Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 811
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 494-500, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952088

ABSTRACT

Objective To investigate the effect of Terminalia chebula water extract (TCWE) on the cellular immunity and PD-1/PD-L1 pathway in rats with collagen-induced arthritis (CIA). Methods SD rats were randomly divided into four groups: a control group, a CIA group, a TCWE group and a methotrexate (MTX) group, with 15 rats in each group. Except for the control group, SD rats in other groups were subcutaneously injected with type II collagen to establish the model of collagen-induced arthritis (CIA). The rats in the TCWE group were treated with 20 mg/(kg.d) TCWE and the rats in the MTX group were treated with 1.67 mg/(kg.d) MTX. After 14 days of treatment, the cartilage morphology was examined using hematoxylin-eosin (HE) staining, and splenic T lymphocyte apoptosis and Treg/Th17 cell ratio were detected by flow cytometry. The mRNA expressions of retinoid-related orphan nuclear receptor γt (RORγt), forkhead box P3 (FOXP3), PD-1 and PD-L1 in spleen were detected by reverse transcription PCR. The expression and localization of RORγt and FOXP3 were detected by immunohistochemical staining. The protein expressions of PD-1 and PD-L1 in splenic lymphocytes were detected by Western blot, and the levels of serum interleukin 17 (IL-17) and transforming growth factor ß (TGF-ß) in rats were detected by ELISA. Results Compared with CIA group, the pathological changes of cartilage and synovium were significantly alleviated in the TCWE group and the MTX group. Both the apoptosis rate of T lymphocytes in spleen and the ratio of Treg/Th17 cells increased. The expression of RORγt decreased, while the expressions of FOXP3, PD-1 and PD-L1 increased in spleen lymphocytes. The level of serum IL-17 decreased, while the level of serum TGF-ß increased. Conclusion TCWE treatment may activate PD-1/PD-L1 pathway in spleen cells to regulate cellular immunity, thus reducing cartilage injury in CIA rats.


Subject(s)
Arthritis, Experimental , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Rats, Sprague-Dawley , Spleen , Terminalia , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Rats , Terminalia/chemistry , Male , Immunity, Cellular/drug effects , Up-Regulation/drug effects , Plant Extracts/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism
2.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893333

ABSTRACT

Alzheimer's disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and evaluated for their AChE, BChE, α-amylase, and α-glucosidase inhibitions. From 1H and 13C NMR data, the compounds were identified as 3,3'-di-O-methyl ellagic acid (1), 3,3',4'-tri-O-methyl ellagic acid-4-O-ß-D-xylopyranoside (2), 3,3',4'-tri-O-methyl ellagic acid-4-O-ß-D-glucopyranoside (3), 3,3'-di-O-methyl ellagic acid-4-O-ß-D-glucopyranoside (4), myricetin-3-O-rhamnoside (5), shikimic acid (6), arjungenin (7), terminolic acid (8), 24-deoxysericoside (9), arjunglucoside I (10), and chebuloside II (11). The derivatives of ellagic acid (1-4) showed moderate to good inhibition of cholinesterases, with the most potent being 3,3'-di-O-methyl ellagic acid, with IC50 values of 46.77 ± 0.90 µg/mL and 50.48 ± 1.10 µg/mL against AChE and BChE, respectively. The compounds exhibited potential inhibition of α-amylase and α-glucosidase, especially the phenolic compounds (1-5). Myricetin-3-O-rhamnoside had the highest α-amylase inhibition with an IC50 value of 65.17 ± 0.43 µg/mL compared to acarbose with an IC50 value of 32.25 ± 0.36 µg/mL. Two compounds, 3,3'-di-O-methyl ellagic acid (IC50 = 74.18 ± 0.29 µg/mL) and myricetin-3-O-rhamnoside (IC50 = 69.02 ± 0.65 µg/mL), were more active than the standard acarbose (IC50 = 87.70 ± 0.68 µg/mL) in the α-glucosidase assay. For α-glucosidase and α-amylase, the molecular docking results for 1-11 reveal that these compounds may fit well into the binding sites of the target enzymes, establishing stable complexes with negative binding energies in the range of -4.03 to -10.20 kcalmol-1. Though not all the compounds showed binding affinities with cholinesterases, some had negative binding energies, indicating that the inhibition was thermodynamically favorable.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Plant Extracts , Terminalia , alpha-Amylases , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Terminalia/chemistry , Humans , Butyrylcholinesterase/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure
3.
Braz J Biol ; 84: e281588, 2024.
Article in English | MEDLINE | ID: mdl-38896730

ABSTRACT

Terminalia argentea tree, native to Brazil, is widely used in landscaping, recovering degraded areas, its wood, coal production, and the bark or leaf extracts has medicinal use. Despite of its importance, the arthropod fauna associated to this plant and its interspecific relationships still needs further studies. The objectives of this study were to evaluate the arthropods, their ecological indices and the distribution in the leaf faces on T. argentea saplings. The numbers of phytophagous insects (e.g., Cephalocoema sp.), pollinators (e.g., Tetragonisca angustula), and natural enemies (e.g., Oxyopidae), and their ecological indices (e.g., species richness), were higher on the adaxial leaf faces on T. argentea saplings. Aggregated distribution of phytophagous insects (e.g., Aphis spiraecola), pollinators (e.g., Trigona spinipes), and natural enemies (e.g., Camponotus sp.) on T. argentea saplings was observed. Abundance, diversity, and species richness of natural enemies correlated, positively, with those of phytophagous and pollinators insects. Predators and tending ants followed their prey and sucking insects, respectively. Tending ants protected sucking insects against predators, and reduced chewing insects. The high number of Cephalocoema sp. on T. argentea saplings is a problem, because this insect can feed on leaves of this plant, but its preference for the adaxial leaf face favors its control. The aggregation behavior of arthropods on T. argentea saplings favors the control of potential pests of this plant. There seems to be competition between tending ants for space and food resources on T. argentea saplings.


Subject(s)
Arthropods , Plant Leaves , Terminalia , Animals , Plant Leaves/parasitology , Arthropods/classification , Arthropods/physiology , Terminalia/classification , Population Density , Biodiversity , Brazil , Insecta/classification , Insecta/physiology
4.
Brain Res Bull ; 213: 110975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734185

ABSTRACT

Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.


Subject(s)
Dentate Gyrus , Memory Disorders , Oxidative Stress , Plant Extracts , Rats, Wistar , Restraint, Physical , Stress, Psychological , Terminalia , Animals , Terminalia/chemistry , Male , Stress, Psychological/metabolism , Rats , Oxidative Stress/drug effects , Oxidative Stress/physiology , Dentate Gyrus/metabolism , Plant Extracts/pharmacology , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Neuroprotective Agents/pharmacology , Dendritic Spines/drug effects , Amygdala/metabolism
5.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2441-2450, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812143

ABSTRACT

This study aims to explore the correlation between intestinal toxicity and composition changes of Euphorbia ebracteolata before and after Terminalia chebula soup(TCS) processing. Intragastric administration was performed on the whole animal model. By using fecal water content, inflammatory causes, and pathological damage of different parts of the intestinal tract of mice as indexes, the differences in intestinal toxicity of dichloromethane extraction of raw E. ebracteolata(REDE), dichloromethane extraction of TCS, and dichloromethane extraction of E. ebracteolata after simulated TCS processing(STREDE) were compared, so as to investigate the effect of TCS processing on the intestinal toxicity of E. ebracteolata. At the same time, the component databases of E. ebracteolata and T. chebula were constructed, and the composition changes of diterpenoids, tannins, and phenolic acids in the three extracted parts were analyzed by HPLC-TOF-MS. HPLC was used to compare the content of four diterpenoids including ent-11α-hydroxyabicta-8(14), 13(15)-dien-16, 12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and jolkinolide E(JNE) in the E. ebracteolata before and after processing and the residue of container wall after processing, so as to investigate the effect of TCS processing on the content and structure of the diterpenoids. The results showed that the REDE group could significantly increase the fecal water content and the release levels of TNF-α and IL-1ß from each intestinal segment, and intestinal tissue damage was accompanied by significant infiltration of inflammatory cells. However, compared with the REDE group, the intestinal tissue damage in the STREDE group was alleviated, and the infiltration of inflammatory cells decreased. The intestinal toxicity significantly decreased. Mass spectrometry analysis showed that there was no significant difference in the content of diterpenoids of REDE before and after simulated TCS processing, but a large number of tannins and phenolic acids were added. The results of HPLC showed that the content of four diterpenoids of E. ebracteo-lata decreased to varying degrees after TCS processing, ranging from-0.35% to-19.74%, and the decreased part mainly remained in the container wall, indicating that the structure of toxic diterpenoids of E. ebracteolata was not changed after TCS processing. The antagonistic effect of tannic and phenolic acids in the TCS may be the main reason for the reduced intestinal toxicity of E. ebracteolata after TCS processing. The TCS processing for E. ebracteolata is scientific.


Subject(s)
Drugs, Chinese Herbal , Euphorbia , Terminalia , Euphorbia/chemistry , Animals , Terminalia/chemistry , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Male , Intestines/drug effects , Intestines/chemistry , Chromatography, High Pressure Liquid , Humans
6.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792262

ABSTRACT

Chebulae Fructus (CF) is known as one of the richest sources of hydrolyzable tannins (HTs). In this study, ultra-performance liquid chromatography coupled with a photodiode array detector method was established for simultaneous determination of the 12 common phenolcarboxylic and tannic constituents (PTCs). Using this method, quantitative analysis was accomplished in CF and other four adulterants, including Terminaliae Belliricae Fructus, Phyllanthi Fructus, Chebulae Fructus Immaturus, and Canarii Fructus. Based on a quantitative analysis of the focused compounds, discrimination of CF and other four adulterants was successfully accomplished by hierarchical cluster analysis and principal component analysis. Additionally, the total contents of the 12 compounds that we focused on in this study were unveiled as 148.86 mg/g, 96.14 mg/g, and 18.64 mg/g in exocarp, mesocarp, and endocarp and seed of CF, respectively, and PTCs were witnessed to be the most abundant in the exocarp of CF. Noticeably, the HTs (chebulagic acid, chebulanin acid, chebulinic acid, and punicalagin) were observed to be ultimately degraded to chebulic acid, gallic acid, and ellagic acid during sunlight-drying of the fresh fruits. As a result, our study indicated that CF and its adulterants could be distinguished by the observed 12 PTCs, which were mainly distributed in the exocarp of the fruits. The HTs were prone to degrade into the three simple phenolcarboxylic acids during drying or processing, allowing us to obtain a more comprehensive understanding of the PTCs, with great significance in the improved quality of CF and related products.


Subject(s)
Fruit , Hydrolyzable Tannins , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/analysis , Fruit/chemistry , Chromatography, High Pressure Liquid , Terminalia/chemistry , Tannins/analysis , Tannins/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis
7.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696111

ABSTRACT

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Subject(s)
Antimalarials , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Plant Leaves , Plasmodium falciparum , Silver , Terminalia , Silver/chemistry , Silver/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Metal Nanoparticles/chemistry , Terminalia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plasmodium falciparum/drug effects , Molecular Docking Simulation , Humans
8.
Inflammopharmacology ; 32(3): 1839-1853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581641

ABSTRACT

Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1ß, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Cytokines , Dinoprostone , Down-Regulation , NF-kappa B , Plant Extracts , Plant Leaves , Terminalia , Mice , Animals , NF-kappa B/metabolism , RAW 264.7 Cells , Plant Extracts/pharmacology , Dinoprostone/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Terminalia/chemistry , Down-Regulation/drug effects , Cyclooxygenase 2/metabolism , Plant Leaves/chemistry , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Fruit/chemistry
9.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624258

ABSTRACT

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Down-Regulation , Plant Extracts , Plants, Medicinal , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Plants, Medicinal/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Terminalia/chemistry , Mucuna/chemistry
10.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38602234

ABSTRACT

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Subject(s)
Dental Bonding , Terminalia , Humans , Dental Cements/pharmacology , Dental Cements/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Composite Resins/chemistry , Dentin , Tensile Strength , Resin Cements/pharmacology , Resin Cements/chemistry , Water/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing
11.
BMC Complement Med Ther ; 24(1): 137, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566161

ABSTRACT

BACKGROUND: A study carried out by World Health Organization revealed that around 80% of individuals globally depends on herbal forms of medication with 40% of pharmaceutical products being sourced from medicinal plants. The study objective was to evaluate the phytochemicals composition, in vitro antimicrobial and antioxidant properties of the leaves of Terminalia catappa L. aqueous and methanolic extracts. METHODS: Antimicrobial activity was analyzed by disk diffusion, the minimum inhibitory concentration in-vitro assays with ciprofloxacin as the standard for antibacterial assay while nystatin for antifungal assay. Ferric reducing antioxidant power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays were used for the evaluation of antioxidant properties of the crude extracts while the groups responsible for this activity identified using Fourier transform infrared spectrophotometer. RESULTS: The study found that the leaves of Terminalia catappa contained alkaloids, tannins, steroids, cardiac glycosides, flavonoids, phenols, saponins, and coumarins, but terpenoids were absent. Presence of functional groups associated with this class of compounds such as OH vibrational frequencies were observed in IR spectrum of the crude extracts. Methanolic extract from Terminalia catappa exhibited greater antibacterial properties against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus, whereas aqueous extract displayed greater antibacterial activity against Bacillus subtilis for all concentrations tested. The amount of the sample that scavenged 50 percent of DPPH (IC50) was found to be 8.723, 13.42 and 13.04 µg/mL for L-ascorbic acid, Terminalia catappa L. methanolic and aqueous extracts respectively. The antimicrobial and antioxidant activities varied with the extract concentration and solvent used in extractions. CONCLUSION: Terminalia catappa L. leaves are prospective for use as a source of therapeutic agents that could lead to the advancement of new antimicrobial and antioxidant products.


Subject(s)
Anti-Infective Agents , Terminalia , Humans , Antioxidants/chemistry , Methanol , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Prospective Studies , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Water
12.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474673

ABSTRACT

1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Terminalia chebula Retz, commonly known as "Haritaki". The potential anti-Helicobacter pylori (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). Its role was evaluated using Minimum inhibitory concentration (MIC) assay and minimum bactericidal concentration (MBC) assay, scanning electron microscope (SEM), inhibiting kinetics curves, urea fast test, Cell Counting Kit-8 (CCK-8) assay, Western blot, and Griess Reagent System. Results showed that this compound effectively inhibits the growth of HP strain ATCC 700392, damages the HP structure, and suppresses the Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Importantly, it exhibits selective antimicrobial activity without impacting normal epithelial cells GES-1. In vitro studies have revealed that 1,3,6-Trigalloylglucose acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, a critical step in HP infection. These findings underscore the potential of 1,3,6-Trigalloylglucose as a targeted therapeutic agent against HP infections.


Subject(s)
Helicobacter pylori , Terminalia , Plant Extracts/chemistry , Terminalia/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Water
13.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543020

ABSTRACT

Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography-mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study.


Subject(s)
Anti-Bacterial Agents , Terminalia , Anti-Bacterial Agents/pharmacology , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Bacteria , beta-Lactams , Microbial Sensitivity Tests
14.
J Vasc Nurs ; 42(1): 53-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38555178

ABSTRACT

INTRODUCTION: Chronic venous insufficiency (CVI) manifests in various clinical presentations ranging from asymptomatic but cosmetic problems to severe symptoms, such as lower limb edema, skin trophic changes, and ulceration. CVI substantially affects the quality of life and work productivity of the patients. Ayurveda, an ancient traditional medicine in India, evaluates the various pathological stages of CVI with a wide range of pathological conditions such as Siragranthi (venous abnormalities), Raktavaritavata (disorders of vata occluded by rakta ∼ blood), ApanaVaigunya (vitiated apanavayu), Arsha (hemorrhoids), VataRakta (rheumatism due to rakta), Kushtha (integumentary disease) and Dushta Vrana (putrefied wound) depending upon the presentations of the patient. Ayurvedic texts mention Terminalia arjuna as a potential herb for treating various conditions related to the circulatory system. The drug is an effective anti-inflammatory, anti-oxidant, and anti-hypertensive and has a definite role in improving cardiovascular hemodynamics and wound healing. These attributes suggest that the potential of Terminalia arjuna needs to be explored as a promising venoactive drug. METHODS: This prospective observational study included 25 patients (31 limbs) with CVI who were treated with Tab Terminalia arjuna (Bark extract of Terminalia arjuna in a dose of 500 mg, given twice a day) and were observed on two visits on day 30 and day 90. Follow-up was carried out for three months to evaluate post-treatment complications or adverse effects. The clinical outcome assessment was done using Venous Clinical Severity Score (VCSS), and clinical grading was performed using clinical classification (C0 - C6) of CEAP (Clinical-Etiology-Anatomy-Pathophysiology) classification. RESULTS: The median VCSS score (of both limbs) during the third visit was comparatively lower than the first, with a statistically significant improvement at 0.05 level. Further, there was a substantial positive improvement in the clinical classification of CEAP among the patients in pre and post treatment phase. CONCLUSION: The prospective observational study shows that Tab Terminalia arjuna is safe and effective in CVI, reducing the symptoms like pain, edema, inflammation, pigmentation, induration and also expediting ulcer healing.


Subject(s)
Terminalia , Venous Insufficiency , Humans , Quality of Life , Venous Insufficiency/drug therapy , Antihypertensive Agents/therapeutic use , Edema/drug therapy
15.
Environ Entomol ; 53(2): 230-236, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38437574

ABSTRACT

Terminalia argentea Mart. (Combretaceae), native to Brazil, is used in habitat restoration programs. Arthropods are bioindicators because their populations reflect changes in the environment. We evaluated the recovery of a degraded area by using ecological indices and analyzing arthropod interactions on T. argentea plants. The richness and diversity of sap-sucking Hemiptera and the abundance of tending ants and Sternorrhyncha predators increased with the number of T. argentea leaves. The correlation of the abundance of tending ants and Sternorrhyncha predators was positive with that of the sap-sucking Hemiptera, and the abundance of Sternorrhyncha predators was negative with that of tending ants and sap-sucking Hemiptera. The positive correlation between the abundance, richness, and diversity of insect groups and numbers of T. argentea leaves is an example of the bottom-up regulation mechanism, with the population dynamics of the lower trophic levels dictating those of higher trophic levels. The contribution of T. argentea, a host plant of many arthropods, to the recovery of ecological relationships between organisms in degraded ecosystems is important.


Subject(s)
Ants , Arthropods , Combretaceae , Hemiptera , Myrtales , Terminalia , Animals , Ecosystem , Trees , Insecta/physiology , Hemiptera/physiology , Ants/physiology , Plants
16.
Prep Biochem Biotechnol ; 54(7): 982-1000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38349742

ABSTRACT

Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 µg/ml and 63.14 ± 0.59 µg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 µg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 µg/ml and >100 µg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 µg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 µg/ml and 46.70 ± 1.38 µg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.


Subject(s)
Fruit , Plant Extracts , Terminalia , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Humans , MCF-7 Cells , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Escherichia coli/drug effects , Bacillus cereus/drug effects , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Plant Leaves/chemistry , Cold Temperature
17.
Inflammopharmacology ; 32(2): 1439-1460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329710

ABSTRACT

Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), ß-amyloid (Aß) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.


Subject(s)
Diabetes Mellitus, Experimental , Terminalia , Rats , Animals , Diabetes Mellitus, Experimental/drug therapy , Isoenzymes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Terminalia/chemistry , Brain , Epigenesis, Genetic , Fruit
18.
BMC Plant Biol ; 24(1): 140, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413882

ABSTRACT

BACKGROUND: Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS: Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION: This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.


Subject(s)
Nitrates , Potassium Compounds , Stress, Physiological , Terminalia , Droughts , Hydrogen Peroxide/pharmacology , Heat-Shock Response , Hormones/pharmacology
19.
Carbohydr Polym ; 329: 121798, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286562

ABSTRACT

Shrimp, a globally consumed perishable food, faces rapid deterioration during storage and marketing, causing nutritional and economic losses. With a rising environmental consciousness regarding conventional plastic packaging, consumers seek sustainable options. Utilizing natural waste resources for packaging films strengthens the food industry. In this context, we aim to create chitosan-based active films by incorporating Terminalia catappa L. leaves extract (TCE) to enhance barrier properties and extend shrimp shelf life under refrigeration. Incorporation of TCE improves mechanical, microstructural, UV, and moisture barrier properties of the chitosan film due to cross-linking interactions, resulting in robust, foldable packaging film. Active TCE film exhibits high antioxidant property due to polyphenols. These films also exhibited low wettability and showed hydrophobicity than neat CH films which is essential for meat packaging. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. TCE-loaded films effectively control spoilage organisms, prevent biochemical spoilage, and maintain shrimp freshness compared to neat CH films during refrigerated condition. The active TCE film retains sensory attributes better than neat chitosan, aligning with consumer preference. The developed edible and active film from waste sources might offer sustainable, alternative packaging material with a lower carbon footprint than petroleum-based sources.


Subject(s)
Chitosan , Terminalia , Food Packaging/methods , Chitosan/chemistry , Meat , Seafood
20.
PLoS One ; 19(1): e0287840, 2024.
Article in English | MEDLINE | ID: mdl-38165984

ABSTRACT

Tropical almond (Terminalia catappa Linn.) is highly distributed within the tropics, but appears rather underutilized in developing countries like Nigeria. Specifically, relevant information regards the nutritional, health benefits, and pharmaceutical potential of roasted T. catappa nuts remains scanty. Comparing both raw and roasted T. catappa nuts should provide additional information especially from product development and potential commercial prospect standpoints. The changes in nutritional, health benefits, and pharmaceutical potentials of raw and roasted T. catappa nuts were, therefore, investigated. Whereas the raw T. catappa nuts obtained significantly (p < 0.05) higher protein, ash, moisture, crude fiber, as well as vitamins C, and B1-3 compared to the roasted ones, some contents like carbohydrates, energy, vitamin A, calcium, manganese, zinc, hydrogen cyanide, as well as oxalate would noticeably change (p < 0.05) after the roasting process. Twenty phytochemicals were identified in both raw and roasted samples with the concentrations of quinine, ribalinidine, sapogenin, flavan-3-ol and tannin significantly reduced, while catechin seemed enhanced upon roasting. Promising drug-likeness, pharmacokinetic properties, and safety profiles could be predicted among the phytochemicals. Overall, roasting T. catappa nuts should enhance the nutritional contents, which could aid both absorption and palatability.


Subject(s)
Nuts , Terminalia , Nigeria , Nuts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL