Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.103
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273505

ABSTRACT

The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Vigna , Vigna/genetics , Vigna/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Phylogeny
2.
PLoS One ; 19(8): e0306633, 2024.
Article in English | MEDLINE | ID: mdl-39208271

ABSTRACT

Transcription regulation in cestodes has been little studied. Here, we characterize the Taenia solium TATA-binding protein (TBP) gene. We found binding sites for transcription factors such as NF1, YY1, and AP-1 in the proximal promoter. We also identified two TATA-like elements in the promoter; however, neither could bind TBP. Additionally, we mapped the transcription start site (A+1) within an initiator and identified a putative downstream promoter element (DPE) located at +27 bp relative to the transcription start site. These two elements are important and functional for gene expression. Moreover, we identified the genes encoding T. solium TBP-Associated Factor 6 (TsTAF6) and 9 (TsTAF9). A Western blot assay revealed that both factors are expressed in the parasite; electrophoretic mobility shift assays and super-shift assays revealed interactions between the DPE probe and TsTAF6-TsTAF9. Finally, we used molecular dynamics simulations to formulate an interaction model among TsTAF6, TsTAF9, and the DPE probe; we stabilized the model with interactions between the histone fold domain pair in TAFs and several pairs of nucleotides in the DPE probe. We discuss novel and interesting features of the TsTAF6-TsTAF9 complex for interaction with DPE on T. solium promoters.


Subject(s)
Promoter Regions, Genetic , TATA-Binding Protein Associated Factors , Taenia solium , Animals , Taenia solium/genetics , Taenia solium/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Protein Binding , Binding Sites , Helminth Proteins/genetics , Helminth Proteins/metabolism , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Transcription Initiation Site , Molecular Dynamics Simulation , Gene Expression Regulation
3.
Eur J Med Genet ; 71: 104968, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39209150

ABSTRACT

TAF1A, a gene encoding a TATA-box binding protein involved in ribosomal RNA synthesis, is a candidate gene for pediatric cardiomyopathy as biallelic TAF1A variants were reported in two families with affected individuals. Here, we report a third family with two siblings who presented with infantile restrictive cardiomyopathy and carried biallelic missense variants in TAF1A (NM_001201536.1:c.1021G>A p.(Gly341Arg) and c.781A>C p.(Thr261Pro)). Additional shared clinical features in the siblings included feeding intolerance, congenital leukoencephalopathy, ventriculomegaly and concern for primary immunodeficiency. The first-born sibling passed away at 6 months of age due to complications of hemophagocytic lymphohistiocytosis (HLH) whereas the second sibling underwent cardiac transplantation at 1 year of age and is currently well. We compare the clinical and molecular features of all the TAF1A associated cardiomyopathy cases. Our study adds evidence for the gene-disease association of TAF1A with autosomal recessive pediatric cardiomyopathy.


Subject(s)
Cardiomyopathy, Restrictive , Mutation, Missense , Siblings , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Humans , Male , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Female , Infant , Cardiomyopathy, Restrictive/genetics , Cardiomyopathy, Restrictive/pathology , Pedigree , Alleles , Phenotype , Histone Acetyltransferases
4.
World J Gastroenterol ; 30(28): 3367-3372, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091718

ABSTRACT

In this editorial, the roles of tata-box-binding protein-associated factor 15 (TAF15) in oncogenesis, tumor behavior, and as a therapeutic target in cancers in the context of gastrointestinal (GI) tumors are discussed concerning the publication by Guo et al. TAF15 is a member of the FET protein family with a comprehensive range of cellular processes. Besides, evidence has shown that TAF15 is involved in many diseases, including cancers. TAF15 contributes to carcinogenesis and tumor behavior in many tumors. Besides, its relationship with the mitogen-activated protein kinases (MAPK) signaling pathway makes TAF15 a new target for therapy. Although, the fact that there is few studies investigating the expression of TAF15 constitutes a potential limitation in GI system, the association of TAF15 expression with aggressive tumor behavior and, similar to other organ tumors, the influence of TAF15 on the MAPK signaling pathway emphasize that this protein could serve as a new molecular biomarker to predict tumor behavior and target therapeutic intervention in GI cancers. In conclusion, more studies should be performed to better understand the prognostic and therapeutic role of TAF15 in GI tumors, especially in tumors resistant to therapy.


Subject(s)
Biomarkers, Tumor , Gastrointestinal Neoplasms , TATA-Binding Protein Associated Factors , Humans , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Prognosis , MAP Kinase Signaling System , Molecular Targeted Therapy/methods , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics
5.
Proc Natl Acad Sci U S A ; 121(33): e2401217121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102544

ABSTRACT

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.


Subject(s)
Dystonic Disorders , Genetic Diseases, X-Linked , Phenotype , Humans , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , G-Quadruplexes , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Male , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Retroelements/genetics , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
6.
Int J Biol Sci ; 20(8): 3008-3027, 2024.
Article in English | MEDLINE | ID: mdl-38904013

ABSTRACT

SET domain containing 7(SETD7), a member of histone methyltransferases, is abnormally expressed in multiple tumor types. However, the biological function and underlying molecular mechanism of SETD7 in clear cell renal cell carcinoma (ccRCC) remain unclear. Here, we explored the biological effects of SETD7-TAF7-CCNA2 axis on proliferation and metastasis in ccRCC. We identified both SETD7 and TAF7 were up-regulated and significantly promoted the proliferation and migration of ccRCC cells. Concurrently, there was a significant positive correlation between the expression of SETD7 and TAF7, and the two were colocalized in the nucleus. Mechanistically, SETD7 methylates TAF7 at K5 and K300 sites, resulting in the deubiquitination and stabilization of TAF7. Furthermore, re-expression of TAF7 could partially restore SETD7 knockdown inhibited ccRCC cells proliferation and migration. In addition, TAF7 transcriptionally activated to drive the expression of cyclin A2 (CCNA2). And more importantly, the methylation of TAF7 at K5 and K300 sites exhibited higher transcriptional activity of CCNA2, which promotes formation and progression of ccRCC. Our findings reveal a unique mechanism that SETD7 mediated TAF7 methylation in regulating transcriptional activation of CCNA2 in ccRCC progression and provide a basis for developing effective therapeutic strategies by targeting members of SETD7-TAF7-CCNA2 axis.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Histone-Lysine N-Methyltransferase , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Cell Movement/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Line, Tumor , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Methylation , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Gene Expression Regulation, Neoplastic
7.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917794

ABSTRACT

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Subject(s)
Exons , Humans , Exons/genetics , CRISPR-Cas Systems , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Genetic Fitness , HEK293 Cells , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , RNA Splice Sites , Mutation , Gene Expression Regulation , Alternative Splicing
8.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914563

ABSTRACT

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Subject(s)
Protein Binding , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/chemistry , Protein Subunits/metabolism , Protein Subunits/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/chemistry , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Protein Multimerization , Models, Molecular , Transcription, Genetic , Amino Acid Sequence
9.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804708

ABSTRACT

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Subject(s)
Body Weight , Heterozygote , Histone Acetyltransferases , Mice, Knockout , Movement Disorders , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Animals , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/deficiency , Female , Male , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Movement Disorders/genetics , Movement Disorders/pathology , Embryo, Mammalian/metabolism , Mice , Brain/pathology , Brain/metabolism , Genes, Lethal , Mice, Inbred C57BL
10.
Endocr J ; 71(7): 675-686, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38811189

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is a pivotal event in diabetic retinopathy (DR). This study explored the role of circRNA zinc finger protein 532 (circZNF532) in regulating EndMT in DR progression. Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to induce the DR cell model. Actinomycin D-treated HRMECs were used to confirm the mRNA stability of phosphoinositide-3 kinase catalytic subunit δ (PIK3CD). The interaction between TATA-box-binding protein-associated factor 15 (TAF15) and circZNF532/PIK3CD was subsequently analyzed using RNA immunoprecipitation (RIP), RNA pull-down. It was found that HG treatment accelerated EndMT process, facilitated cell migration and angiogenesis, and enhanced PIK3CD and p-AKT levels in HRMECs, whereas si-circZNF532 transfection neutralized these effects. Further data showed that circZNF532 recruited TAF15 to stabilize PIK3CD, thus elevating PIK3CD expression. Following rescue experiments suggested that PIK3CD overexpression partially negated the inhibitory effect of circZNF532 silencing on EndMT, migration, and angiogenesis of HG-treated HRMECs. In conclusion, our results suggest that circZNF532 recruits TAF15 to stabilize PIK3CD, thereby facilitating EndMT in DR.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Diabetic Retinopathy , Endothelial Cells , Epithelial-Mesenchymal Transition , Humans , Cell Movement/drug effects , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , RNA, Circular/metabolism , RNA, Circular/genetics , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism
11.
Angew Chem Int Ed Engl ; 63(32): e202404645, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38801173

ABSTRACT

Phenotypic assays detect small-molecule bioactivity at functionally relevant cellular sites, and inherently cover a variety of targets and mechanisms of action. They can uncover new small molecule-target pairs and may give rise to novel biological insights. By means of an osteoblast differentiation assay which employs a Hedgehog (Hh) signaling agonist as stimulus and which monitors an endogenous marker for osteoblasts, we identified a pyrrolo[3,4-g]quinoline (PQ) pseudo-natural product (PNP) class of osteogenesis inhibitors. The most potent PQ, termed Tafbromin, impairs canonical Hh signaling and modulates osteoblast differentiation through binding to the bromodomain 2 of the TATA-box binding protein-associated factor 1 (TAF1). Tafbromin is the most selective TAF1 bromodomain 2 ligand and promises to be an invaluable tool for the study of biological processes mediated by TAF1(2) bromodomains.


Subject(s)
TATA-Binding Protein Associated Factors , Transcription Factor TFIID , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/antagonists & inhibitors , Humans , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Biological Products/chemistry , Biological Products/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Molecular Structure
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 533-539, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684296

ABSTRACT

OBJECTIVE: To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID). METHODS: Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People's Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis. RESULTS: The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants (MECP2: c.502C>T, MECP2: c.916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants (MECP2: c.1157_1197del/c.925C>T, KDM5C: c.2128A>T, SLC6A8: c.1631C>T) and 6 variants of uncertain significance (KLHL15: c.26G>C, PAK3: c.970A>G/c.1520G>A, GRIA3: c.2153C>G, TAF1: c.2233T>G, HUWE1: c.10301T>A). The PAK3: c.970A>G, GRIA3: c.2153C>G and TAF1: c.2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81:19). Therefore, the PAK3: c.1520G>A variant may underlie its pathogenesis. CONCLUSION: Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.


Subject(s)
Mental Retardation, X-Linked , Pedigree , Child , Child, Preschool , Female , Humans , Infant , Male , China , East Asian People/genetics , Exome Sequencing , Genetic Testing/methods , Guanine Nucleotide Exchange Factors/genetics , Histone Acetyltransferases , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , X Chromosome Inactivation
13.
Curr Opin Genet Dev ; 86: 102181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564841

ABSTRACT

Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.


Subject(s)
Cell Cycle Proteins , Epigenesis, Genetic , Neoplasms , Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Acetylation , Protein Domains , Molecular Targeted Therapy , Histones/metabolism , Histones/genetics , Chromatin/genetics , Chromatin/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/antagonists & inhibitors , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Chromatin Assembly and Disassembly , Animals , Bromodomain Containing Proteins , Proteins , Histone Acetyltransferases
14.
Dev Biol ; 511: 53-62, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593904

ABSTRACT

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , TATA-Binding Protein Associated Factors , Animals , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Mice , Embryonic Development/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Female , Blastocyst/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Gastrulation/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Embryo, Mammalian/metabolism
15.
Mov Disord ; 39(7): 1145-1153, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616406

ABSTRACT

BACKGROUND: X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE: This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS: Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS: When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (ß = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS: Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonic Disorders , Genetic Diseases, X-Linked , Transcription Factor TFIID , Humans , Male , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/physiopathology , Dystonic Disorders/genetics , Female , Transcription Factor TFIID/genetics , Adult , Middle Aged , TATA-Binding Protein Associated Factors/genetics , Aged , Histone Acetyltransferases
16.
Am J Physiol Endocrinol Metab ; 326(6): E832-E841, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656129

ABSTRACT

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.


Subject(s)
Cell Proliferation , Signal Transduction , TATA-Binding Protein Associated Factors , Thyroid Gland , Transcription Factor TFIID , Zebrafish , Animals , Cell Proliferation/genetics , Histone Acetyltransferases , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/genetics , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Thyroid Dysgenesis/genetics , Thyroid Dysgenesis/metabolism , Thyroid Gland/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Cell Mol Life Sci ; 81(1): 162, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568213

ABSTRACT

Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.


Subject(s)
Amyotrophic Lateral Sclerosis , TATA-Binding Protein Associated Factors , Humans , Cyclic AMP-Dependent Protein Kinases , Phosphorylation , Cyclic AMP , RNA
18.
J Am Chem Soc ; 146(12): 8071-8085, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38492239

ABSTRACT

The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.


Subject(s)
Sarcoma, Ewing , TATA-Binding Protein Associated Factors , Humans , RNA-Binding Protein EWS/metabolism , RNA-Binding Protein FUS/metabolism , Phase Separation , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Proteins/metabolism , Tyrosine , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism
19.
Environ Toxicol ; 39(5): 3238-3252, 2024 May.
Article in English | MEDLINE | ID: mdl-38361268

ABSTRACT

Hormones promote the progression of prostate cancer (PRCA) through the activation of a complex regulatory network. Inhibition of hormones or modulation of specific network nodes alone is insufficient to suppress the entire oncogenic network. Therefore, it is imperative to elucidate the mechanisms underlying the occurrence and development of PRCA in order to identify reliable diagnostic markers and therapeutic targets. To this end, we used publicly available data to analyze the potential mechanisms of hormone-stimulated genes in PRCA, construct a prognostic model, and assess immune infiltration and drug sensitivity. The single-cell RNA-sequencing data of PRCA were subjected to dimensionality reduction clustering and annotation, and the cells were categorized into two groups based on hormone stimulus-related scores. The differentially expressed genes between the two groups were screened and incorporated into the least absolute shrinkage and selection operator machine learning algorithm, and a prognostic model comprising six genes (ZNF862, YIF1A, USP22, TAF7, SRSF3, and SPARC) was constructed. The robustness of the model was validation through multiple methods. Immune infiltration scores in the two risk groups were calculated using three different algorithms. In addition, the relationship between the model genes and immune cell infiltration, and that between risk score and immune cell infiltration were analyzed. Drug sensitivity analysis was performed for the model genes and risk score using public databases to identify potential candidate drugs. Our findings provide novel insights into the mechanisms of hormone-stimulated genes in PRCA progression, prognosis, and drug screening.


Subject(s)
Prostatic Neoplasms , TATA-Binding Protein Associated Factors , Male , Humans , Prognosis , Prostatic Neoplasms/genetics , Prostate , Drug Evaluation, Preclinical , Hormones , Transcription Factor TFIID , Serine-Arginine Splicing Factors
20.
Nature ; 625(7994): 345-351, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057661

ABSTRACT

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Subject(s)
Frontotemporal Lobar Degeneration , TATA-Binding Protein Associated Factors , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Brain Stem/metabolism , Brain Stem/pathology , Cryoelectron Microscopy , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/ultrastructure , Temporal Lobe/metabolism , Temporal Lobe/pathology
SELECTION OF CITATIONS
SEARCH DETAIL