Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
1.
Front Immunol ; 15: 1425873, 2024.
Article in English | MEDLINE | ID: mdl-38953025

ABSTRACT

Background: The immune system plays an important role in the development and treatment of thyroid cancer(THCA).However, the correlation between immune cells and THCA has not been systematically studied. Methods: This study used a two-sample Mendelian randomization (MR) study to determine the causal relationship between immune cell characteristics and THCA. Based on a large sample of publicly available genetic data, we explored the causal relationship between 731 immune cell characteristics and THCA risk. The 731 immunophenotypes were divided into 7 groups, including B cell panel(n=190),cDC panel(n=64),Maturation stages of T cell panel(n=79),Monocyte panel(n=43),Myeloid cell panel(n=64),TBNK panel(n=124),and Treg panel(n=167). The sensitivity of the results was analyzed, and heterogeneity and horizontal pleiotropy were excluded. Results: After FDR correction, the effect of immunophenotype on THCA was not statistically significant. It is worth mentioning, however, that there are some unadjusted low P-values phenotypes. The odds ratio (OR) of CD62L on monocyte on THCA risk was estimated to be 0.953 (95% CI=0.930~0.976, P=1.005×10-4),and which was estimated to be 0.975(95% CI=0.961-0.989, P=7.984×10-4) for Resting Treg%CD4 on THCA risk. Furthermore, THCA was associated with a reduced risk of 5 immunophenotype:CD25 on CD39+ CD4 on Treg (OR=0.871, 95% CI=0.812~0.935, P=1.274×10-4), activated Treg AC (OR=0.884, 95% CI=0.820~0.953, P=0.001), activated & resting Treg % CD4 Treg (OR=0.872, 95%CI=0.811~0.937,P=2.109×10-4),CD28- CD25++ CD8br AC(OR=0.867,95% CI=0.809~0.930,P=6.09×10-5),CD28-CD127-CD25++CD8brAC(OR=0.875,95%CI=0.814~0.942,P=3.619×10-4).THCA was associated with an increased risk of Secreting Treg % CD4 Treg (OR=1.143, 95% CI=1.064~1.229, P=2.779×10-4) and CD19 on IgD+ CD24+ (OR=1.118, 95% CI=1.041~1.120, P=0.002). Conclusions: These findings suggest the causal associations between immune cells and THCA by genetic means. Our results may have the potential to provide guidance for future clinical research.


Subject(s)
Immunophenotyping , Mendelian Randomization Analysis , Thyroid Neoplasms , Humans , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Monocytes/immunology
2.
Nat Commun ; 15(1): 5555, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030177

ABSTRACT

Neurotransmitters are key modulators in neuro-immune circuits and have been linked to tumor progression. Medullary thyroid cancer (MTC), an aggressive neuroendocrine tumor, expresses neurotransmitter calcitonin gene-related peptide (CGRP), is insensitive to chemo- and radiotherapies, and the effectiveness of immunotherapies remains unknown. Thus, a comprehensive analysis of the tumor microenvironment would facilitate effective therapies and provide evidence on CGRP's function outside the nervous system. Here, we compare the single-cell landscape of MTC and papillary thyroid cancer (PTC) and find that expression of CGRP in MTC is associated with dendritic cell (DC) abnormal development characterized by activation of cAMP related pathways and high levels of Kruppel Like Factor 2 (KLF2), correlated with an impaired activity of tumor infiltrating T cells. A CGRP receptor antagonist could offset CGRP detrimental impact on DC development in vitro. Our study provides insights of the MTC immunosuppressive microenvironment, and proposes CGRP receptor as a potential therapeutic target.


Subject(s)
Calcitonin Gene-Related Peptide , Carcinoma, Neuroendocrine , Dendritic Cells , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Calcitonin Gene-Related Peptide/metabolism , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism , Cyclic AMP/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neurotransmitter Agents/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Single-Cell Analysis
3.
Front Immunol ; 15: 1369780, 2024.
Article in English | MEDLINE | ID: mdl-38868771

ABSTRACT

Although most follicular-derived thyroid cancers are well differentiated and have an overall excellent prognosis following treatment with surgery and radioiodine, management of advanced thyroid cancers, including iodine refractory disease and poorly differentiated/undifferentiated subtypes, is more challenging. Over the past decade, better understanding of the genetic drivers and immune milieu of advanced thyroid cancers has led to significant progress in the management of these patients. Numerous targeted kinase inhibitors are now approved by the U.S Food and Drug administration (FDA) for the treatment of advanced, radioiodine refractory differentiated thyroid cancers (DTC) as well as anaplastic thyroid cancer (ATC). Immunotherapy has also been thoroughly studied and has shown promise in selected cases. In this review, we summarize the progress in the understanding of the genetic landscape and the cellular and molecular basis of radioiodine refractory-DTC and ATC, as well as discuss the current treatment options and future therapeutic avenues.


Subject(s)
Adenocarcinoma, Follicular , Immunotherapy , Humans , Immunotherapy/methods , Adenocarcinoma, Follicular/therapy , Adenocarcinoma, Follicular/immunology , Adenocarcinoma, Follicular/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Animals , Iodine Radioisotopes/therapeutic use , Protein Kinase Inhibitors/therapeutic use
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 981-988, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862457

ABSTRACT

OBJECTIVE: To investigate cyclin D2 (CCND2) expression in papillary thyroid carcinoma (PTC) and its association with the clinicopathological features. METHODS: The public databases TCGA, TIMER 2.0 and UALCAN were used to explore CCND2 expression level in PTC and adjacent tissues, and its diagnostic value for PTC was analyzed using ROC curves. GO enrichment analysis of CCND2-related differentially expressed genes (DEGs) in PTC was performed, and tumor immune infiltration of CCND2 in thyroid cancer was analyzed using TIMER database and CIBERSORT data source. RT-qPCR and Western blot were used to detect CCND2 expression in normal human thyroid cell line Nthy-ori-3-1 and human PTC cell lines TPC-1 and BCPAP. CCND2 expression was also detected in clinical specimens of PTC and adjacent tissues by immunohistochemistry, and its correlation with clinicopathological features of the patients were analyzed. RESULTS: Informatic analysis revealed significantly higher CCND2 mRNA expression in thyroid cancer than in the adjacent tissues (P < 0.001) in close correlation with tumor stage, gender, age, pathological subtype, and lymph node involvement (P < 0.05). ROC curve analysis showed that at the cutoff value of 4.983, the diagnostic sensitivity, specificity, and accuracy of CCND2 expression for PTC was 83.6%, 94.9%, and 78.5%, respectively. CCND2 expression was positively correlated with B cells, CD4+ T cells, and macrophages (P < 0.001) and negatively with CD8+ T cells (P < 0.01), and also correlated with memory B-cell infiltration, CD4+ T-cell memory activation, M2 macrophages, resting mast cells, and mast cell activation (P < 0.05). RT-qPCR, Western blot and immunohistochemistry showed significantly higher CCND2 expression in the PTC cells than in Nthy-ori-3-1 cells (P < 0.01) and also in clinical PTC tissues than in the adjacent tissues (P < 0.05) in correlation with tumor size, lymph node metastasis and TNM stage (P < 0.05). CONCLUSION: CCND2 overexpression is closely correlated with tumor progression and immune cell infiltration in PTC patients..


Subject(s)
Cyclin D2 , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Cyclin D2/genetics , Cyclin D2/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Female , Male , ROC Curve , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis
5.
Chin Clin Oncol ; 13(3): 36, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859604

ABSTRACT

Thyroid cancer is the most common endocrine malignancy. It presents a significant challenge despite advances in treatment. Immunotherapy, which harnesses the body's immune system to fight cancer, has emerged as a potential solution. The immune system's interaction with cancer cells follows a complex process involving immune surveillance, equilibrium, and escape. On the other hand, cancer cells develop mechanisms, such as loss of antigenicity and immunogenicity, as well as creating an immunosuppressed tumor microenvironment, to evade immune response. Immunotherapy modalities, including immune checkpoint inhibitors like anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed cell death protein 1/programmed cell death protein-ligand 1 (PD-1/PD-L1), have shown promising results in various cancers. In the context of thyroid cancer, immunotherapy, particularly PD-1/PD-L1 blockade, has been explored in patients with follicular cell-derived thyroid carcinomas and medullary thyroid carcinomas (MTCs). Clinical trials using PD-1/PD-L1 inhibitors, such as pembrolizumab and nivolumab, have been conducted for these cases, with varying degrees of success. Although preclinical studies have suggested the potential benefit of immunotherapy modalities for patients with follicular cell-derived thyroid carcinoma, to date, clinical studies have failed to demonstrate clear clinical benefits in patients with advanced thyroid cancer. Additionally, other approaches like dendritic cell vaccination and radioimmunotherapy have been explored mainly for MTC, showing potential but requiring further investigation. While immunotherapy holds promise, especially in combination with other treatments, further research, and high-quality clinical trials are necessary to establish its effectiveness in treating advanced thyroid cancers.


Subject(s)
Immunotherapy , Thyroid Neoplasms , Humans , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Immunotherapy/methods
6.
Aging (Albany NY) ; 16(11): 9753-9783, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38836761

ABSTRACT

OBJECTIVE: The primary objective of this study is to conduct a comprehensive screening and analysis of differentially expressed genes related to disulfidoptosis (DEDRGs) in thyroid carcinoma (THCA). This entails delving into the intricate characterization of immune cell infiltration within the THCA context and subsequently formulating and validating a novel prognostic model. METHOD: To achieve our objectives, we first delineated two distinct subtypes of disulfidoptosis-related genes (DRGs) via consensus clustering methodology. Subsequently, employing the limma R package, we identified the DEDRGs critical for our investigation. These DEDRGs underwent meticulous validation across various databases, alongside an in-depth analysis of gene regulation. Employing functional enrichment techniques, we explored the potential molecular mechanisms underlying disulfidoptosis in THCA. Furthermore, we scrutinized the immune landscape within the two identified subtypes utilizing CIBERSORT and ESTIMATE algorithms. The construction of the prognostic model for THCA entailed intricate methodologies including univariate, multivariate Cox regression, and LASSO regression algorithms. The validity and efficacy of our prognostic model were corroborated through Kaplan-Meier survival curves and ROC curves. Additionally, a nomogram was meticulously formulated to facilitate the prediction of patient prognosis. To fortify our findings, we conducted a comprehensive Bayesian co-localization analysis coupled with rigorous in vitro experimentation, aimed at unequivocally establishing the validity of the identified DEDRGs. RESULT: Our analyses unveiled Cluster C1, characterized by elevated expression levels of DEDRGs, as harboring a favorable prognosis accompanied by abundant immune cell infiltration. Correlation analyses underscored predominantly positive associations among the DEDRGs, further affirming their significance in THCA. Differential expression patterns of DEDRGs between tumor samples and normal tissues were evident across the GEPIA and HPA databases. Insights from the TIMER database underscored a robust correlation between DEDRGs and immune cell infiltration. KEGG analysis elucidated the enrichment of DEDRGs primarily in pivotal pathways including MAPK, PPAR signaling pathway, and Proteoglycans in cancer. Furthermore, analyses using CIBERSORT and ESTIMATE algorithms shed light on the crucial role played by DEDRGs in shaping the immune microenvironment. The prognostic model, anchored by five genes intricately associated with THCA prognosis, exhibited commendable predictive accuracy and was intricately linked to the tumor immune microenvironment. Notably, patients categorized with low-risk scores stood to potentially benefit more from immunotherapy. The validation of DEDRGs unequivocally underscores the protective role of INF2 in THCA. CONCLUSION: In summary, our study delineates two discernible subtypes intricately associated with DRGs, revealing profound disparities in immune infiltration and survival prognosis within the THCA milieu. The implications of our findings extend to potential treatment strategies for THCA patients, which could entail targeted interventions directed towards DEDRGs and prognostic genes, thereby influencing disulfidptosis and the immune microenvironment. Moreover, the robust predictive capability demonstrated by our prognostic model, based on the five genes (ANGPTL7, FIRRE, ODAPH, PROKR1, SFRP5), underscores its potential clinical utility in guiding personalized therapeutic approaches for THCA patients.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Thyroid Neoplasms/mortality , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Profiling , Nomograms
7.
Front Immunol ; 15: 1411300, 2024.
Article in English | MEDLINE | ID: mdl-38911868

ABSTRACT

The majority of patients with thyroid cancer can attain a favorable prognosis with a comprehensive treatment program based on surgical treatment. However, the current treatment options for advanced thyroid cancer are still limited. In recent years, chimeric antigen receptor-modified T-cell (CAR-T) therapy has received widespread attention in the field of oncology treatment. It has achieved remarkable results in the treatment of hematologic tumors. However, due to the constraints of multiple factors, the therapeutic efficacy of CAR-T therapy for solid tumors, including thyroid cancer, has not yet met expectations. This review outlines the fundamental structure and treatment strategies of CAR-T cells, provides an overview of the advancements in both preclinical investigations and clinical trials focusing on targets associated with CAR-T cell therapy in treating thyroid cancer, and discusses the challenges and solutions to CAR-T cell therapy for thyroid cancer. In conclusion, CAR-T cell therapy is a promising therapeutic approach for thyroid cancer, and we hope that our review will provide a timely and updated study of CAR-T cell therapy for thyroid cancer to advance the field.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Thyroid Neoplasms , Humans , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Animals , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Clinical Trials as Topic , Treatment Outcome
8.
BMC Endocr Disord ; 24(1): 68, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734621

ABSTRACT

BACKGROUND: To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS: A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS: Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION: RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.


Subject(s)
High-Throughput Nucleotide Sequencing , Lymphatic Metastasis , Proto-Oncogene Proteins c-ret , Thyroid Cancer, Papillary , Thyroid Neoplasms , Tumor Microenvironment , Adult , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Follow-Up Studies , Lymphatic Metastasis/genetics , Prognosis , Proto-Oncogene Proteins c-ret/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Tumor Microenvironment/immunology
9.
Endocrinol Metab (Seoul) ; 39(3): 468-478, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766717

ABSTRACT

BACKGRUOUND: Hashimoto thyroiditis (HT) is suspected to correlate with papillary thyroid carcinoma (PTC) development. While some HT cases exhibit histologic features of immunoglobulin G4 (IgG4)-related disease, the relationship of HT with PTC progression remains unestablished. METHODS: This cross-sectional study included 426 adult patients with PTC (≥1 cm) undergoing thyroidectomy at an academic thyroid center. HT was identified based on its typical histologic features. IgG4 and IgG immunohistochemistry were performed. Wholeslide images of immunostained slides were digitalized. Positive plasma cells per 2 mm2 were counted using QuPath and a pre-trained deep learning model. The primary outcome was tumor structural recurrence post-surgery. RESULTS: Among the 426 PTC patients, 79 were diagnosed with HT. With a 40% IgG4 positive/IgG plasma cell ratio as the threshold for diagnosing IgG4-related disease, a cutoff value of >150 IgG4 positive plasma cells per 2 mm2 was established. According to this criterion, 53% (43/79) of HT patients were classified as IgG4-related. The IgG4-related HT subgroup presented a more advanced cancer stage than the IgG4-non-related HT group (P=0.038). The median observation period was 109 months (range, 6 to 142). Initial assessment revealed 43 recurrence cases. Recurrence-free survival periods showed significant (P=0.023) differences, with patients with IgG4 non-related HT showing the longest period, followed by patients without HT and those with IgG4-related HT. CONCLUSION: This study effectively stratified recurrence risk in PTC patients based on HT status and IgG4-related subtypes. These findings may contribute to better-informed treatment decisions and patient care strategies.


Subject(s)
Hashimoto Disease , Immunoglobulin G , Immunohistochemistry , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Hashimoto Disease/pathology , Hashimoto Disease/immunology , Male , Female , Middle Aged , Cross-Sectional Studies , Adult , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/surgery , Thyroid Neoplasms/diagnosis , Immunohistochemistry/methods , Risk Assessment , Thyroidectomy , Aged , Neoplasm Recurrence, Local/pathology , Prognosis
10.
J Immunother Cancer ; 12(5)2024 May 30.
Article in English | MEDLINE | ID: mdl-38816233

ABSTRACT

BACKGROUND: The incidence of papillary thyroid cancer (PTC) continues to rise all over the world, 10-15% of the patients have a poor prognosis. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of PTC immune remodeling and exploration of novel treatment targets. METHODS: This study conducted a single-cell RNA sequencing (scRNA-seq) analysis using 18 surgical tissue specimens procured from 14 patients diagnosed with adjacent tissues, non-progressive PTC or progressive PTC. Key findings were authenticated through spatial transcriptomics RNA sequencing, immunohistochemistry, multiplex immunohistochemistry, and an independent bulk RNA-seq data set containing 502 samples. RESULTS: A total of 151,238 individual cells derived from 18 adjacent tissues, non-progressive PTC and progressive PTC specimens underwent scRNA-seq analysis. We found that progressive PTC exhibits the following characteristics: a significant decrease in overall immune cells, enhanced immune evasion of tumor cells, and disrupted antigen presentation function. Moreover, we identified a subpopulation of lysosomal associated membrane protein 3 (LAMP3+) dendritic cells (DCs) exhibiting heightened infiltration in progressive PTC and associated with advanced T stage and poor prognosis of PTC. LAMP3+ DCs promote CD8+ T cells exhaustion (mediated by NECTIN2-TIGIT) and increase infiltration abundance of regulatory T cells (mediated by chemokine (C-C motif) ligand 17 (CCL17)-chemokine (C-C motif) receptor 4 (CCR4)) establishing an immune-suppressive microenvironment. Ultimately, we unveiled that progressive PTC tumor cells facilitate the retention of LAMP3+ DCs within the tumor microenvironment through NECTIN3-NECTIN2 interactions, thereby rendering tumor cells more susceptible to immune evasion. CONCLUSION: Our findings expound valuable insights into the role of the interaction between LAMP3+ DCs and T-cell subpopulations and offer new and effective ideas and strategies for immunotherapy in patients with progressive PTC.


Subject(s)
Dendritic Cells , Thyroid Cancer, Papillary , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , Lysosomal-Associated Membrane Protein 3/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Male , Female , Tumor Microenvironment/immunology , Middle Aged , Tumor Escape , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Neoplasm Proteins
11.
Int Immunopharmacol ; 133: 112102, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652971

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.


Subject(s)
Immunotherapy , Membrane Proteins , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Humans , Mice , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Immunoglobulins , Immunotherapy/methods , Lectins/genetics , Lectins/metabolism , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 89-94, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650151

ABSTRACT

The association between the cuproptosis-related genes and the immune infiltration and their prognostic value in thyroid carcinoma is still unexplored. Bioinformatics analyses were performed with data obtained from the TCGA dataset. The aberrantly expressed genes were selected. KEGG and GO analyses were conducted to explore the enriched pathways of the up-regulated or down-regulated genes in thyroid carcinoma. Totally 1495 genes were differentially expressed (691 up-regulated, 804 down-regulated) in thyroid carcinoma (p<0.05). The 10 cuproptosis-related RNAs (DLD, LIAS, LIPT1, FDX1, DLAT, MTF1, PDHA1, CDKN2A, GLS and PDHB) were also demonstrated to be aberrantly expressed in thyroid carcinoma patients tissues. FDX1 expression was correlated with the overall survival in thyroid carcinoma patients (HR=0.4995, 95% CI: 0.2688-0.9285, p=0.0282). Further multivariate cox regression analysis revealed that DLD (HR=24.8869, 95% CI: 4.48772-138.01181, p=0.00024), and LIAS (HR=7.74092, 95% CI: 1.12194-53.40898, p=0.03783) were associated with the survival of thyroid carcinoma patients. The immune infiltration analysis demonstrated that significant correlation between the 10 cuproptosis-related genes and immune infiltration in thyroid carcinoma (p<0.01). We presented the expression profiles of dysregulated genes in thyroid carcinoma. The findings of our study highlighted the potential of cuproptosis-related genes as prognostic biomarkers for thyroid carcinoma.


Subject(s)
Apoptosis , Biomarkers, Tumor , Carcinoma , Copper , Thyroid Neoplasms , Transcriptome , Humans , Carcinoma/genetics , Carcinoma/immunology , Carcinoma/therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Prognosis , Biomarkers, Tumor/analysis , Risk Factors , Sequence Analysis, RNA , Signal Transduction
13.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38639057

ABSTRACT

The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol , Thyroid Cancer, Papillary , Tumor Microenvironment , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Humans , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Databases, Genetic
14.
Horm Metab Res ; 56(6): 424-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621693

ABSTRACT

Papillary thyroid carcinoma (PTC) is characterized by T cell infiltration and frequently by the presence of anti-thyroglobulin antibodies (TgAbs). The role of cellular immunity and of TbAbs in this context is a matter of debate. The aim of our study was to correlate the presence of TgAbs, tumor epitope-specific T cells and the clinical outcome of PTC patients. We studied n=183 consecutive patients with a diagnosis of PTC which were treated with total thyroidectomy plus 131I ablation. During a follow-up of in mean 97 months, most of the PTC patients had no signs of tumor relapse (n=157 patients). In contrast, one patient had serum Tg levels above the detection limit and<1 ng/ml, two patients Tg serum levels≥1 ng/ml and<2 ng/ml and n=23 patients had Tg serum levels≥2 ng/ml. Morphological signs of tumor recurrence were seen in 14 patients; all of these patients had serum Tg levels≥2 ng/ml. Importantly, with the exception of one patient, all TgAb positive PTC patients (n=27) had no signs of tumor recurrence as the serum Tg levels were below the assays functional sensitivities. Tetramer analyses revealed a higher number of tumor epitope-specific CD8+T cells in TgAb positive patients compared to TgAb negative PTC patients. In summary, we show that the occurrence of TgAbs may have an impact on the clinical outcome in PTC patients. This might be due to a tumor epitope-specific cellular immunity in PTC patients.


Subject(s)
Autoantibodies , Immunity, Cellular , Thyroglobulin , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Male , Female , Middle Aged , Thyroid Neoplasms/immunology , Thyroid Neoplasms/blood , Thyroid Neoplasms/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/blood , Thyroid Cancer, Papillary/pathology , Thyroglobulin/immunology , Thyroglobulin/blood , Adult , Aged , Autoantibodies/blood , Autoantibodies/immunology , Epitopes/immunology , Carcinoma, Papillary/immunology , Carcinoma, Papillary/pathology , Carcinoma, Papillary/blood , Young Adult , Adolescent , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/blood
15.
Int Immunopharmacol ; 133: 112050, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38636370

ABSTRACT

Thyroid cancer (THCA) is the most common endocrine malignancy worldwide and has been rising at the fastest rate in recent years. Long-stranded non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) have been associated with immunotherapy efficacy and cancer prognosis. However, how m6A-associated lncRNAs (mrlncRNAs) affect the prognosis of patients with thyroid cancer is unclear. Therefore, this study utilized The Cancer Genome Atlas (TCGA) database to provide thyroid cancer-related transcriptomic data and related clinical data. The R program was used to identify m6A-related lncRNAs, and a risk model consisting of two lncRNAs (LINC02471 and DOCK9-DT) was obtained using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Kaplan-Meier survival analysis and transient subject operating characteristics (ROC) were used for analysis. The results showed a substantial association between immune cell infiltration and risk scores. Independent analyses confirmed that the expression of LINC02471 and DOCK9-DT was significantly higher in thyroid cancer tissues than in normal tissues, suggesting that they may be useful biomarkers for thyroid cancer.


Subject(s)
Biomarkers, Tumor , RNA, Long Noncoding , Thyroid Neoplasms , Female , Humans , Male , Middle Aged , Adenosine/analogs & derivatives , Adenosine/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology
16.
Endocr Relat Cancer ; 31(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38657656

ABSTRACT

Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.


Subject(s)
Thyroid Carcinoma, Anaplastic , Tumor Microenvironment , Zebrafish , Animals , Tumor Microenvironment/immunology , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/immunology , Humans , Cell Line, Tumor , Disease Models, Animal , Immunity, Innate , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Mice , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Imidazoles/pharmacology , Imidazoles/therapeutic use
17.
Mol Cell Endocrinol ; 589: 112251, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38670219

ABSTRACT

Differentiated thyroid cancer (DTC) is the predominant type of thyroid cancer, with some patients experiencing relapse, distant metastases, or refractoriness, revealing limited treatment options. Chimeric antigen receptor (CAR)-modified Natural Killer (NK) cells are revolutionary therapeutic agents effective against various resistant cancers. Thyroid-stimulating hormone receptor (TSHR) expression in DTC provides a unique tumor-specific target for CAR therapy. Here, we developed an innovative strategy for treating DTC using modified NK-92 cells armed with a TSHR-targeted CAR. The modified cells showed enhanced cytotoxicity against TSHR-positive DTC cell lines and exhibited elevated degranulation and cytokine release. After undergoing irradiation, the cells effectively halted their proliferative capacity while maintaining potent targeted killing ability. Transfer of these irradiation-treated cells into NSG mice with DTC tumors resulted in profound tumor suppression. NK-92 cells modified with TSHR-CAR offer a promising, off-the-shelf option for advancing DTC immunotherapy.


Subject(s)
Killer Cells, Natural , Receptors, Chimeric Antigen , Receptors, Thyrotropin , Thyroid Neoplasms , Receptors, Thyrotropin/immunology , Receptors, Thyrotropin/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Humans , Animals , Killer Cells, Natural/immunology , Cell Line, Tumor , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Mice , Cell Differentiation , Xenograft Model Antitumor Assays , Mice, Inbred NOD , Cell Proliferation , Cytotoxicity, Immunologic , Immunotherapy, Adoptive/methods
18.
JCI Insight ; 9(8)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38478516

ABSTRACT

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Subject(s)
Chemokine CXCL13 , Immunotherapy , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/genetics , Immunotherapy/methods , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Single-Cell Analysis , Prognosis , T-Lymphocytes/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male
19.
Head Neck ; 46(6): 1486-1499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380767

ABSTRACT

The tumor immune microenvironment of thyroid cancer is the heterogeneous histological space in which tumor cells coexist with host cells. Published data from this review were identified by search and selection database of Pubmed, Elsevier, and Science Direct. Searching was made in two steps using different keywords. In thyroid pathology, the inflammatory response is very important, and might have a key role finding new diagnostic and therapeutic methods, particularly in thyroid cancer. Different immune cells may be more or less present in different types of thyroid cancer and may even have different functions, hence the importance of knowing their presence in different thyroid tumor pathologies. Cancer-related inflammation could be a useful target for new diagnostic and therapeutic strategies by analyzing peritumoral and intratumoral immune cells in different types of thyroid tumors. Moreover, novel strategies for thyroid cancer treatments, such as monoclonal antibodies targeting checkpoint inhibitors, are emerging as promising alternatives.


Subject(s)
Thyroid Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use
20.
Oral Oncol ; 148: 106654, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061122

ABSTRACT

BACKGROUND: The mechanism promoting papillary thyroid carcinoma (PTC) metastasis remains unclear. We aimed to investigate the potential metastatic mechanisms at a single-cell resolution. METHODS: We performed single-cell RNA-seq (scRNA-seq) profiling of thyroid tumour (TT), adjacent normal thyroid (NT) and lymph node metastasized tumour (LN) from a young female with PTC. Validation of our results was conducted in 31 tumours with metastasis and 30 without metastasis. RESULTS: ScRNA-seq analysis generated data on 38,215 genes and 0.14 billion transcripts from 28,839 cells, classified into 18 clusters, each annotated to represent 10 cell types. PTC cells were found to originate from epithelial cells. Epithelial cells and macrophages emerged as the strongest signal emitters and receivers, respectively. After reclustering epithelial cells and macrophages, our analysis, incorporating gene set variation analysis (GSVA), SCENIC analysis, and pseudotime trajectory analysis, indicated that subcluster 0 of epithelial cells (EP_0) showed a more malignant phenotype, and subclusters 3 and 4 of macrophages (M_3 and M_4) demonstrated heightened activity. Further analysis suggested that EP_0 may suppress the activity of M_3 and M_4 via MIF - (CD74 + CXCR4) in the MIF pathway. After analysing the expression of the 4 genes in the MIF pathway in both the TCGA cohort and our cohort (n = 61), CD74 was identified as significantly overexpressed in PTC tumours particularly those with lymph node metastasis. CONCLUSION: Our study revealed that PTC may facilitate lymph node metastasis by inhibiting macrophages via MIF signalling. It is suggested that malignant PTC cells may suppress the immune activity of macrophages by consistently releasing signals to them via MIF-(CD74 + CXCR4).


Subject(s)
Macrophage Migration-Inhibitory Factors , Macrophages , Thyroid Cancer, Papillary , Thyroid Neoplasms , Female , Humans , Intramolecular Oxidoreductases/metabolism , Lymphatic Metastasis/genetics , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Macrophages/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Single-Cell Gene Expression Analysis , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL