Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.059
Filter
1.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38889231

ABSTRACT

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.


Subject(s)
Mice, Knockout , Phenotype , Thyroid Hormone Receptors alpha , Thyroid Hormone Receptors beta , Animals , Female , Male , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Mice , Signal Transduction/genetics , Thyroid Hormones/metabolism , Mice, Inbred C57BL
2.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920666

ABSTRACT

Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.


Subject(s)
Circadian Rhythm , Hepatocytes , Triiodothyronine , Hepatocytes/metabolism , Animals , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Mice , Thyroid Hormones/metabolism , Cell Line , Fatty Liver/metabolism , Fatty Liver/pathology , Circadian Clocks/genetics
3.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934866

ABSTRACT

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Subject(s)
Cell Proliferation , Checkpoint Kinase 1 , Disease Models, Animal , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Humans , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , HEK293 Cells , Swine , Cellular Reprogramming , Thyroid Hormone-Binding Proteins , Regeneration , Protein Binding , Sus scrofa , Ventricular Remodeling/physiology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Energy Metabolism/drug effects , Thyroid Hormones/metabolism , Metabolic Reprogramming
4.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879309

ABSTRACT

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Subject(s)
Thyroid Gland , Zebrafish , Animals , Zebrafish/metabolism , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Larva/drug effects , Larva/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Molecular Docking Simulation , Thyroid Hormones/metabolism , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Thyroid Hormone Receptors beta/metabolism , Thyroid Hormone Receptors beta/genetics
5.
Phytomedicine ; 131: 155775, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838401

ABSTRACT

BACKGROUND: The cyclin-dependent kinase 4 (CDK4) interacts with its canonical and non-canonical substrates modulating the cell cycle in tumor cells. However, the potential substrates and the beyond-cell-cycle-regulated functions of CDK4 in colon cancer (CC) are still unknown. Hernandezine (HER) is previously verified to induce G0/G1 phase arrest and autophagic cell death in human cancer cells, which implies that HER might target G0/G1 phase-related proteins, including CDK4. PURPOSE: The present study tried to investigate the glycolytic metabolism and oxidative stress functions of CDK4 in colon cancer. Furthermore, the inhibitory effects and potential binding sites of HER on CDK4, as well as its anti-tumor activity were investigated in CC cells. METHODS: The mass spectrometry assay was performed to identify potential endogenous substrates of CDK4 and the correlation between glycolytic metabolic rate and CDK4 level in COAD patient tissues. Meanwhile, after inhibiting the activity or the expression of CDK4, the binding capacity of CDK4 to PKM2 and NRF2 and the latter two protein distributions in cytoplasm and nucleus were detected in CC cells. In vitro, the regulatory effects of the CDK4-PKM2-NRF2 axis on glycolysis and oxidative stress were performed by ECAR, OCR, and ROS assay. The inhibitory effect of HER on CDK4 activity was explored in CC cells and the potential binding sites were predicted and testified in vitro. Furthermore, tumor growth inhibition of HER by suppressing the CDK4-PKM2-NRF2 axis was also investigated in vitro and in vivo. RESULTS: PKM2 and NRF2 were identified as endogenous substrates of CDK4 and, high-expressed CDK4 was associated with low-level glycolysis in COAD. In vitro, inactivated CDK4 facilitated CDK4-PKM2-NRF2 complex formation which resulted in 1) inhibited PKM2 activity and retarded the glycolytic rate; 2) cytoplasm-detained NRF2 failed to transcript anti-oxidative gene expressions and induced oxidant stress. Additionally, as a CDK4 inhibitor, HER developed triple anti-tumor effects including induced G0/G1 phase arrest, suppressed glycolysis, and disrupted the anti-oxidative capacity of CC cells. CONCLUSION: The results first time revealed that CDK4 modulated glycolytic and anti-oxidative capacity of CC cells via bound to its endogenous substrates, PKM2 and NRF2. Additionally, 140Asp145Asn amino acid sites of CDK4 were potential targets of HER. HER exerts anti-tumor activity by inhibited the activity of CDK4, promoted the CDK4-PKM2-NRF2 complex formation in the CC cells.


Subject(s)
Carrier Proteins , Colonic Neoplasms , Cyclin-Dependent Kinase 4 , Membrane Proteins , NF-E2-Related Factor 2 , Thyroid Hormone-Binding Proteins , Thyroid Hormones , NF-E2-Related Factor 2/metabolism , Humans , Cyclin-Dependent Kinase 4/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Animals , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Cell Line, Tumor , Carrier Proteins/metabolism , Glycolysis/drug effects , Mice , Oxidative Stress/drug effects , Mice, Nude , Mice, Inbred BALB C , Female
6.
Nat Commun ; 15(1): 4969, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862489

ABSTRACT

Metabolic remodeling is a strategy for tumor survival under stress. However, the molecular mechanisms during the metabolic remodeling of colorectal cancer (CRC) remain unclear. Melanocyte proliferating gene 1 (MYG1) is a 3'-5' RNA exonuclease and plays a key role in mitochondrial functions. Here, we uncover that MYG1 expression is upregulated in CRC progression and highly expressed MYG1 promotes glycolysis and CRC progression independent of its exonuclease activity. Mechanistically, nuclear MYG1 recruits HSP90/GSK3ß complex to promote PKM2 phosphorylation, increasing its stability. PKM2 transcriptionally activates MYC and promotes MYC-medicated glycolysis. Conversely, c-Myc also transcriptionally upregulates MYG1, driving the progression of CRC. Meanwhile, mitochondrial MYG1 on the one hand inhibits oxidative phosphorylation (OXPHOS), and on the other hand blocks the release of Cyt c from mitochondria and inhibits cell apoptosis. Clinically, patients with KRAS mutation show high expression of MYG1, indicating a high level of glycolysis and a poor prognosis. Targeting MYG1 may disturb metabolic balance of CRC and serve as a potential target for the diagnosis and treatment of CRC.


Subject(s)
Colorectal Neoplasms , Glycolysis , Mitochondria , Oxidative Phosphorylation , Animals , Female , Humans , Male , Mice , Apoptosis/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Nude , Mitochondria/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism , Thyroid Hormones/genetics
7.
Aquat Toxicol ; 272: 106969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824743

ABSTRACT

Thyroid hormones (THs) act early in ontogenesis, even prior to the differentiation of thyrocytes. Maternal transfer of THs is therefore known to play an essential role in early development. Current OECD test guidelines for the assessment of TH system disruption (THSD) do not address inter- or transgenerational effects. The integrated fish endocrine disruptor test (iFEDT), a test combining parental and developmental exposure of filial fish, may fill this gap. We tested the ability of the iFEDT to detect intergenerational effects in zebrafish (Danio rerio): Parental fish were exposed to propylthiouracil (PTU), an inhibitor of TH synthesis, or not exposed. The offspring was submitted to a crossed experimental design to obtain four exposure scenarios: (1) no exposure at all, (2) parental exposure only, (3) embryonic exposure only, and (4) combined parental and embryonic exposure. Swim bladder inflation, visual motor response (VMR) and gene expression of the progeny were analysed. Parental, but not embryonic PTU exposure reduced the size of the swim bladder of 5 d old embryos, indicating the existence of intergenerational effects. The VMR test produced opposite responses in 4.5 d old embryos exposed to PTU vs. embryos derived from exposed parents. Embryonic exposure, but not parental exposure increased gene expression of thyroperoxidase, the target of PTU, most likely due to a compensatory mechanism. The gene expression of pde-6h (phosphodiesterase) was reduced by embryonic, but not parental exposure, suggesting downregulation of phototransduction pathways. Hence, adverse effects on swim bladder inflation appear more sensitive to parental than embryonic exposure and the iFEDT represents an improvement in the testing strategy for THSD.


Subject(s)
Endocrine Disruptors , Propylthiouracil , Thyroid Hormones , Water Pollutants, Chemical , Zebrafish , Animals , Endocrine Disruptors/toxicity , Thyroid Hormones/metabolism , Water Pollutants, Chemical/toxicity , Propylthiouracil/toxicity , Female , Embryo, Nonmammalian/drug effects , Male , Toxicity Tests
8.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837439

ABSTRACT

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Subject(s)
Cell Differentiation , Histones , Myoblasts , Pyruvate Kinase , Animals , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Phosphorylation , Histones/metabolism , Histones/genetics , Myoblasts/metabolism , Myoblasts/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Thyroid Hormone-Binding Proteins , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics
9.
Front Endocrinol (Lausanne) ; 15: 1408684, 2024.
Article in English | MEDLINE | ID: mdl-38887272

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death worldwide, representing a major health issue of social and economic relevance. Both hyperthyroidism and hypothyroidism are very common in the adult population, and both disorders may contribute to the onset and progression of CVD. After a brief description of the role of thyroid hormones (THs) on the physiology of the cardiovascular system and the potential mechanism that links THs alterations with changes in cardiac function, blood pressure, endothelial function, and lipid levels, we review updated data about the clinical impact of overt hypothyroidism (OH) and subclinical hypothyroidism (SCH) on CV risk, CVD, and mortality. Furthermore, we summarize the current evidence for treating SCH with levothyroxine (L-T4). Several guidelines of distinguished endocrine societies recommend treatment for SCH with TSH higher than 10 mIU/L, where the benefit of L-T4 therapy is more evident for younger people, but still controversial in those aged over 65 years. Based on current knowledge, more research efforts are needed to better address the clinical management of CV risk and CVD in the elderly affected by SCH.


Subject(s)
Cardiovascular Diseases , Hypothyroidism , Humans , Hypothyroidism/complications , Hypothyroidism/metabolism , Hypothyroidism/epidemiology , Hypothyroidism/physiopathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/therapeutic use , Thyroxine/therapeutic use , Risk Factors
10.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750259

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Subject(s)
Glycolysis , Phosphoglycerate Mutase , Thyroid Hormones , Humans , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/genetics , Phosphorylation , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Mice , Thyroid Hormone-Binding Proteins , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Carrier Proteins/metabolism , Carrier Proteins/genetics
11.
Cancer Lett ; 593: 216964, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38762193

ABSTRACT

Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-ß) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-ß promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-ß blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumor immune responses. In conclusion, M2-TAM-derived TGF-ß promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-ß receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.


Subject(s)
B7-H1 Antigen , Membrane Proteins , STAT3 Transcription Factor , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Transforming Growth Factor beta , Tumor Escape , Tumor Microenvironment , Tumor-Associated Macrophages , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , STAT3 Transcription Factor/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Humans , Thyroid Hormones/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Tumor Microenvironment/immunology , Animals , Transforming Growth Factor beta/metabolism , Mice , Cell Line, Tumor , Carrier Proteins/metabolism , Carrier Proteins/genetics , Signal Transduction , Glycolysis , Cell Nucleus/metabolism , Naphthoquinones
12.
Brain Res Bull ; 213: 110983, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795852

ABSTRACT

Despite plenty of human studies on changes in thyroid hormones after stroke and some animal studies that assessed the effects of thyroid hormone administration on stroke, conclusive evidence for clinical application is lacking. This review aimed to determine the consistency of the results between clinical and preclinical studies. This article reviewed the PubMed, Embase, web of Knowledge, and Google Scholar databases up to June 2023 using the MeSH terms "stroke, cerebral ischemia, cerebral infarction, brain ischemia, brain infarction, triiodothyronine (T3), tetraiodothyronine (T4), thyroxine (T4), and thyroid hormone". The results of clinical and preclinical studies related to T3 substantially confirm each other. That is, in most human studies lower T3 was associated with poor outcomes, and in experimental studies, T3 administration also had therapeutic effects. However, the results of experimental studies related to T4 could not support those of clinical studies. There seem to be some conflicts between experimental and human studies, especially regarding changes and effects of T4 after stroke. The gap between experimental and clinical studies may lead to non-applicable results, wasting time and money, and unnecessary killing of animals.


Subject(s)
Stroke , Thyroid Hormones , Humans , Animals , Stroke/metabolism , Thyroid Hormones/metabolism , Thyroxine , Triiodothyronine/blood , Triiodothyronine/metabolism
13.
Biochem Biophys Res Commun ; 721: 150130, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38761750

ABSTRACT

Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.


Subject(s)
Apigenin , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Oxidative Stress , Animals , Oxidative Stress/drug effects , Apigenin/pharmacology , Apigenin/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Male , Pyruvate Kinase/metabolism , Mice, Inbred C57BL , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Thyroid Hormone-Binding Proteins , Liver/metabolism , Liver/drug effects , Liver/pathology , Thyroid Hormones/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , ErbB Receptors
14.
Aquat Toxicol ; 272: 106962, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797068

ABSTRACT

Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 µg L-1 of DBP or 50 µg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).


Subject(s)
Dibutyl Phthalate , Embryo, Nonmammalian , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/genetics , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/analogs & derivatives , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Phthalic Acids/toxicity , Thyroid Hormones/metabolism , Larva/drug effects , Larva/growth & development , Larva/genetics , Thyroid Gland/drug effects , Gene Expression Regulation, Developmental/drug effects
15.
Chemosphere ; 361: 142462, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815816

ABSTRACT

As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trß), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.


Subject(s)
Embryo, Nonmammalian , Fluorocarbons , Thyroid Gland , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/embryology , Fluorocarbons/toxicity , Thyroid Gland/drug effects , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Caprylates/toxicity , Endocrine Disruptors/toxicity , Larva/drug effects , Larva/growth & development , Thyroid Hormones/metabolism
16.
Neurol Res ; 46(7): 583-592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797679

ABSTRACT

BACKGROUND: Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS: The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS: PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION: In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.


Subject(s)
Brain Neoplasms , Cell Proliferation , Disease Progression , Glioma , Thyroid Hormone-Binding Proteins , Thyroid Hormones , beta Catenin , Glioma/pathology , Glioma/genetics , Glioma/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Nude , Cell Movement/physiology , Apoptosis/physiology , Gene Expression Regulation, Neoplastic , Male , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics
17.
Environ Int ; 188: 108747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761427

ABSTRACT

Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.


Subject(s)
Endocrine Disruptors , Larva , Liquid Crystals , Thyroid Hormones , Zebrafish , Animals , Liquid Crystals/chemistry , Thyroid Hormones/metabolism , Larva/drug effects , Endocrine Disruptors/toxicity , Signal Transduction/drug effects , Molecular Docking Simulation
18.
Mol Biol Rep ; 51(1): 624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710963

ABSTRACT

BACKGROUND: Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS: We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS: The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION: Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.


Subject(s)
Brain , Matrix Metalloproteinases , Metamorphosis, Biological , Polychlorinated Biphenyls , Thyroid Hormones , Xenopus laevis , Animals , Brain/metabolism , Brain/drug effects , Brain/growth & development , Xenopus laevis/metabolism , Xenopus laevis/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Polychlorinated Biphenyls/toxicity , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Thyroid Hormones/metabolism , Gene Expression Regulation, Developmental/drug effects , Hydroxylation
20.
Eur J Med Chem ; 272: 116426, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718622

ABSTRACT

Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 µM) and excellent PKM2-activated ability (AC50 = 0.144 µM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.


Subject(s)
Colitis, Ulcerative , Drug Design , Lactones , Pyruvate Kinase , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Animals , Mice , Pyruvate Kinase/metabolism , Pyruvate Kinase/antagonists & inhibitors , Lactones/pharmacology , Lactones/chemistry , Lactones/chemical synthesis , Structure-Activity Relationship , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Humans , Molecular Structure , Cell Proliferation/drug effects , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Male , Dextran Sulfate , Molecular Docking Simulation , Thyroid Hormones/metabolism , Th17 Cells/drug effects , Thyroid Hormone-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...