Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000204

ABSTRACT

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Subject(s)
Fear , Hippocampus , Tacrolimus Binding Proteins , Animals , Male , Fear/physiology , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Hippocampus/metabolism , Rats , Corticosterone/metabolism , Corticosterone/blood , Rats, Sprague-Dawley , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Receptors, Glucocorticoid/metabolism , Extinction, Psychological/physiology
2.
Neuron ; 112(11): 1778-1794.e7, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38417436

ABSTRACT

Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.


Subject(s)
Alzheimer Disease , Presenilin-1 , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Presenilin-1/genetics , Male , Female , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Sequence Analysis, RNA/methods , Autophagy/genetics , Transcriptome , Aged , Neurons/metabolism , Neurons/pathology , Middle Aged , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Tacrolimus Binding Proteins/genetics , Aged, 80 and over , Single-Cell Analysis
3.
Br J Oral Maxillofac Surg ; 62(1): 38-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092567

ABSTRACT

This study aimed to compare factors that influence perception of quality of life (QoL) in patients scheduled for orthognathic surgery. This was a cross-sectional study with 91 participants from two universities in Curitiba. The orthognathic quality of life questionnaire (OQLQ) was used to assess patients' perceptions of their QoL. Sociodemographic data were collected and facial profiles classified into classes I, II, and III. DNA was extracted from oral mucosal cells and markers rs3800373 and rs1360780 for FKBP prolyl isomerase 5 were genotyped. Statistical analysis was performed using Kruskal-Wallis, Mann-Whitney, and chi-squared tests, with a significance level of 5%. There was a negative impact on general perception of QoL in females (p = 0.019) and in the domains of "oral function" (p=0.032) and "awareness of the deformity" (p=0.009). In the dominant model (CC/CT), the presence of at least one C allele for the rs1360780 marker had a negative impact on QoL in the "facial aesthetics" domain (p = 0.037). The negative impact on QoL was greater in females than in males. The perception of QoL was more negative in individuals with rs1360780 polymorphism on the FKBP5 gene and a CC/CT genotype than it was in those with a TT genotype.


Subject(s)
Orthognathic Surgical Procedures , Quality of Life , Female , Humans , Male , Cross-Sectional Studies , Perception , Surveys and Questionnaires , Tacrolimus Binding Proteins/genetics
4.
Clinics (Sao Paulo) ; 78: 100212, 2023.
Article in English | MEDLINE | ID: mdl-37201304

ABSTRACT

OBJECTIVE: To explore the expression levels and clinical value of FKBP10 in lung adenocarcinoma brain metastases. DESIGN: A retrospective single-institution cohort study. PATIENTS: The perioperative records of 71 patients with lung adenocarcinoma brain metastases who underwent surgical resection at the authors' institution between November 2012 and June 2019 were retrospectively analyzed. METHODS: The authors evaluated FKBP10 expression levels using immunohistochemistry in tissue arrays of these patients. Kaplan-Meier survival curves were constructed, and a Cox proportional hazards regression model was used to identify independent prognostic biomarkers. A public database was used to detect FKBP10 expression and its clinical value in primary lung adenocarcinoma. RESULTS: The authors found that the FKBP10 protein was selectively expressed in lung adenocarcinoma brain metastases. Survival analysis showed that FKBP10 expression (p = 0.02, HR = 2.472, 95% CI [1.156, 5.289]), target therapy (p < 0.01, HR = 0.186, 95% CI [0.073, 0.477]), and radiotherapy (p = 0.006, HR = 0.330, 95% CI [0.149, 0.731]) were independent prognostic factors for survival in lung adenocarcinoma patients with brain metastases. The authors also detected FKBP10 expression in primary lung adenocarcinoma using a public database, found that FKBP10 is also selectively expressed in primary lung adenocarcinoma, and affects the overall survival and disease-free survival of patients. LIMITATIONS: The number of enrolled patients was relatively small and patients' treatment options varied. CONCLUSIONS: A combination of surgical resection, adjuvant radiotherapy, and precise target therapy may benefit the survival of selected patients with lung adenocarcinoma brain metastases. FKBP10 is a novel biomarker for lung adenocarcinoma brain metastases, which is closely associated with survival time and may serve as a potential therapeutic target.


Subject(s)
Adenocarcinoma of Lung , Brain Neoplasms , Lung Neoplasms , Humans , Adenocarcinoma of Lung/pathology , Brain Neoplasms/secondary , Brain Neoplasms/surgery , Cohort Studies , Lung Neoplasms/pathology , Prognosis , Retrospective Studies , Tacrolimus Binding Proteins
5.
J Affect Disord ; 331: 287-299, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36933666

ABSTRACT

BACKGROUND: The FKBP5 and NR3C1 genes play an important role in stress response, thus impacting mental health. Stress factor exposure in early life, such as maternal depression, may contribute to epigenetic modifications in stress response genes, increasing the susceptibility to different psychopathologies. The present study aimed to evaluate the DNA methylation profile in maternal-infant depression in regulatory regions of the FKBP5 gene and the alternative promoter of the NR3C1 gene. METHODS: We evaluated 60 mother-infant pairs. The levels of DNA methylation were analyzed by the MSRED-qPCR technique. RESULTS: We observed an increased DNA methylation profile in the NR3C1 gene promoter in children with depression and children exposed to maternal depression (p < 0.05). In addition, we observed a correlation of DNA methylation between mothers and offspring exposed to maternal depression. This correlation shows a possible intergenerational effect of maternal MDD exposure on the offspring. For FKBP5, we found a decrease in DNA methylation at intron 7 in children exposed to maternal MDD during pregnancy and a correlation of DNA methylation between mothers and children exposed to maternal MDD (p < 0.05). LIMITATIONS: Although the individuals of this study are a rare group, the sample size of the study was small, and we evaluated the DNA methylation of only one CpG site for each region. CONCLUSION: These results indicate changes in DNA methylation levels in regulatory regions of FKBP5 and NR3C1 in the mother-child MDD context and represent a potential target of studies to understand the depression etiology and how it occurs between generations.


Subject(s)
DNA Methylation , Depression , Receptors, Glucocorticoid , Tacrolimus Binding Proteins , Female , Humans , Infant , Pregnancy , Depression/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Promoter Regions, Genetic , Receptors, Glucocorticoid/genetics , Tacrolimus Binding Proteins/genetics
6.
Cells ; 11(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36497030

ABSTRACT

The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus.


Subject(s)
Phosphoproteins , Tacrolimus Binding Proteins , Humans , Phosphoproteins/metabolism , Tacrolimus Binding Proteins/metabolism , Cell Nucleus/metabolism , Mitochondria/metabolism , Peptidylprolyl Isomerase/metabolism , Tyrosine/metabolism
7.
Mol Psychiatry ; 27(5): 2533-2545, 2022 05.
Article in English | MEDLINE | ID: mdl-35256747

ABSTRACT

FKBP51 is an important inhibitor of the glucocorticoid receptor (GR) signaling. High FKBP51 levels are associated to stress-related disorders, which are linked to GR resistance. SUMO conjugation to FKBP51 is necessary for FKBP51's inhibitory action on GR. The GR/FKBP51 pathway is target of antidepressant action. Thus we investigated if these drugs could inhibit FKBP51 SUMOylation and therefore restore GR activity. Screening cells using Ni2+ affinity and in vitro SUMOylation assays revealed that tricyclic antidepressants- particularly clomipramine- inhibited FKBP51 SUMOylation. Our data show that clomipramine binds to FKBP51 inhibiting its interaction with PIAS4 and therefore hindering its SUMOylation. The inhibition of FKBP51 SUMOylation decreased its binding to Hsp90 and GR facilitating FKBP52 recruitment, and enhancing GR activity. Reduction of PIAS4 expression in rat primary astrocytes impaired FKBP51 interaction with GR, while clomipramine could no longer exert its inhibitory action. This mechanism was verified in vivo in mice treated with clomipramine. These results describe the action of antidepressants as repressors of FKBP51 SUMOylation as a molecular switch for restoring GR sensitivity, thereby providing new potential routes of antidepressant intervention.


Subject(s)
Receptors, Glucocorticoid , Sumoylation , Animals , Antidepressive Agents, Tricyclic/pharmacology , Clomipramine , Gene Expression Regulation , Mice , Rats , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/metabolism
8.
Cells ; 11(3)2022 01 24.
Article in English | MEDLINE | ID: mdl-35159195

ABSTRACT

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Subject(s)
Sirolimus , Tacrolimus Binding Protein 1A , Animals , Autophagy , Fibroblasts/metabolism , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Peptides/pharmacology , Sirolimus/pharmacology , Tacrolimus , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Proteins/metabolism
9.
Acta sci. vet. (Impr.) ; 50(suppl.1): Pub.736-4 jan. 2022. ilus
Article in Portuguese | VETINDEX | ID: biblio-1458544

ABSTRACT

Background: Pseudopterygium, also known as aberrant conjunctival growth, is poorly described in the literature, althoughit is known that this abnormality is uncommon and affects dwarf rabbits and their crossbreeds. The etiology of this diseaseis unknown, but there are hypotheses that the conjunctival growth cause may have its origins in immunological factors,inflammation, traumatic conditions, or cartilage dysplasias. Thus, this study reports the treatment efficacy applied in arabbit, through the continuous use of tracolimus eye drops, after surgical procedure of conjunctival fold resection, as away of controlling the pseudopterygium in rabbits.Case: This case report discusses the positive results from the surgical and therapeutic conduct of a clinical case attended bythe Ophthalmology and Microsurgical Veterinary Service at the Hospital Veterinário Universitário (HVU) of the UFSM. Thepatient was a male rabbit, sterilized, approximately 2-year-old, crossed with a dwarf rabbit. The owner’s main complaintwas the change in the aspect of the left eye, with progressive worsening in the previous four weeks. In the ophthalmologicalexamination, the animal did not present impaired vision or discomfort, however, a vascularized pink membrane was noted,which consisted of a fold of the bulbar conjunctiva, that grew centripetally and covered 90% of the cornea in 360 degrees.The diagnosis was confirmed through visual inspection and the patient’s history. The eye alteration had a characteristicaspect, described as proliferation of the bulbar conjunctiva over the cornea, in a centripetal manner and without signs ofinflammation. In addition, other ophthalmological alterations were ruled out during the patient’s physical and specificexamination. The patient was referred for anesthetic evaluation and, in addition, pre-surgical blood tests were performed,which were normal, according to the expected ranges for the species...


Subject(s)
Animals , Rabbits , Tacrolimus Binding Proteins , Tacrolimus Binding Proteins/administration & dosage , Tacrolimus Binding Proteins/therapeutic use , Conjunctiva/abnormalities , Conjunctiva/growth & development , Immunologic Factors , Immunomodulation , Pterygium/veterinary
10.
Acta sci. vet. (Online) ; 50(suppl.1): Pub. 736, 11 jan. 2022. ilus
Article in Portuguese | VETINDEX | ID: vti-32556

ABSTRACT

Background: Pseudopterygium, also known as aberrant conjunctival growth, is poorly described in the literature, althoughit is known that this abnormality is uncommon and affects dwarf rabbits and their crossbreeds. The etiology of this diseaseis unknown, but there are hypotheses that the conjunctival growth cause may have its origins in immunological factors,inflammation, traumatic conditions, or cartilage dysplasias. Thus, this study reports the treatment efficacy applied in arabbit, through the continuous use of tracolimus eye drops, after surgical procedure of conjunctival fold resection, as away of controlling the pseudopterygium in rabbits.Case: This case report discusses the positive results from the surgical and therapeutic conduct of a clinical case attended bythe Ophthalmology and Microsurgical Veterinary Service at the Hospital Veterinário Universitário (HVU) of the UFSM. Thepatient was a male rabbit, sterilized, approximately 2-year-old, crossed with a dwarf rabbit. The owners main complaintwas the change in the aspect of the left eye, with progressive worsening in the previous four weeks. In the ophthalmologicalexamination, the animal did not present impaired vision or discomfort, however, a vascularized pink membrane was noted,which consisted of a fold of the bulbar conjunctiva, that grew centripetally and covered 90% of the cornea in 360 degrees.The diagnosis was confirmed through visual inspection and the patients history. The eye alteration had a characteristicaspect, described as proliferation of the bulbar conjunctiva over the cornea, in a centripetal manner and without signs ofinflammation. In addition, other ophthalmological alterations were ruled out during the patients physical and specificexamination. The patient was referred for anesthetic evaluation and, in addition, pre-surgical blood tests were performed,which were normal, according to the expected ranges for the species...(AU)


Subject(s)
Animals , Rabbits , Conjunctiva/abnormalities , Conjunctiva/growth & development , Tacrolimus Binding Proteins , Tacrolimus Binding Proteins/administration & dosage , Tacrolimus Binding Proteins/therapeutic use , Pterygium/veterinary , Immunologic Factors , Immunomodulation
11.
J Psychiatr Res ; 143: 1-8, 2021 11.
Article in English | MEDLINE | ID: mdl-34433110

ABSTRACT

The FKBP5 gene codifies a co-chaperone protein associated with the modulation of glucocorticoid receptor interaction involved in the adaptive stress response. The FKBP5 intracellular concentration affects the binding affinity of the glucocorticoid receptor (GR) to glucocorticoids (GCs). This gene has glucocorticoid response elements (GREs) located in introns 2, 5 and 7, which affect its expression. Recent studies have examined GRE activity and the effects of genetic variants on transcript efficiency and their contribution to susceptibility to behavioral disorders. Epigenetic changes and environmental factors can influence the effects of these allele-specific variants, impacting the response to GCs of the FKBP5 gene. The main epigenetic mark investigated in FKBP5 intronic regions is DNA methylation, however, few studies have been performed for all GREs located in these regions. One of the major findings was the association of low DNA methylation levels in the intron 7 of FKBP5 in patients with psychiatric disorders. To date, there are no reports of DNA methylation in introns 2 and 5 of the gene associated with diagnoses of psychiatric disorders. This review highlights what has been discovered so far about the relationship between polymorphisms and epigenetic targets in intragenic regions, and reveals the gaps that need to be explored, mainly concerning the role of DNA methylation in these regions and how it acts in psychiatric disease susceptibility.


Subject(s)
Mental Disorders , Polymorphism, Single Nucleotide , Tacrolimus Binding Proteins/genetics , DNA Methylation , Epigenesis, Genetic , Humans , Introns , Mental Disorders/genetics
12.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34241635

ABSTRACT

Here we introduce zapalog-mediated endoplasmic reticulum trap (zapERtrap), which allows one to use light to precisely trigger forward trafficking of diverse integral membrane proteins from internal secretory organelles to the cell surface with single cell and subcellular spatial resolution. To demonstrate its utility, we use zapERtrap in neurons to dissect where synaptic proteins emerge at the cell surface when processed through central (cell body) or remote (dendrites) secretory pathways. We reveal rapid and direct long-range trafficking of centrally processed proteins deep into the dendritic arbor to synaptic sites. Select proteins were also trafficked to the plasma membrane of the axon initial segment, revealing a novel surface trafficking hotspot. Proteins locally processed through dendritic secretory networks were widely dispersed before surface insertion, challenging assumptions for precise trafficking at remote sites. These experiments provide new insights into compartmentalized secretory trafficking and showcase the tunability and spatiotemporal control of zapERtrap, which will have broad applications for regulating cell signaling and function.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Neurons/metabolism , Secretory Pathway/genetics , Synapses/metabolism , Synaptic Transmission/genetics , Animals , Animals, Newborn , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Membrane/ultrastructure , Endoplasmic Reticulum/ultrastructure , Female , Fluorescent Dyes/chemistry , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Hippocampus/cytology , Hippocampus/metabolism , Light , Male , Molecular Imaging/methods , Neurons/cytology , Primary Cell Culture , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/ultrastructure , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
14.
Brain Res Bull ; 166: 37-43, 2021 01.
Article in English | MEDLINE | ID: mdl-33161050

ABSTRACT

Five polymorphisms (rs4713916, rs4713902, rs1360780, rs9296158 and rs3800373) of FKBP5 gene were analyzed in a case-control study comprising 423 Mexican individuals (146 individuals with suicide attempt and 277 controls). The SNP's were genotyped using the TaqMan-allelic assay. Genotype and allele frequencies were compared between the two groups, then the association between FKBP5 gene polymorphisms and suicide attempt was analyzed. We found a significant association of rs1360780 T minor allele (All, OR = 1.80, 95 % CI = 1.35-2.41, P = 0.0005; Males, OR = 2.25, 95 % CI = 1.44-3.50, P = 0.0002) as a suicide behavior risk factor. Conversely, rs3800373 C minor allele (All, OR = 0.61, 95 % CI = 0.46-0.83; P = 0.0013; Females, OR = 0.33, 95 % CI = 0.22-0.50; P = 0.0001) and the A-C-T-A-C haplotype (OR = 0.06, 95 % CI = 0.01-0.36; P = 0.002) were significantly associated as protective factors. No association was observed with the other SNP's. Our study suggests that SNP's in FKBP5 gene contribute to suicide behavior pathogenesis.


Subject(s)
Genetic Predisposition to Disease/genetics , Suicide, Attempted , Tacrolimus Binding Proteins/genetics , Adult , Case-Control Studies , Female , Genotype , Hispanic or Latino/genetics , Humans , Male , Mexico , Polymorphism, Single Nucleotide/genetics
16.
Biochem Pharmacol ; 182: 114204, 2020 12.
Article in English | MEDLINE | ID: mdl-32828804

ABSTRACT

The immunosuppressant drug FK506 (or tacrolimus) is a macrolide that binds selectively to immunophilins belonging to the FK506-binding protein (FKBP) subfamily, which are abundantly expressed proteins in neurons of the peripheral and central nervous systems. Interestingly, it has been reported that FK506 increases neurite outgrowth in cell cultures, implying a potential impact in putative treatments of neurodegenerative disorders and injuries of the nervous system. Nonetheless, the mechanism of action of this compound is poorly understood and remains to be elucidated, with the only certainty that its neurotrophic effect is independent of its primary immunosuppressant activity. In this study it is demonstrated that FK506 shows efficient neurotrophic action in vitro and profound effects on the recovery of locomotor activity, behavioural features, and erectile function of mice that underwent surgical spinal cord injury. The recovery of the locomotor activity was studied in knock-out mice for either immunophilin, FKBP51 or FKBP52. The experimental evidence demonstrates that the neurotrophic actions of FK506 are the consequence of its binding to FKBP52, whereas FK506 interaction with the close-related partner immunophilin FKBP51 antagonises the function of FKBP52. Importantly, our study also demonstrates that other immunophilins do not replace FKBP52. It is concluded that the final biological response is the resulting outcome of the drug binding to both immunophilins, FKBP51 and FKBP52, the latter being the one that commands the dominant neurotrophic action in vivo.


Subject(s)
Nerve Regeneration/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus/metabolism , Tacrolimus/therapeutic use , Animals , Cell Line, Tumor , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nerve Regeneration/physiology , Protein Binding
17.
J Cell Sci ; 133(12)2020 06 16.
Article in English | MEDLINE | ID: mdl-32467326

ABSTRACT

It has been demonstrated that tetratricopeptide-repeat (TPR) domain proteins regulate the subcellular localization of glucocorticoid receptor (GR). This study analyses the influence of the TPR domain of high molecular weight immunophilins in the retrograde transport and nuclear retention of GR. Overexpression of the TPR peptide prevented efficient nuclear accumulation of the GR by disrupting the formation of complexes with the dynein-associated immunophilin FKBP52 (also known as FKBP4), the adaptor transporter importin-ß1 (KPNB1), the nuclear pore-associated glycoprotein Nup62 and nuclear matrix-associated structures. We also show that nuclear import of GR was impaired, whereas GR nuclear export was enhanced. Interestingly, the CRM1 (exportin-1) inhibitor leptomycin-B abolished the effects of TPR peptide overexpression, although the drug did not inhibit GR nuclear export itself. This indicates the existence of a TPR-domain-dependent mechanism for the export of nuclear proteins. The expression balance of those TPR domain proteins bound to the GR-Hsp90 complex may determine the subcellular localization and nucleocytoplasmic properties of the receptor, and thereby its pleiotropic biological properties in different tissues and cell types.


Subject(s)
Receptors, Glucocorticoid , Tetratricopeptide Repeat , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , HSP90 Heat-Shock Proteins/metabolism , Nuclear Pore/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
19.
Osteoporos Int ; 31(7): 1341-1352, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32123938

ABSTRACT

We have sought the molecular diagnosis of OI in 38 Brazilian cases through targeted sequencing of 15 candidate genes. While 71% had type 1 collagen-related OI, defects in FKBP10, PLOD2 and SERPINF1, and a potential digenic P3H1/WNT1 interaction were prominent causes of OI in this underrepresented population. INTRODUCTION: Defects in type 1 collagen reportedly account for 85-90% of osteogenesis imperfecta (OI) cases, but most available molecular data has derived from Sanger sequencing-based approaches in developed countries. Massively parallel sequencing (MPS) allows for systematic and comprehensive analysis of OI genes simultaneously. Our objective was to obtain the molecular diagnosis of OI in a single Brazilian tertiary center cohort. METHODS: Forty-nine individuals (84% adults) with a clinical diagnosis of OI, corresponding to 30 sporadic and 8 familial cases, were studied. Sixty-three percent had moderate to severe OI, and consanguinity was common (26%). Coding regions and 25-bp boundaries of 15 OI genes (COL1A1, COL1A2, IFITM5 [plus 5'UTR], SERPINF1, CRTAP, P3H1, PPIB, SERPINH1, FKBP10, PLOD2, BMP1, SP7, TMEM38B, WNT1, CREB3L1) were analyzed by targeted MPS and variants of interest were confirmed by Sanger sequencing or SNP array. RESULTS: A molecular diagnosis was obtained in 97% of cases. COL1A1/COL1A2 variants were identified in 71%, whereas 26% had variants in other genes, predominantly FKBP10, PLOD2, and SERPINF1. A potential digenic interaction involving P3H1 and WNT1 was identified in one case. Phenotypic variability with collagen defects could not be explained by evident modifying variants. Four consanguineous cases were associated to heterozygous COL1A1/COL1A2 variants, and two nonconsanguineous cases had compound PLOD2 heterozygosity. CONCLUSIONS: Novel disease-causing variants were identified in 29%, and a higher proportion of non-collagen defects was seen. Obtaining a precise diagnosis of OI in underrepresented populations allows expanding our understanding of its molecular landscape, potentially leading to improved personalized care in the future.


Subject(s)
Osteogenesis Imperfecta , Adult , Brazil , Collagen Type I/genetics , Heterozygote , Humans , Mutation , Osteogenesis Imperfecta/genetics , Tacrolimus Binding Proteins/genetics
20.
Biochem Soc Trans ; 47(6): 1815-1831, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31754722

ABSTRACT

FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.


Subject(s)
Protein Processing, Post-Translational , Tacrolimus Binding Proteins/physiology , Acetylation , Humans , Phosphorylation , Protein Binding , Protein Transport , Sumoylation , Tacrolimus Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL