Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968106

ABSTRACT

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Subject(s)
Bacterial Proteins , Copper , Haemophilus influenzae , Oxazolone , Virulence Factors , Haemophilus influenzae/metabolism , Haemophilus influenzae/enzymology , Haemophilus influenzae/genetics , Haemophilus influenzae/pathogenicity , Virulence Factors/metabolism , Virulence Factors/genetics , Copper/metabolism , Copper/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Oxazolone/metabolism , Thioamides/metabolism , Thioamides/chemistry , Iron/metabolism , Protein Processing, Post-Translational , Oxidoreductases/metabolism , Oxidoreductases/genetics , Operon , Cysteine/metabolism
2.
Methods Enzymol ; 698: 27-55, 2024.
Article in English | MEDLINE | ID: mdl-38886036

ABSTRACT

Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.


Subject(s)
Amidines , Imidazoles , Peptides , Thioamides , Thioamides/chemistry , Imidazoles/chemistry , Peptides/chemistry , Amidines/chemistry
3.
Curr Opin Chem Biol ; 80: 102467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772214

ABSTRACT

Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), formerly known as domain of unknown function 692 (DUF692), are involved in the post-translational modification of peptides during the biosynthesis of peptide-based natural products. These enzymes catalyze highly unusual and diverse chemical modifications. Several class-defining features of this large family (>14 000 members) are beginning to emerge. Structurally, the enzymes are characterized by a TIM-barrel fold and a set of conserved residues for a di- or tri-iron binding site. They use molecular oxygen to modify peptide substrates, often in a four-electron oxidation taking place at a cysteine residue. This review summarizes the current understanding of MNIOs. Four modifications are discussed in detail: oxazolone-thioamide formation, ß-carbon excision, hydantoin-macrocycle formation, and 5-thiooxazole formation. Briefly discussed are two other reactions that do not take place on Cys residues.


Subject(s)
Oxidation-Reduction , Peptides , Protein Processing, Post-Translational , Peptides/chemistry , Peptides/metabolism , Nonheme Iron Proteins/metabolism , Nonheme Iron Proteins/chemistry , Iron/metabolism , Iron/chemistry , Thioamides/chemistry , Thioamides/metabolism , Humans
4.
Chemistry ; 30(9): e202303770, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38088462

ABSTRACT

Thioamides are naturally occurring isosteres of amide bonds in which the chalcogen atom of the carbonyl is changed from oxygen to sulfur. This substitution gives rise to altered nucleophilicity and hydrogen bonding properties with importance for both chemical reactivity and non-covalent interactions. As such, thioamides have been introduced into biologically active compounds to achieve improved target affinity and/or stability towards hydrolytic enzymes but have also been applied as probes of protein and peptide folding and dynamics. Recently, a series of new methods have been developed for the synthesis of thioamides as well as their utilization in peptide chemistry. Further, novel strategies for the incorporation of thioamides into proteins have been developed, enabling both structural and functional studies to be performed. In this Review, we highlight the recent developments in the preparation of thioamides and their applications for peptide modification and study of protein function.


Subject(s)
Peptides , Thioamides , Thioamides/chemistry , Peptides/chemistry , Proteins/chemistry , Amides , Sulfur
5.
Nat Commun ; 14(1): 6050, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770425

ABSTRACT

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Subject(s)
Amides , Thioamides , Rats , Animals , Amides/chemistry , Thioamides/chemistry , Biological Availability , Peptides , Permeability , Amino Acids , Solvents
6.
Nat Commun ; 14(1): 4626, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532721

ABSTRACT

Thioamides are an important, but a largely underexplored class of amide bioisostere in peptides. Replacement of oxoamide units with thioamides in peptide therapeutics is a valuable tactic to improve biological activity and resistance to enzymatic hydrolysis. This tactic, however, has been hampered by insufficient methods to introduce thioamide bonds into peptide or protein backbones in a site-specific and stereo-retentive fashion. In this work, we developed an efficient and mild thioacylation method to react nitroalkanes with amines directly in the presence of elemental sulfur and sodium sulfide to form a diverse range of thioamides in high yields. Notably, this convenient method can be employed for the controlled thioamide coupling of multifunctionalized peptides without epimerization of stereocenters, including the late stage thioacylation of advanced compounds of biological and medicinal interest. Experimental interrogation of postulated mechanisms currently supports the intermediacy of thioacyl species.


Subject(s)
Amides , Thioamides , Thioamides/chemistry , Amides/chemistry , Peptides/chemistry , Amines
7.
Curr Opin Chem Biol ; 75: 102336, 2023 08.
Article in English | MEDLINE | ID: mdl-37269675

ABSTRACT

Peptides act as biological mediators and play a key role of various physiological activities. Sulfur-containing peptides are widely used in natural products and drug molecules due to their unique biological activity and chemical reactivity of sulfur. Disulfides, thioethers, and thioamides are the most common motifs of sulfur-containing peptides, and they have been extensively studied and developed for synthetic methodology as well as pharmaceutical applications. This review focuses on the illustration of these three motifs in natural products and drugs, as well as the recent advancements in the synthesis of the corresponding core scaffolds.


Subject(s)
Biological Products , Peptides , Peptides/chemistry , Sulfur , Thioamides/chemistry , Sulfides/chemistry , Biological Products/pharmacology , Biological Products/chemistry
8.
Angew Chem Int Ed Engl ; 62(26): e202303625, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37118109

ABSTRACT

Thioamide peptides were synthesized in a straightforward one-pot process via the linkage of diverse natural amino acids in the presence of thiolphosphonate and trichlorosilane, wherein carbonyl groups were replaced with thiono compounds with minimal racemization. Experimental and computational mechanistic studies demonstrated that the trichlorosilane enables the activation of carboxylic acids via intense interactions with the Si-O bond, followed by coupling of the carboxylic acids with thiolphosphonate to obtain the key intermediate S-acyl dithiophosphate. Silyl-activated quadrangular metathesis transition states afforded the thioamide peptides. The potential applications of these thioamide peptides were further highlighted via late-stage linkages of diverse natural products and pharmaceutical drugs and the thioamide moiety.


Subject(s)
Amino Acids , Thioamides , Thioamides/chemistry , Peptides/chemistry , Amines , Carboxylic Acids
9.
Chem Commun (Camb) ; 58(81): 11430-11433, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36134562

ABSTRACT

A novel thio-Ritter-type reaction of alkyl bromides, nitriles, and hydrogen sulfide has been explored, providing a straightforward approach toward functionally important thioamides. This transformation features a broad substrate scope, operational simplicity, use of available feedstock chemicals, and late-stage functionalizations of bioactive molecules. The reaction mechanism is also proposed.


Subject(s)
Hydrogen Sulfide , Thioamides , Bromides , Molecular Structure , Nitriles/chemistry , Thioamides/chemistry
10.
J Org Chem ; 87(18): 12196-12213, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36007261

ABSTRACT

A novel carbenoid-mediated approach to thioisomünchnones was developed by intermolecular copper-catalyzed reactions of diazoacetamides with aromatic and heteroaromatic thioamides bearing a pyrrolidine moiety. The direction of the reaction can be switched toward 2-amino-2-heteroarylacrylamides by replacing the pyrrolidine with an aniline group or by the use of 2-cyano-2-diazoacetamides. The proposed mechanism and DFT calculations allowed us to rationalize the effect of substituents on the reaction direction. Effective methods were found for the synthesis of previously unknown both 2-heteroarylthioisomünchones and 2-heteroarylacrylamides, based on a wide scope of available reagents with a similar structure. Some of the synthesized thioisomünchnones exhibited multicolor fluorescence in the solid state and solutions.


Subject(s)
Copper , Thioamides , Acrylamides , Aniline Compounds , Catalysis , Copper/chemistry , Molecular Structure , Pyrrolidines , Thioamides/chemistry
11.
Angew Chem Int Ed Engl ; 61(35): e202207346, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35776856

ABSTRACT

Amide bond replacement with planar isosteric chalcogen analogues has an important implication for the properties of the N-C(X) linkage in structural chemistry, biochemistry and organic synthesis. Herein, we report the first higher chalcogen derivatives of non-planar twisted amides. The synthesis of twisted thioamide in a versatile system has been accomplished by direct thionation without cleavage of the σ N-C bond. The synthesis of twisted selenoamide has been accomplished by selenation with Woollins' reagent. The structures of higher chalcogen analogues of non-planar amides were unambiguously confirmed by X-ray crystallography. Reactivity studies were conducted to determine the effect of isologous N-C(O) to N-C(X) replacement on the properties of the amide linkage. Computational studies were employed to evaluate structural and energetic parameters of amide bond alteration in higher chalcogen amides. The study provides the first experimental evidence on the effect of chalcogen isologues on the structural and electronic properties of the non-planar amide N-C(X) linkage.


Subject(s)
Amides , Chalcogens , Amides/chemistry , Chalcogens/chemistry , Crystallography, X-Ray , Thioamides/chemistry
12.
Methods Mol Biol ; 2530: 69-80, 2022.
Article in English | MEDLINE | ID: mdl-35761043

ABSTRACT

A novel synthetic approach to thioamide-substituted peptides is reported. It provides a practical tool for the chemical biology study of peptides and proteins by replacing a carbonyl oxygen atom of an amide bond by an sp2-hybridized sulfur atom to precisely introduce a thioamide bond Ψ[CS-NH] into a peptide backbone. The α-thioacyloxyenamide intermediates, originating from ynamide coupling reagent and proteinogenic amino monothioacids, are proved to be novel effective thioacylating reagents in both the solution and solid phase peptide syntheses. Herein, we describe the detailed synthesis protocol for site-specifically incorporating a thioamide bond at 19 of 20 proteinogenic amino acid residues (except for His) of a peptide backbone in a racemization/epimerization-free manner.


Subject(s)
Peptides , Thioamides , Amides/chemistry , Indicators and Reagents , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods , Thioamides/chemistry
13.
Org Biomol Chem ; 20(30): 5981-5988, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35441645

ABSTRACT

Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.


Subject(s)
Amines , Thioamides , Amides/chemistry , Thioamides/chemistry
14.
Angew Chem Int Ed Engl ; 61(16): e202200144, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35122374

ABSTRACT

Thioamides represent highly valuable isosteric in the strictest sense "single-atom substitution" analogues of amides that have found broad applications in chemistry and biology. A long-standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R-C(S)-NR1 R2 ) into another (R-C(S)-NR3 N4 ). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N-C(S) transacylation. The method relies on site-selective N-tert-butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground-state-destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late-stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.


Subject(s)
Thioamides , Transition Elements , Amides , Thioamides/chemistry
15.
Org Biomol Chem ; 20(7): 1488-1492, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35103273

ABSTRACT

A novel method for lactam stapling of Asp/Lys-containing peptides has been developed that does not require coupling agents. A backbone thioamide is incorporated at the N-terminal side of the aspartate residue. Ag(I)-promoted activation of the thioamide in the vicinity of the Asp carboxylate generates a cyclic isoimide intermediate that is trapped by the Lys amine to generate the macrolactam. This method is suitable for generation of i,i+2, i,i+3, and i,i+4-spaced lactam-bridged peptides.


Subject(s)
Lactams/chemistry , Macromolecular Substances/chemical synthesis , Peptides, Cyclic/chemical synthesis , Thioamides/chemistry , Macromolecular Substances/chemistry , Molecular Structure , Peptides, Cyclic/chemistry
16.
J Inorg Biochem ; 228: 111695, 2022 03.
Article in English | MEDLINE | ID: mdl-35007963

ABSTRACT

A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(µ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(µ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 µM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 µΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.


Subject(s)
Anti-Infective Agents/pharmacology , Coordination Complexes/chemistry , Silver/chemistry , Thioamides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Cyclin-Dependent Kinase 6/metabolism , DNA/metabolism , DNA Gyrase/metabolism , HeLa Cells , Humans , Ligands , MCF-7 Cells , Microbial Sensitivity Tests/methods , Models, Molecular , Molecular Docking Simulation/methods , Phosphines/chemistry , Silver/pharmacology , Thioamides/pharmacology , Xanthenes/chemistry
17.
J Org Chem ; 87(3): 1641-1660, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34082529

ABSTRACT

We studied the Z/E preference of N-phenylthioacetamide (thioacetanilide) derivatives in various solvents by means of 1H NMR spectroscopy, as well as molecular dynamics (MD) and other computational analyses. Our experimental results indicate that the Z/E isomer preference of secondary (NH)thioamides of N-phenylthioacetamides shows substantial solvent dependency, whereas the corresponding amides do not show solvent dependency of the Z/E isomer ratios. Detailed study of the solvent effects based on molecular dynamics simulations revealed that there are two main modes of hydrogen (H)-bond formation between solvent and (NH)thioacetamide, which influence the Z/E isomer preference of (NH)thioamides. DFT calculations of NH-thioamide in the presence of one or two explicit solvent molecules in the continuum solvent model can effectively mimic the solvation by multiple solvent molecules surrounding the thioamide in MD simulations and shed light on the precise nature of the interactions between thioamide and solvent. Orbital interaction analysis showed that, counterintuitively, the Z/E preference of NH-thioacetamides is mainly determined by steric repulsion, while that of sterically congested N-methylthioacetamides is mainly determined by thioamide conjugation.


Subject(s)
Molecular Dynamics Simulation , Thioamides , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Solvents/chemistry , Thioamides/chemistry
18.
J Mater Chem B ; 10(2): 262-270, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34889346

ABSTRACT

The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Dimethylpolysiloxanes/chemistry , Ionic Liquids/pharmacology , Sulfones/chemistry , Thioamides/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cell Line , Dimethylpolysiloxanes/toxicity , Escherichia coli/drug effects , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Methacrylates/chemistry , Mice , Microbial Sensitivity Tests , Polyhydroxyethyl Methacrylate/chemistry , Polyhydroxyethyl Methacrylate/toxicity , Polymerization/radiation effects , Sulfones/radiation effects , Ultraviolet Rays
19.
Future Med Chem ; 13(24): 2133-2151, 2021 12.
Article in English | MEDLINE | ID: mdl-34755546

ABSTRACT

Background: 2-Indolinone-based hydrazinecarbothioamides carrying a 3-phenylsulfonamide moiety (7-9) were designed by replacement of donepezil's pharmacophore group indanone with a 2-indolinone ring. Method: Compounds 7-9 were synthesized by reaction of N-(3-sulfamoylphenyl)hydrazinecarbothioamide (6) with 1H-indolin-2,3-diones (1-3). Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects of compounds 7-9 were assayed. Molecular modeling studies of 5-chloro-1,7-dimethyl-substituted compound 8e were carried out to determine the possible binding interactions at the active site of AChE. Results: Compound 8e showed the strongest inhibition against AChE (Ki = 0.52 ± 0.11 µM) as well as the highest selectivity (SI = 37.69). The selectivity for AChE over BuChE of compound 8e was approximately 17-times higher than donepezil and 26-times higher than galantamine. Conclusion: Further development of compounds 7-9 may present new promising agents for Alzheimer's treatment.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Hydrazines/pharmacology , Oxindoles/pharmacology , Thioamides/pharmacology , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Models, Molecular , Molecular Structure , Oxindoles/chemistry , Thioamides/chemical synthesis , Thioamides/chemistry
20.
Dalton Trans ; 50(44): 16311-16325, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34730582

ABSTRACT

Six different acylthiourea ligands (L1-L6) and their corresponding Ru(II)-p-cymene complexes (P1-P6) were designed to explore the structure-activity relationship of the complexes upon aliphatic chain and aromatic conjugation on the C- and N-terminals, respectively. The compounds were synthesized and adequately characterized using various analytical and spectroscopic techniques. The structures of P2-P6, solved using single crystal X-ray diffraction (XRD), confirmed the neutral monodentate coordination of the S atoms of the acylthiourea ligands to Ru(II) ions. In silico studies showed an increase of lipophilicity for the ligands with an increase in alkyl chain length or aromatic conjugation at the C- or N-terminal, respectively. Subsequently, mitogen-activated protein kinases (MAPK) were predicted as one of the primary targets for the complexes, which showed good binding affinity towards extracellular signal-regulated kinases (ERK1, ERK2 and ERK5), c-Jun N-terminal kinase (JNK) and p38 of the MAPK pathway. Henceforth, the complexes were tested for their anticancer activity in lung carcinoma (A549) and cisplatin-resistant lung carcinoma (cisA549R) cells and human umbilical vein epithelial normal cells (HUVEC). Interestingly, an increase in chain length or aromatic conjugation led to an increase in the activity of the complexes, with P5 (7.73 and 13.04 µM) and P6 (6.52 and 14.45 µM) showing the highest activity in A549 and cisA549R cells, which is better than the positive control, cisplatin (8.72 and 44.28 µM). Remarkably, we report the highest activity yet observed for complexes of the type [(η6-p-cymene)RuIICl2(S-acylthiourea)] in the tested cell lines. Aqueous solution studies showed that complexes P5 and P6 are rapidly hydrolyzed to produce solely aquated species that remained stable for 24 h. Staining assays and flow cytometric analyses of P5 and P6 in A549 cells revealed that the complexes induced apoptosis and arrested the cell cycle predominantly in the S phase. In vivo studies demonstrated the higher toxicity of cisplatin and a comparatively higher survival rate of mice injected with the most active complex P6. Histological analyses revealed that treatment with P6 at high doses of up to 8 mg kg-1 did not cause any palpable damage to the tested organs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Cymenes , Ruthenium , Thioamides , Thiourea , A549 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Biological Availability , Cell Survival/drug effects , Coordination Complexes/administration & dosage , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , Cymenes/administration & dosage , Cymenes/chemistry , Cymenes/pharmacokinetics , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intestinal Absorption , Ligands , Male , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Ruthenium/administration & dosage , Ruthenium/chemistry , Ruthenium/pharmacokinetics , Thioamides/administration & dosage , Thioamides/chemistry , Thioamides/pharmacokinetics , Thiourea/administration & dosage , Thiourea/chemistry , Thiourea/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...