Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.938
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000582

ABSTRACT

The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.


Subject(s)
Aminopyridines , Benzimidazoles , Breast Neoplasms , Cell Proliferation , Receptor, ErbB-4 , Tamoxifen , Animals , Humans , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Cell Proliferation/drug effects , MCF-7 Cells , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/genetics , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics
2.
Anticancer Res ; 44(8): 3355-3364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060083

ABSTRACT

BACKGROUND/AIM: As an antagonist of bone morphogenetic protein (BMP), Noggin facilitates osteolytic bone metastases from breast cancer. The present study aimed to further dissect its role in oestrogen receptor (ER) positive breast cancer. MATERIALS AND METHODS: Noggin expression in ER positive breast cancer cell lines (MCF-7 and T-47D) was determined under conditions of oestrogen deprivation and treatment with 17-ß-oestradiol (E2). Activation of Smad1/5/8 in the oestrogen-regulated Noggin was examined using recombinant human BMP7 (rhBMP7) and a BMP receptor inhibitor (LDN-193189). The influence of Noggin on cellular functions was evaluated in MCF-7 and T-47D cell lines. Responses to tamoxifen and chemotherapy drugs were determined in MCF-7 and T-47D cells with Noggin over-expression using MTT assay. RESULTS: Noggin expression was negatively correlated with ERα in breast cancers. Noggin was up-regulated upon oestrogen deprivation, an effect that was eliminated by E2 Furthermore, increased levels of phosphorylated Smad1/5/8 were observed in the oestrogen-deprived MCF-7 and T-47D cells, which was prevented by E2 and LDN-193189, respectively. BMP7-induced Noggin expression and activation of Smad1/5/8 was also prevented by E2 and LDN-193189. Noggin over-expression resulted in an increase in the proliferation of both MCF-7 and T-47D cells. MCF-7 and T-47D cells over-expressing Noggin exhibited a good tolerance to tamoxifen (TAM), DTX, and 5-FU, but the percentage of viable cells was higher compared with the controls. CONCLUSION: Noggin expression can be repressed by oestrogen through inference with the BMP/Smad signalling. Over-expression of Noggin promotes the proliferation of MCF-7 and T-47D cells, contributing to drug resistance.


Subject(s)
Breast Neoplasms , Carrier Proteins , Estrogens , Signal Transduction , Smad Proteins , Tamoxifen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Female , Signal Transduction/drug effects , Smad Proteins/metabolism , Estrogens/pharmacology , Estrogens/metabolism , MCF-7 Cells , Tamoxifen/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Gene Expression Regulation, Neoplastic/drug effects , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology
3.
Life Sci ; 350: 122763, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38823505

ABSTRACT

AIMS: The intricate molecular mechanisms underlying estrogen receptor-positive (ER+) breast carcinogenesis and resistance to endocrine therapy remain elusive. In this study, we elucidate the pivotal role of GPR81, a G protein-coupled receptor, in ER+ breast cancer (BC) by demonstrating low expression of GPR81 in tamoxifen (TAM)-resistant ER+ BC cell lines and tumor samples, along with the underlying molecular mechanisms. MAIN METHODS: Fatty acid oxidation (FAO) levels and lipid accumulation were explored using MDA and FAßO assay, BODIPY 493/503 staining, and Lipid TOX staining. Autophagy levels were assayed using CYTO-ID detection and Western blotting. The impact of GPR81 on TAM resistance in BC was investigated through CCK8 assay, colony formation assay and a xenograft mice model. RESULTS: Aberrantly low GPR81 expression in TAM-resistant BC cells disrupts the Rap1 pathway, leading to the upregulation of PPARα and CPT1. This elevation in PPARα/CPT1 enhances FAO, impedes lipid accumulation and lipid droplet (LD) formation, and subsequently inhibits cell autophagy, ultimately promoting TAM-resistant BC cell growth. Moreover, targeting GPR81 and FAO emerges as a promising therapeutic strategy, as the GPR81 agonist and the CPT1 inhibitor etomoxir effectively inhibit ER+ BC cell and tumor growth in vivo, re-sensitizing TAM-resistant ER+ cells to TAM treatment. CONCLUSION: Our data highlight the critical and functionally significant role of GPR81 in promoting ER+ breast tumorigenesis and resistance to endocrine therapy. GPR81 and FAO levels show potential as diagnostic biomarkers and therapeutic targets in clinical settings for TAM-resistant ER+ BC.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Fatty Acids , Mice, Nude , Oxidation-Reduction , PPAR alpha , Receptors, G-Protein-Coupled , Tamoxifen , Tamoxifen/pharmacology , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Receptors, G-Protein-Coupled/metabolism , Animals , Fatty Acids/metabolism , Mice , PPAR alpha/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Autophagy/drug effects , Mice, Inbred BALB C
4.
Sci Rep ; 14(1): 13227, 2024 06 09.
Article in English | MEDLINE | ID: mdl-38851782

ABSTRACT

There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving ß-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.


Subject(s)
Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Cell Proliferation/genetics , Cell Line, Tumor , Signal Transduction , Oncogenes , beta Catenin/metabolism , beta Catenin/genetics , Tamoxifen/pharmacology , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cell Transformation, Neoplastic/genetics
5.
Oncol Res ; 32(6): 1093-1107, 2024.
Article in English | MEDLINE | ID: mdl-38827320

ABSTRACT

Breast cancer is the leading cause of cancer-related deaths in women worldwide, with Hormone Receptor (HR)+ being the predominant subtype. Tamoxifen (TAM) serves as the primary treatment for HR+ breast cancer. However, drug resistance often leads to recurrence, underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates. Artemisinin (ART) has demonstrated efficacy in inhibiting the growth of drug-resistant cells, positioning art as a viable option for counteracting endocrine resistance. This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation. Five characterized genes (ar, cdkn1a, erbb2, esr1, hsp90aa1) and seven drug-disease crossover genes (cyp2e1, rorc, mapk10, glp1r, egfr, pgr, mgll) were identified using WGCNA crossover analysis. Subsequent functional enrichment analyses were conducted. Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and -sensitized patients. scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells, suggesting artemisinin's specific impact on tumor cells in estrogen receptor (ER)-positive BC tissues. Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes. These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.


Subject(s)
Artemisinins , Breast Neoplasms , Computational Biology , Drug Resistance, Neoplasm , Receptors, Estrogen , Tamoxifen , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Receptors, Estrogen/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation/drug effects
6.
Cancer Genomics Proteomics ; 21(4): 368-379, 2024.
Article in English | MEDLINE | ID: mdl-38944420

ABSTRACT

BACKGROUND/AIM: Aggressive breast cancer (BC) cells show high expression of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. In breast cancer cells in which mesenchymal transformation was induced, ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression increased significantly. Therefore, we investigated whether there is a correlation between expression of ARHGAP29 and tumor progression in BC. Since tamoxifen-resistant BC cells exhibit increased mesenchymal properties and invasiveness, we additionally investigated the relationship between ARHGAP29 and increased invasion rate in tamoxifen resistance. The question arises as to whether ARHGAP29 is a suitable prognostic marker for the progression of BC. MATERIALS AND METHODS: Tissue microarrays were used to investigate expression of ARHGAP29 in BC and adjacent normal breast tissues. Knockdown experiments using siRNA were performed to investigate the influence of ARHGAP29 and the possible downstream actors RhoC and pAKT1 on invasive growth of tamoxifen-resistant BC spheroids in vitro. RESULTS: Expression of ARHGAP29 was frequently increased in BC tissues compared to adjacent normal breast tissues. In addition, there was evidence of a correlation between high ARHGAP29 expression and advanced clinical tumor stage. Tamoxifen-resistant BC cells show a significantly higher expression of ARHGAP29 compared to their parental wild-type cells. After knockdown of ARHGAP29 in tamoxifen-resistant BC cells, expression of RhoC was significantly reduced. Further, expression of pAKT1 decreased significantly. Invasive growth of three-dimensional tamoxifen-resistant BC spheroids was reduced after knockdown of ARHGAP29. This could be partially reversed by AKT1 activator SC79. CONCLUSION: Expression of ARHGAP29 correlates with the clinical tumor parameters of BC patients. In addition, ARHGAP29 is involved in increased invasiveness of tamoxifen-resistant BC cells. ARHGAP29 alone or in combination with its downstream partners RhoC and pAKT1 could be suitable prognostic markers for BC progression.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , GTPase-Activating Proteins , Neoplasm Invasiveness , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Female , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects , Prognosis , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , rhoC GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/genetics
7.
Cell Death Dis ; 15(6): 444, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914552

ABSTRACT

Endocrine resistance poses a significant clinical challenge for patients with hormone receptor-positive and human epithelial growth factor receptor 2-negative (HR + HER2-) breast cancer. Dysregulation of estrogen receptor (ER) and ERBB signaling pathways is implicated in resistance development; however, the integration of these pathways remains unclear. While SMAD4 is known to play diverse roles in tumorigenesis, its involvement in endocrine resistance is poorly understood. Here, we investigate the role of SMAD4 in acquired endocrine resistance in HR + HER2- breast cancer. Genome-wide CRISPR screening identifies SMAD4 as a regulator of 4-hydroxytamoxifen (OHT) sensitivity in T47D cells. Clinical data analysis reveals downregulated SMAD4 expression in breast cancer tissues, correlating with poor prognosis. Following endocrine therapy, SMAD4 expression is further suppressed. Functional studies demonstrate that SMAD4 depletion induces endocrine resistance in vitro and in vivo by enhancing ER and ERBB signaling. Concomitant inhibition of ER and ERBB signaling leads to aberrant autophagy activation. Simultaneous inhibition of ER, ERBB, and autophagy pathways synergistically impacts SMAD4-depleted cells. Our findings unveil a mechanism whereby endocrine therapy-induced SMAD4 downregulation drives acquired resistance by integrating ER and ERBB signaling and suggest a rational treatment strategy for endocrine-resistant HR + HER2- breast cancer patients.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Receptor, ErbB-2 , Receptors, Estrogen , Signal Transduction , Smad4 Protein , Humans , Smad4 Protein/metabolism , Smad4 Protein/genetics , Female , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Receptors, Estrogen/metabolism , Cell Line, Tumor , Animals , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tamoxifen/analogs & derivatives , Mice , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Autophagy/drug effects , ErbB Receptors/metabolism , ErbB Receptors/genetics
8.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38864530

ABSTRACT

Tamoxifen (TAM) is a key player in estrogen receptor-positive (ER+) breast cancer (BC); however, ∼30% of patients experience relapse and a lower survival rate due to TAM resistance. TAM resistance was related to the over expression of SOX-2 gene, which is regulated by the E2F3 transcription factor in the Wnt signaling pathway. It was suggested that SOX-2 overexpression was suppressed by dexamethasone (DEX), a glucocorticoid commonly prescribed to BC patients. The aim of the present study is to explore the effect of combining DEX and TAM on the inhibition of TAM-resistant LCC-2 cells (TAMR-1) through modulating the E2F3/SOX-2-mediated Wnt signaling pathway. The effect of the combination therapy on MCF-7 and TAMR-1 cell viability was assessed. Drug interactions were analyzed using CompuSyn and SynergyFinder softwares. Cell cycle distribution, apoptotic protein expression, gene expression levels of SOX-2 and E2F3, and cell migration were also assessed. Combining DEX with TAM led to synergistic inhibition of TAMR-1 cell proliferation and migration, induced apoptosis, reduced SOX-2 and E2F3 expression and was also associated with S and G2-M phase arrest. Therefore, combining DEX with TAM may present an effective therapeutic option to overcome TAM resistance, by targeting the E2F3/SOX-2/Wnt signaling pathway, in addition to its anti-inflammatory effect.


Subject(s)
Breast Neoplasms , Cell Proliferation , Dexamethasone , Drug Resistance, Neoplasm , Drug Synergism , Tamoxifen , Humans , Tamoxifen/pharmacology , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , MCF-7 Cells , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Wnt Signaling Pathway/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , E2F3 Transcription Factor/metabolism , E2F3 Transcription Factor/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics
9.
Cell Death Dis ; 15(6): 418, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879508

ABSTRACT

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.


Subject(s)
Breast Neoplasms , Calcium , Cyclic AMP , Drug Resistance, Neoplasm , Ferroptosis , RNA, Long Noncoding , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Female , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Cyclic AMP/metabolism , Calcium/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Animals , Receptors, Estrogen/metabolism , Mice , Reactive Oxygen Species/metabolism , MCF-7 Cells
10.
J Exp Clin Cancer Res ; 43(1): 173, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898487

ABSTRACT

BACKGROUND: Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS: High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS: PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS: PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.


Subject(s)
Breast Neoplasms , Immunotoxins , Receptors, Prolactin , Tamoxifen , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Animals , Receptors, Prolactin/metabolism , Receptors, Prolactin/genetics , Mice , Immunotoxins/pharmacology , Immunotoxins/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation , Apoptosis
11.
Sci Rep ; 14(1): 13134, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849411

ABSTRACT

The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.


Subject(s)
Breast Neoplasms , COVID-19 , SARS-CoV-2 , Tamoxifen , Virus Replication , Humans , Breast Neoplasms/virology , Breast Neoplasms/pathology , COVID-19/virology , Female , SARS-CoV-2/physiology , Cell Line, Tumor , Tamoxifen/pharmacology , MCF-7 Cells , Gene Expression Profiling , Gene Expression Regulation, Neoplastic
12.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734232

ABSTRACT

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Subject(s)
Enoyl-CoA Hydratase , Hepatocytes , Lipid Metabolism , Liver , Mice, Inbred C57BL , Oxidation-Reduction , Peroxisomes , Tamoxifen , Animals , Tamoxifen/pharmacology , Mice , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Oxidation-Reduction/drug effects , Male , Peroxisomes/metabolism , Peroxisomes/drug effects , Enoyl-CoA Hydratase/metabolism , Enoyl-CoA Hydratase/genetics , Up-Regulation/drug effects , Diet, High-Fat/adverse effects , Female , Fatty Acids/metabolism
13.
Biochem Pharmacol ; 225: 116256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729448

ABSTRACT

Endocrine treatment, particularly tamoxifen, has shown significant improvement in the prognosis of patients with estrogen receptor-positive (ER-positive) breast cancer. However, the clinical utility of this treatment is often hindered by the development of endocrine resistance. Therefore, a comprehensive understanding of the underlying mechanisms driving ER-positive breast cancer carcinogenesis and endocrine resistance is crucial to overcome this clinical challenge. In this study, we investigated the expression of MICAL-L2 in ER-positive breast cancer and its impact on patient prognosis. We observed a significant upregulation of MICAL-L2 expression in ER-positive breast cancer, which correlated with a poorer prognosis in these patients. Furthermore, we found that estrogen-ERß signaling promoted the expression of MICAL-L2. Functionally, our study demonstrated that MICAL-L2 not only played an oncogenic role in ER-positive breast cancer tumorigenesis but also influenced the sensitivity of ER-positive breast cancer cells to tamoxifen. Mechanistically, as an estrogen-responsive gene, MICAL-L2 facilitated the activation of the AKT/mTOR signaling pathway in ER-positive breast cancer cells. Collectively, our findings suggest that MICAL-L2 could serve as a potential prognostic marker for ER-positive breast cancer and represent a promising molecular target for improving endocrine treatment and developing therapeutic approaches for this subtype of breast cancer.


Subject(s)
Antineoplastic Agents, Hormonal , Breast Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Tamoxifen , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology , Animals , Estrogens/pharmacology , Estrogens/metabolism , Mice, Nude , Mice , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , MCF-7 Cells , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Disease Progression , Cell Line, Tumor , Mice, Inbred BALB C
14.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792153

ABSTRACT

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Subject(s)
Apoptosis , Aziridines , Breast Neoplasms , Cell Proliferation , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Aziridines/pharmacology , Aziridines/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Probiotics/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects
15.
Bioorg Med Chem Lett ; 108: 129789, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38729318

ABSTRACT

Receptors are proteinous macromolecules which remain in the apo form under normal/unliganded conditions. As the ligand approaches, there are specific stereo-chemical changes in the apo form of the receptor as per the stereochemistry of a ligand. Accordingly, a series of substituted dimethyl-chroman-based stereochemically flexible and constrained Tamoxifen analogs were synthesized as anti-breast cancer agents. The synthesized compounds 19a-e, 20a-e, 21, and 22a-e, showed significant antiproliferative activity against estrogen receptor-positive (ER+, MCF-7) and negative (ER-, MDA MB-231) cells within IC50 value 8.5-25.0 µM. Amongst all, four potential molecules viz 19b, 19e, 22a, and 22c, were evaluated for their effect on the cell division cycle and apoptosis of ER+ and ER- cancer cells (MCF-7 & MDA MB-231cells), which showed that these compounds possessed antiproliferative activity through triggering apoptosis. In-silico docking experiments elucidated the possible affinity of compounds with estrogen receptors-α and -ß.


Subject(s)
Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Stereoisomerism , Structure-Activity Relationship , Cell Line, Tumor , Apoptosis/drug effects , Chromans/pharmacology , Chromans/chemical synthesis , Chromans/chemistry , Molecular Docking Simulation , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Female , Molecular Structure , MCF-7 Cells , Dose-Response Relationship, Drug , Tamoxifen/pharmacology , Tamoxifen/chemical synthesis , Tamoxifen/chemistry
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731886

ABSTRACT

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Subject(s)
Brain , Endothelial Cells , Integrases , Animals , Mice , Endothelial Cells/metabolism , Integrases/metabolism , Integrases/genetics , Brain/metabolism , Gene Knock-In Techniques , Mice, Transgenic , Blood-Brain Barrier/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tamoxifen/pharmacology , Red Fluorescent Protein
17.
Breast Cancer Res Treat ; 207(1): 91-101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38702584

ABSTRACT

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.


Subject(s)
Breast Neoplasms , Chromatin , Computational Biology , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha , Inhibitor of Differentiation Proteins , Promoter Regions, Genetic , Humans , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Computational Biology/methods , Chromatin/metabolism , Chromatin/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Cell Line, Tumor , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Enhancer Elements, Genetic , Estradiol/pharmacology
18.
Sci China Life Sci ; 67(7): 1413-1426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565741

ABSTRACT

Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin ß (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , I-kappa B Kinase , Signal Transduction , Tamoxifen , Animals , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cytokines/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , I-kappa B Kinase/metabolism , MCF-7 Cells , Signal Transduction/drug effects , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
19.
Exp Gerontol ; 191: 112431, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608792

ABSTRACT

BACKGROUND AND AIM: The effects of tamoxifen on the serum levels of hormones and acute phase reactants have been studied previously, but study results have been inconsistent, especially in women with breast cancer. Hence, we conducted this meta-analysis of randomized controlled trials (RCTs) to try to clarify the effects of tamoxifen on estradiol, insulin-like growth factor 1 (IGF-1), sex hormone binding globulin (SHBG), and C-reactive protein (CRP) serum levels in women with breast cancer or at risk of developing breast cancer. METHODS: Databases were systematically searched up to December 2023. The meta-analysis was generated through a random-effects model and is presented as the weighted mean difference (WMD) and 95 % confidence intervals (CI). RESULTS: Nine publications were included in the present meta-analysis. The comprehensive findings from the random-effects model revealed an elevation in estradiol (WMD: 13.04 pg/mL, 95 % CI: 0.79, 25.30, p = 0.037) and SHBG levels (WMD: 21.26 nmol/l, 95 % CI: 14.85, 27.68, p = 0.000), as well as a reduction in IGF-1 (WMD: -14.41 µg/L, 95 % CI: -24.23, -4.60, p = 0.004) and CRP concentrations (WMD: -1.17 mg/dL, 95 % CI: -2.29, -0.05, p = 0.039) following treatment with tamoxifen in women with breast cancer or at risk of developing breast cancer, with no impact on IGFBP-3 levels (WMD: 0.11 µg/mL, 95 % CI: -0.07, 0.30, p = 0.240). CONCLUSION: Tamoxifen administration seems to increase estradiol and SHBG levels and reduce CRP and IGF-1 levels in women with breast cancer or at risk of developing breast cancer. Further studies are needed to determine whether these changes have any clinical relevance.


Subject(s)
Breast Neoplasms , C-Reactive Protein , Estradiol , Insulin-Like Growth Factor I , Randomized Controlled Trials as Topic , Sex Hormone-Binding Globulin , Tamoxifen , Humans , Tamoxifen/therapeutic use , Tamoxifen/pharmacology , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Insulin-Like Growth Factor I/metabolism , Female , Sex Hormone-Binding Globulin/metabolism , Sex Hormone-Binding Globulin/analysis , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Estradiol/blood , Antineoplastic Agents, Hormonal/therapeutic use
20.
BMC Mol Cell Biol ; 25(1): 12, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649821

ABSTRACT

Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.


Subject(s)
Breast Neoplasms , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Tamoxifen , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Proliferation/drug effects , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , MCF-7 Cells , Neoplasm Invasiveness , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL