and global methylation in the peripheral blood mononuclear cell (PBMC) and synovial tissues of animal hip osteoarthritis (OA) models. METHODS: Animals were assigned to the control (no treatment), sham (25 µL of sterile saline), and OA (25 µL of sterile saline and 2 mg of monoiodoacetate) groups. Microcomputed tomography scan, histopathological assessment and pain threshold measurement were performed after induction. The mRNA expression of the DNA methylation machinery genes and global DNA methylation in the PBMC and hip synovial tissue were evaluated. RESULTS: The OA group presented with hip joint OA histopathologically and radiologically and decreased pain threshold. The mRNA expression of DNA methyltransferase (Dnmt 3a), ten-eleven translocation (Tet) 1 and Tet 3 in the synovial tissue of the OA group was significantly upregulated. Global DNA methylation in the synovial tissue of the OA group was significantly higher than that of the control and sham groups. CONCLUSIONS: The intra-articular administration of monoiodoacetate induced hip joint OA and decreased pain threshold. The DNA methylation machinery in the synovial tissues of hip OA was altered.


Subject(s)
DNA Methylation , Disease Models, Animal , Osteoarthritis, Hip , Animals , Osteoarthritis, Hip/genetics , Osteoarthritis, Hip/metabolism , Osteoarthritis, Hip/pathology , Male , Rats , Iodoacetic Acid , Synovial Membrane/metabolism , Synovial Membrane/pathology , Leukocytes, Mononuclear/metabolism , Rats, Sprague-Dawley , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Pain Threshold
14.
Arthritis Res Ther ; 26(1): 120, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867295

ABSTRACT

BACKGROUND: Kinases are intracellular signalling mediators and key to sustaining the inflammatory process in rheumatoid arthritis (RA). Oral inhibitors of Janus Kinase family (JAKs) are widely used in RA, while inhibitors of other kinase families e.g. phosphoinositide 3-kinase (PI3K) are under development. Most current biomarker platforms quantify mRNA/protein levels, but give no direct information on whether proteins are active/inactive. Phosphoproteome analysis has the potential to measure specific enzyme activation status at tissue level. METHODS: We validated the feasibility of phosphoproteome and total proteome analysis on 8 pre-treatment synovial biopsies from treatment-naive RA patients using label-free mass spectrometry, to identify active cell signalling pathways in synovial tissue which might explain failure to respond to RA therapeutics. RESULTS: Differential expression analysis and functional enrichment revealed clear separation of phosphoproteome and proteome profiles between lymphoid and myeloid RA pathotypes. Abundance of specific phosphosites was associated with the degree of inflammatory state. The lymphoid pathotype was enriched with lymphoproliferative signalling phosphosites, including Mammalian Target Of Rapamycin (MTOR) signalling, whereas the myeloid pathotype was associated with Mitogen-Activated Protein Kinase (MAPK) and CDK mediated signalling. This analysis also highlighted novel kinases not previously linked to RA, such as Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC) in the myeloid pathotype. Several phosphosites correlated with clinical features, such as Disease-Activity-Score (DAS)-28, suggesting that phosphosite analysis has potential for identifying novel biomarkers at tissue-level of disease severity and prognosis. CONCLUSIONS: Specific phosphoproteome/proteome signatures delineate RA pathotypes and may have clinical utility for stratifying patients for personalised medicine in RA.


Subject(s)
Arthritis, Rheumatoid , Phosphoproteins , Proteomics , Signal Transduction , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Synovial Membrane/metabolism , Signal Transduction/physiology , Proteomics/methods , Female , Phosphoproteins/metabolism , Phosphoproteins/analysis , Middle Aged , Male , Adult , Aged , Proteome/analysis , Proteome/metabolism
15.
Article in English | MEDLINE | ID: mdl-38932672

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune disease that leads to joint destruction. A number of immune cells that affect joint tissues are involved in the pathogenesis of this disease. This leads to the synthesis of many pro-inflammatory mediators. The transport of drugs, as well as many cytokines involved in the development of inflammation in RA patients, is mediated by membrane transporters. Membrane transporters are proteins that mediate the transfer of substrates across biological membranes. But to date there are no studies examining the expression of solute carrier (SLC) transporters in joint tissues. The aim of the study was to evaluate the expression of individual SLC family transporters in the synovial membranes (SMs) and infrapatellar fat pad (Hoffa's pad) of RA patients. The study included 20 patients with rheumatoid arthritis and 20 with osteoarthritis as the control group who were undergoing joint replacement surgery as a normal part of clinical care. In the SM and Hoffa's pad of RA patients the following 17 membrane transporters were defined at relevant expression levels for SLC transporter superfamily: SLC15A2, SLC16A3, SLC19A1, SLC2A9, SLC22A1, SLC22A3, SLC22A4, SLC22A5, SLC22A18, SLC33A1, SLC47A1, SLC51A, SLC7A5, SLC7A6, SLC01C1, SLC02B1, SLC04A1. The confirmed expression of these transporters in the SMs as well as Hoffa's pad of patients with RA and OA, and the differences in their expression between these groups, suggests the involvement of SLC transporters in both the maintenance of homeostasis under physiological conditions in the tissues of the joints, as well as in the inflammatory process in RA.


Subject(s)
Arthritis, Rheumatoid , Solute Carrier Proteins , Synovial Membrane , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Female , Synovial Membrane/metabolism , Synovial Membrane/immunology , Middle Aged , Solute Carrier Proteins/metabolism , Male , Aged , Adipose Tissue/metabolism , Adult , Membrane Transport Proteins/metabolism , Biological Transport , Osteoarthritis/metabolism
16.
J Autoimmun ; 147: 103263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851089

ABSTRACT

RATIONALE: In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS: Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS: RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11ß-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11ß-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11ß-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11ß-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS: This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Arthritis, Rheumatoid , Inflammation , Macrophages , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Macrophages/metabolism , Macrophages/immunology , Inflammation/metabolism , Inflammation/immunology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Aldo-Keto Reductase Family 1 Member C3/metabolism , Synovial Fluid/metabolism , Synovial Fluid/immunology , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Female , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovial Membrane/immunology , Cells, Cultured , Glucocorticoids/metabolism , Steroids/metabolism , Gene Expression Regulation , Hydroxysteroid Dehydrogenases
17.
Life Sci ; 351: 122780, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38866217

ABSTRACT

AIMS: This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS: The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS: 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE: Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.


Subject(s)
Arthritis, Rheumatoid , Ferroptosis , Ferroptosis/genetics , Ferroptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Humans , Animals , Mice , Synovial Membrane/metabolism , Synovial Membrane/drug effects , Male
18.
Nat Commun ; 15(1): 4991, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862501

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA.


Subject(s)
Arthritis, Rheumatoid , B-Lymphocytes , Synovial Membrane , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Synovial Membrane/immunology , Synovial Membrane/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Male , Middle Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Single-Cell Analysis , Transcriptome , Plasma Cells/immunology , Plasma Cells/metabolism , Aged , Lymphocyte Activation , Adult
19.
Nat Commun ; 15(1): 4650, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821936

ABSTRACT

Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.


Subject(s)
Arthritis, Rheumatoid , Chromatin , Synovial Membrane , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/immunology , Humans , Chromatin/metabolism , Chromatin/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Epigenesis, Genetic , Single-Cell Analysis , Transcription Factors/metabolism , Transcription Factors/genetics , Fibroblasts/metabolism , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Transcription, Genetic , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
20.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 263-269, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814204

ABSTRACT

The study aimed to explore the pathogenesis of secondary frozen shoulder and its influence on synovium tissue and angiogenesis by constructing a rat secondary frozen shoulder model along with transforming growth factor. 40 healthy male rats aged 8 weeks were divided into Sham group (n=10, no modeling treatment), Control group (n=10, modeling treatment), Low group (n=10, modeling treatment, and 10 mL/d transforming growth factor), and High group (n=10, modeling treatment, and 20 mL/d transforming growth factor). Hematoxylin and Eosin (HE) method was used for histological detection, and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemical staining method were adopted to detect the expression of Matrix metalloproteinase-14 (MMP-14), mitogen-activated protein kinase (p38MAPK), and Vascular endothelial growth factor (VEGF). Compared with Sham group, the range of abduction and external rotation of rat glenohumeral joint in Control group, Low group, and High group was significantly reduced, and High group had the smallest range. Compared with the Sham group, the synovium in the Control group, the Low group, and the High group had obvious hyperplasia, and the blood vessels were significantly increased. Immunohistochemical staining and RT-PCR results showed that compared with Sham group, MMP-14, p38 MAPK, and VEGF in Control group, Low group, and High group all increased significantly, among which High group increased most. The secondary frozen shoulder is mainly manifested as synovial hyperplasia and increased blood vessels, which are related to the induction of MMP-14, p38 MAPK, and VEGF by transforming growth factor, which reveals the pathogenesis of secondary frozen shoulder to a certain extent, and lays a foundation for subsequent clinical treatment of secondary frozen shoulder.


Subject(s)
Bursitis , Disease Models, Animal , Shoulder Joint , Synovial Membrane , Vascular Endothelial Growth Factor A , p38 Mitogen-Activated Protein Kinases , Animals , Male , Synovial Membrane/metabolism , Synovial Membrane/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Shoulder Joint/pathology , Bursitis/metabolism , Bursitis/pathology , Bursitis/genetics , Rats , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Rats, Sprague-Dawley , Gene Expression Regulation , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL