Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.365
Filter
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 962-964, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926996

ABSTRACT

Studies have found that 1/3 patients with acquired aplastic anemia have shortened telomere length, and the shorter the telomere, the longer the disease course, the more prone to relapse, the lower the overall survival rate, and the higher the probability of clonal evolution. The regulation of telomere length is affected by many factors, including telomerase activity, telomerase-related genes, telomere regulatory proteins and other related factors. Telomere shortening can lead to genetic instability and increases the probability of clonal evolution in patients with acquired aplastic anemia. This article reviews the role of telomere in the clonal evolution of acquired aplastic anemia and factors affecting telomere length.


Subject(s)
Anemia, Aplastic , Telomere Homeostasis , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Telomere Shortening , Clonal Evolution , Survival Rate , Recurrence , Telomere Homeostasis/genetics , Telomerase/genetics , Telomerase/metabolism , Genomic Instability/genetics , Humans
2.
Aging (Albany NY) ; 16(11): 9547-9557, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38829772

ABSTRACT

Neratinib, a typical small-molecule, pan-human tyrosine kinase inhibitor (TKI), has been licensed for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the underlying pharmacological mechanism is still unknown. In the current study, we report a novel function of Neratinib by showing that its treatment stimulates senescence of the mammary cancer AU565 cells. Our results demonstrate that Neratinib induces mitochondrial injury by increasing mitochondrial reactive oxygen species (ROS) and reducing intracellular adenosine triphosphate (ATP). Also, we found that Neratinib induced DNA damage by increasing the levels of 8-Hydroxy-desoxyguanosine (8-OHdG) and γH2AX in AU565 cells. Additionally, Neratinib reduced the levels of telomerase activity after 7 and 14 days incubation. Importantly, the senescence-associated-ß-galactosidase (SA-ß-Gal) assay revealed that Neratinib stimulated senescence of AU565 cells. Neratinib decreased the gene levels of human telomerase reverse transcriptase (hTERT) but increased those of telomeric repeat-binding factor 2 (TERF2) in AU565 cells. Further study displayed that Neratinib upregulated the expression of K382 acetylation of p53 (ac-K382) and p21 but reduced the levels of sirtuin-1 (SIRT1). However, overexpression of SIRT1 abolished the effects of Neratinib in cellular senescence. These findings provide strong preclinical evidence of Neratinib's treatment of breast cancer.


Subject(s)
Breast Neoplasms , Cellular Senescence , Quinolines , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Sirtuin 1/genetics , Cellular Senescence/drug effects , Quinolines/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , DNA Damage/drug effects , Telomerase/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology
3.
Front Immunol ; 15: 1326728, 2024.
Article in English | MEDLINE | ID: mdl-38915394

ABSTRACT

Keloids are a common connective tissue disorder with an ill-understood etiopathogenesis and no effective treatment. This is exacerbated because of the absence of an animal model. Patient-derived primary keloid cells are insufficient as they age through passaging and have a limited supply. Therefore, there is an unmet need for development of a cellular model that can consistently and faithfully represent keloid's pathognomic features. In view of this, we developed keloid-derived immortalized fibroblast (KDIF) cell lines from primary keloid fibroblasts (PKF) by transfecting the human telomerase reverse transcriptase (hTERT) gene. The TERT gene encodes the catalytic subunit of the telomerase enzyme, which is responsible for maintaining the cellular replicative potential (cellular immortalization). Primary fibroblasts from keloid-specific lesional (peripheral, middle, and top) as well as extralesional sites were isolated and evaluated for cell line development and comparative cellular characteristics by employing qRT-PCR and immunofluorescence staining. Moreover, the immortalized behavior of KDIF cell lines was evaluated by comparing with cutaneous fibrosarcoma and dermatofibrosarcoma protuberans cell lines. Stable KDIF cell lines with elevated expression of hTERT exhibited the cellular characteristics of site-specific keloid fibroblasts. Histochemical staining for ß-galactosidase revealed a significantly lower number of ß-gal-positive cells in all three KDIF cell lines compared with that in PKFs. The cell growth curve pattern was studied over 10 passages for all three KDIF cell lines and was compared with the control groups. The results showed that all three KDIF cell lines grew significantly faster and obtained a fast growing characteristic as compared to primary keloid and normal fibroblasts. Phenotypic behavior in growth potential is an indication of hTERT-mediated immortalized transformation. Cell migration analysis revealed that the top and middle KDIF cell lines exhibited similar migration trend as site-specific PKFs. Notably, peripheral KDIF cell line showed significantly enhanced cell migration in comparison to the primary peripheral fibroblasts. All KDIF cell lines expressed Collagen I protein as a keloid-associated fibrotic marker. Functional testing with triamcinolone inhibited cell migration in KDIF. ATCC short tandem repeat profiling validated the KDIF as keloid representative cell line. In summary, we provide the first novel KDIF cell lines. These cell lines overcome the limitations related to primary cell passaging and tissue supply due to immortalized features and present an accessible and consistent experimental model for keloid research.


Subject(s)
Fibroblasts , Keloid , Telomerase , Humans , Keloid/pathology , Keloid/metabolism , Fibroblasts/metabolism , Telomerase/genetics , Telomerase/metabolism , Cell Line , Cell Line, Transformed , Male , Female , Adult , Middle Aged
5.
Cells ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891017

ABSTRACT

Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the downregulation of telomere stabilizing TRF2 and POT1 genes after CSE treatment. hTERT is a subunit of telomerase and a well-known oncogenic marker, which is overexpressed in over 85% of cancers and may contribute to lung cancer development in smokers. We also observed an increase in hTERT and ISG15 expression levels after CSE treatment, as well as increased protein levels revealed by immunohistochemical staining in smokers' lung tissue samples compared to non-smokers. The effects of ISG15 overexpression were further studied by quantifying IFN-γ, an inflammatory protein induced by ISG15, which showed greater upregulation in smokers compared to non-smokers. Similar changes in gene expression patterns for TRF2, POT1, hTERT, and ISG15 were observed in blood and buccal swab samples from smokers compared to non-smokers. The results from this study provide insight into the mechanisms behind smoking causing telomere shortening and how this may contribute to the induction of inflammation and/or tumorigenesis, which may lead to comorbidities in smokers.


Subject(s)
Aging , Cytokines , Inflammation , Shelterin Complex , Smoking , Telomerase , Telomere , Telomeric Repeat Binding Protein 2 , Humans , Inflammation/genetics , Inflammation/pathology , Aging/genetics , Telomeric Repeat Binding Protein 2/metabolism , Telomeric Repeat Binding Protein 2/genetics , Cytokines/metabolism , Telomere/metabolism , Telomerase/metabolism , Telomerase/genetics , Smoking/adverse effects , Ubiquitins/metabolism , Ubiquitins/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Interferon-gamma/metabolism , Telomere Homeostasis , Male , Telomere Shortening , Female , Middle Aged
6.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892179

ABSTRACT

IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.


Subject(s)
Glioblastoma , IMP Dehydrogenase , Telomerase , Humans , Telomerase/metabolism , Telomerase/antagonists & inhibitors , Telomerase/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , IMP Dehydrogenase/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Apoptosis/drug effects
7.
ACS Appl Mater Interfaces ; 16(24): 30766-30775, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833714

ABSTRACT

Endowing current artificial chemical reactions (ACRs) with high specificity and intricate activation capabilities is crucial for expanding their applications in accurate bioimaging within living cells. However, most of the reported ACR-based evaluations relied on either single biomarker stimuli or dual activators without obvious biological relevance, still limiting their accuracy and fidelity. Herein, taking the metal-ion-dependent DNAzyme cleavage reaction as a model ACR, two regulators, glutathione (GSH) and telomerase (TE) activated DNAzyme cleavage reactions, were exploited for precise discrimination of cancerous cells from normal cells. DNA probe was self-assembled into the ZIF-90 nanoparticle framework to construct coordination-driven nanoprobes. This approach enhances the stability and specificity of tumor imaging by utilizing biomarkers associated with rapid tumor proliferation and those commonly overexpressed in tumors. In conclusion, the research not only paves the way for new perspectives in cell biology and pathology studies but also lays a solid foundation for the advancement of biomedical imaging and disease diagnostic technologies.


Subject(s)
DNA, Catalytic , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Humans , Nanoparticles/chemistry , Glutathione/metabolism , Glutathione/chemistry , Telomerase/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Cell Line, Tumor , Optical Imaging
8.
Nat Commun ; 15(1): 5149, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890299

ABSTRACT

Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.


Subject(s)
Aging , Neoplasms , Telomere , Humans , Telomere/genetics , Telomere/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Aging/genetics , Telomerase/genetics , Telomerase/metabolism , Cell Line, Tumor , Telomere Shortening/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Alleles
9.
Commun Biol ; 7(1): 761, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909140

ABSTRACT

Replicative senescence is triggered when telomeres reach critically short length and activate permanent DNA damage checkpoint-dependent cell cycle arrest. Mitochondrial dysfunction and increase in oxidative stress are both features of replicative senescence in mammalian cells. However, how reactive oxygen species levels are controlled during senescence is elusive. Here, we show that reactive oxygen species levels increase in the telomerase-negative cells of Saccharomyces cerevisiae during replicative senescence, and that this coincides with the activation of Hog1, a mammalian p38 MAPK ortholog. Hog1 counteracts increased ROS levels during replicative senescence. While Hog1 deletion accelerates replicative senescence, we found this could stem from a reduced cell viability prior to telomerase inactivation. ROS levels also increase upon telomerase inactivation when Mec1, the yeast ortholog of ATR, is mutated, suggesting that oxidative stress is not simply a consequence of DNA damage checkpoint activation in budding yeast. We speculate that oxidative stress is a conserved hallmark of telomerase-negative eukaryote cells, and that its sources and consequences can be dissected in S. cerevisiae.


Subject(s)
Intracellular Signaling Peptides and Proteins , Mitogen-Activated Protein Kinases , Oxidative Stress , Protein Serine-Threonine Kinases , Reactive Oxygen Species , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Telomerase , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Telomerase/metabolism , Telomerase/genetics , Reactive Oxygen Species/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , DNA Damage
10.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824190

ABSTRACT

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Subject(s)
Pedigree , Shelterin Complex , Telomerase , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Shelterin Complex/metabolism , Telomerase/genetics , Telomerase/metabolism , Male , Female , Telomere Homeostasis/genetics , Base Sequence , Adult
11.
STAR Protoc ; 5(2): 103108, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38824637

ABSTRACT

Changes in telomerase activity and telomere length contribute to aging-related decline. Investigating telomerase in aging models provides insights into related pathologies. Here, we present a protocol to detect telomerase activity in adult mouse hippocampal neural progenitor cells using the telomeric repeat amplification protocol assay. We describe steps for isolating and expanding aged mouse hippocampal neural progenitor cells (NPCs) and assessing telomerase using a non-radioactive technique. The protocol emphasizes the significance of understanding telomerase activity in NPCs for neurogenesis and age-related diseases.


Subject(s)
Hippocampus , Neural Stem Cells , Telomerase , Telomere , Animals , Telomerase/metabolism , Telomerase/genetics , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Hippocampus/cytology , Hippocampus/metabolism , Telomere/metabolism
12.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892314

ABSTRACT

GV1001, an anticancer vaccine, exhibits other biological functions, including anti-inflammatory and antioxidant activity. It also suppresses the development of ligature-induced periodontitis in mice. Porphyromonas gingivalis (Pg), a major human oral bacterium implicated in the development of periodontitis, is associated with various systemic disorders, such as atherosclerosis and Alzheimer's disease (AD). This study aimed to explore the protective effects of GV1001 against Pg-induced periodontal disease, atherosclerosis, and AD-like conditions in Apolipoprotein (ApoE)-deficient mice. GV1001 effectively mitigated the development of Pg-induced periodontal disease, atherosclerosis, and AD-like conditions by counteracting Pg-induced local and systemic inflammation, partly by inhibiting the accumulation of Pg DNA aggregates, Pg lipopolysaccharides (LPS), and gingipains in the gingival tissue, arterial wall, and brain. GV1001 attenuated the development of atherosclerosis by inhibiting vascular inflammation, lipid deposition in the arterial wall, endothelial to mesenchymal cell transition (EndMT), the expression of Cluster of Differentiation 47 (CD47) from arterial smooth muscle cells, and the formation of foam cells in mice with Pg-induced periodontal disease. GV1001 also suppressed the accumulation of AD biomarkers in the brains of mice with periodontal disease. Overall, these findings suggest that GV1001 holds promise as a preventive agent in the development of atherosclerosis and AD-like conditions associated with periodontal disease.


Subject(s)
Apolipoproteins E , Atherosclerosis , Periodontal Diseases , Porphyromonas gingivalis , Animals , Mice , Apolipoproteins E/deficiency , Periodontal Diseases/microbiology , Periodontal Diseases/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/microbiology , Telomerase/metabolism , Peptide Fragments/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/prevention & control , Alzheimer Disease/microbiology , Periodontitis/microbiology , Periodontitis/prevention & control , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/complications , Bacteroidaceae Infections/prevention & control , Disease Models, Animal , Mice, Inbred C57BL , Male , Humans
13.
Cancer Res Commun ; 4(6): 1533-1547, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38837897

ABSTRACT

Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE: The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.


Subject(s)
Neuroblastoma , Promoter Regions, Genetic , Telomerase , Telomere , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Telomerase/genetics , Telomerase/metabolism , Humans , Promoter Regions, Genetic/genetics , Telomere/metabolism , Telomere/genetics , Cell Line, Tumor , DNA Methylation/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Gene Expression Regulation, Neoplastic , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
14.
Cancer Lett ; 595: 217025, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38844063

ABSTRACT

Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.


Subject(s)
AMP-Activated Protein Kinase Kinases , Adenocarcinoma of Lung , Cellular Senescence , Histones , Lung Neoplasms , Protein Serine-Threonine Kinases , Sp1 Transcription Factor , Telomerase , Animals , Humans , Mice , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/drug therapy , AMP-Activated Protein Kinase Kinases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cellular Senescence/drug effects , Gene Expression Regulation, Neoplastic , Histones/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Mice, Nude , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Telomerase/metabolism , Telomerase/genetics , Xenograft Model Antitumor Assays
15.
Sci Adv ; 10(24): eadk4387, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865460

ABSTRACT

The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.


Subject(s)
Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Cell Cycle/genetics , Chromosomes, Human/metabolism , Chromosomes, Human/genetics , DNA-Binding Proteins , Transcription Factors
16.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Article in English | MEDLINE | ID: mdl-38882546

ABSTRACT

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Subject(s)
Doxorubicin , Telomerase , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Telomerase/metabolism , Cell Line, Tumor , Mice , DNA/chemistry , DNA/pharmacokinetics , DNA/administration & dosage , Tissue Distribution , Nanoparticles/chemistry , Neoplasms/drug therapy , Ferroptosis/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
17.
Nat Cell Biol ; 26(6): 932-945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806647

ABSTRACT

As aberrant accumulation of RNA-DNA hybrids (R-loops) causes DNA damage and genome instability, cells express regulators of R-loop structures. Here we report that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates R-loop formation. We found that the phosphorylated form of hTERT (p-hTERT) exhibits RdRP activity in nuclear speckles both in telomerase-positive cells and telomerase-negative cells with alternative lengthening of telomeres (ALT) activity. The p-hTERT did not associate with telomerase RNA component in nuclear speckles but, instead, with TERRA RNAs to resolve R-loops. Targeting of the TERT gene in ALT cells ablated RdRP activity and impaired tumour growth. Using a genome-scale CRISPR loss-of-function screen, we identified Fanconi anaemia/BRCA genes as synthetic lethal partners of hTERT RdRP. Inactivation of RdRP and Fanconi anaemia/BRCA genes caused accumulation of R-loop structures and DNA damage. These findings indicate that RdRP activity of p-hTERT guards against genome instability by removing R-loop structures.


Subject(s)
DNA Damage , Genomic Instability , R-Loop Structures , Telomerase , Telomere Homeostasis , Telomerase/genetics , Telomerase/metabolism , Humans , Phosphorylation , Genomic Instability/genetics , R-Loop Structures/genetics , RNA/metabolism , RNA/genetics , Animals , HEK293 Cells , Telomere/metabolism , Telomere/genetics , Cell Line, Tumor
18.
Plant Mol Biol ; 114(3): 56, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743198

ABSTRACT

Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Telomerase , Telomerase/genetics , Telomerase/metabolism , Telomerase/chemistry , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , RNA/metabolism , RNA/genetics , Two-Hybrid System Techniques , RNA, Plant/genetics , RNA, Plant/metabolism , Nucleic Acid Conformation , Protein Binding
19.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816532

ABSTRACT

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Telomerase , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Cell Division/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Gene Expression Regulation, Plant , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation/genetics , Meristem/genetics , Meristem/metabolism
20.
Nucleic Acids Res ; 52(10): e48, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38726866

ABSTRACT

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.


Subject(s)
RNA-Binding Proteins , RNA , Humans , Binding Sites , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Immunoprecipitation , Levivirus/genetics , Levivirus/metabolism , Mutation , Nucleic Acid Conformation , Protein Binding , RNA/metabolism , RNA/chemistry , RNA/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Telomerase/metabolism , Telomerase/genetics , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...