Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 798
Filter
1.
Front Cell Infect Microbiol ; 14: 1429667, 2024.
Article in English | MEDLINE | ID: mdl-39091677

ABSTRACT

Introduction: Tick-borne pathogens, such as Borreliella spp., Rickettsia spp., and Anaplasma spp., are frequently detected in Germany. They circulate between animals and tick vectors and can cause mild to severe diseases in humans. Knowledge about distribution and prevalence of these pathogens over time is important for risk assessment of human and animal health. Methods: Ixodes ricinus nymphs were collected at different locations in 2009/2010 and 2019 in Germany and analyzed for tick-borne pathogens by real-time PCR and sequencing. Results: Borreliella spp. were detected with a prevalence of 11.96% in 2009/2010 and 13.10% in 2019 with B. afzelii and B. garinii as dominant species. Borrelia miyamotoi was detected in seven ticks and in coinfection with B. afzelii or B. garinii. Rickettsia spp. showed a prevalence of 8.82% in 2009/2010 and 1.68% in 2019 with the exclusive detection of R. helvetica. The prevalence of Anaplasma spp. was 1.00% in 2009/2010 and 7.01% in 2019. A. phagocytophilum was detected in seven tick samples. None of the nymphs were positive for C. burnetii. Discussion: Here, observed changes in prevalence were not significant after a decade but require longitudinal observations including parameters like host species and density, climatic factors to improve our understanding of tick-borne diseases.


Subject(s)
Ixodes , Tick-Borne Diseases , Animals , Germany/epidemiology , Ixodes/microbiology , Prevalence , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Nymph/microbiology , Borrelia/isolation & purification , Borrelia/genetics , Humans , Rickettsia/genetics , Rickettsia/isolation & purification , Anaplasma/genetics , Anaplasma/isolation & purification , Real-Time Polymerase Chain Reaction
2.
Parasitol Res ; 123(8): 292, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102116

ABSTRACT

Ticks are blood ectoparasites that feed on domestic, wild animals and humans. They spread a variety of infections such as protozoa, viruses, and bacteria. Moreover, cattle reared by smallholder farmers are susceptible to ticks and tick-borne pathogens. Therefore, accurate identification of ticks and detection of tick-borne pathogens is crucial. The main aim of this study was to identify and characterize ticks and tick-borne pathogens from selected villages in Greater Letaba Municipality, Limpopo Province, using morphological and molecular techniques. A total of 233 ticks were collected from cattle and identified morphologically using appropriate morphological keys. The following tick species were identified: Amblyomma hebraeum, Hyalomma rufipes, Hyalomma truncatum, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi, and Rhipicephalus sanguineus. Rhipicephalus spp. was the most common species accounting to 73.8% of the identified ticks. The genomic DNA was extracted from the whole tick for tick identification and from midguts of the ticks for the detection of tick-borne pathogens, followed by amplification and sequencing. A total of 27 samples were positive for tick-borne pathogens: 23 samples tested positive for Theileria and four samples tested positive for Ehrlichia. Anaplasma and Rickettsial OmpB could not be detected from any of the samples. There was no obvious grouping of ticks and tick-borne pathogens on the bases of their locality. The findings of this study confirm previous reports that indicated that cattle reared by smallholder farmers harbor various ticks and tick-borne pathogens of veterinary, public health, and economic importance. Regular monitoring of tick infestations in villages around the study areas is recommended to avoid disease outbreaks.


Subject(s)
Cattle Diseases , Tick Infestations , Tick-Borne Diseases , Animals , Cattle , South Africa/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Genotype , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ehrlichia/classification , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/classification , Ixodidae/microbiology , Ixodidae/parasitology , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Female , Ticks/microbiology , Ticks/parasitology , Male
3.
Emerg Microbes Infect ; 13(1): 2384472, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39042034

ABSTRACT

We detected 24 Encephalitozoon cuniculi positive Ixodes ricinus ticks of 284 collected in the Czech Republic. Since the route of transmission of microsporidia is not fully understood, the presence of microsporidia in ticks raises the question of whether they may be involved in the transmission of these pathogens.


Subject(s)
Ixodes , Animals , Humans , Czech Republic , Ixodes/microbiology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/microbiology , Microsporidiosis/transmission , Encephalitozoon cuniculi/isolation & purification , Encephalitozoon cuniculi/genetics , Encephalitozoonosis/transmission , Encephalitozoonosis/microbiology
4.
Biomed Res Int ; 2024: 4848451, 2024.
Article in English | MEDLINE | ID: mdl-39035771

ABSTRACT

Tick-borne pathogens continue to infect humans and animals worldwide. By adapting to the movement of livestock, ticks facilitate the spread of these infectious pathogens. Humans in close contact with animals that could be amplifying hosts are especially at risk of being infected with tick-borne pathogens. This study involved the collection of dry blood spots (DBSs) to determine tick-borne pathogens occurring in slaughtered livestock and abattoir workers in Kumasi. This study employed the use of conventional PCR, RT-PCR, and Sanger sequencing to detect and identify the tick-borne pathogens. The resulting data was analysed using Stata version 13. A total of 175 DBSs were collected from goats (76), cattle (54), and sheep (45) in the Kumasi abattoir (130, 74.29%) and Akwatia Line slaughter slab (45, 25.71%). The pathogens identified were mostly bacterial including Anaplasma capra (9.71%), Anaplasma phagocytophilum (1.14%), and Rickettsia aeschlimannii (0.57.%). The only parasite identified was Theileria ovis (9.14%). A significant association was seen between A. capra (p < 0.001) infection and female sheep sampled from the Akwatia Line slaughter slab. Again, there was a significant association between T. ovis (p < 0.001) infections and female sheep from the Kumasi abattoir. From the human DBS (63) screened, the pathogens identified were all bacterial including Coxiella burnetii (1.89%), Rickettsia africae (1.89%), and R. aeschlimannii (1.89%). This study reports the first detection of R. aeschlimannii in livestock as well as the occurrence of the above-mentioned pathogens in humans in Ghana. Animals can serve as amplifying hosts for infectious pathogens; hence, there is an increased risk of infections among the abattoir workers. Continuous surveillance effort is essential, and abattoir workers need to protect themselves from tick bites and infectious tick-borne pathogens.


Subject(s)
Abattoirs , Tick-Borne Diseases , Zoonoses , Animals , Humans , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/epidemiology , Sheep/parasitology , Cattle , Zoonoses/parasitology , Zoonoses/microbiology , Ticks/microbiology , Ticks/parasitology , Goats/parasitology , Goats/microbiology , Female , Male , Livestock/parasitology , Livestock/microbiology , Rickettsia/genetics , Rickettsia/isolation & purification , Rickettsia/pathogenicity
5.
Acta Trop ; 256: 107282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861832

ABSTRACT

The hard tick clade (Ixodidae) currently comprises 762 species worldwide (266 Prostriata and 496 Metastriata). A quarter of hard ticks are found in the Neotropical region, and 42 species have been documented in Colombia. Ixodidae species are important vectors of pathogens such as bacteria, helminths, protozoa, and viruses. In tick-borne diseases, vertebrate hosts perform an important role in the transmission, maintenance, and spread of pathogens. Colombia ranks sixth among countries with the highest mammal biodiversity, with a total of 548 species, where some of these species may be involved in pathogen transmission cycles with ticks as vectors. This research evaluated the presence of two genera of bacteria (Borrelia and Rickettsia) and the protozoan (Babesia) in ticks and mammals in the Orinoquia region of Colombia, establishing interaction networks. The information comes from 734 mammals (655 wild and 79 domestic), belonging to 59 species. Tick infestation (n = 1,805) was found with 14.85 % (n = 109) of the examined mammals and corresponds to nine tick species confirmed morphologically and molecularly. To detect pathogens 272 ticks were collected while feeding on 96 mammals; samples from 93 mammals were analyzed. The presence of borreliae from the relapsing fever group (RFG) and the Lyme disease group (LDG) were detected. Rickettsia spp. was detected in ticks and mammals, while Babesia bigemina was only detected in ticks. This research is the first to address the prevalence of zoonotic pathogens in domestic and wild mammals infested with hard ticks in the Department of Arauca, Colombia. Considering that reporting cases of infections with Babesia, Borrelia, and Rickettsia in Colombia is not mandatory, their impact on public health cannot be estimated. This highlights the importance of continuously detecting, confirming, and identifying these and other important pathogens within the "One Health" framework, as they have a significant economic and medical-veterinary impact globally.


Subject(s)
Babesia , Borrelia , Host-Pathogen Interactions , Ixodidae , Mammals , Rickettsia , Animals , Colombia , Mammals/parasitology , Mammals/microbiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ixodidae/microbiology , Ixodidae/parasitology , Babesia/isolation & purification , Borrelia/isolation & purification , Borrelia/pathogenicity , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/parasitology
6.
Trop Biomed ; 41(1): 52-63, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852134

ABSTRACT

In tropical regions, numerous tick-borne pathogens (TBPs) play a crucial role as causative agents of infectious diseases in humans and animals. Recently, the population of companion and pet dogs has significantly increased in Vietnam; however, information on the occurrence of TBPs is still limited. The objectives of this investigation were to determine the occurrence rate, risk factors, and phylogenetic characteristics of TBPs in dogs from northern Vietnam. Of 341 blood samples tested by PCR, the total infection of TBPs was 73.9% (252/341). Babesia vogeli (18SrRNA gene - 30.5%) was detected most frequently in studied dogs followed by Rickettsia spp. (OmpA gene - 27%), Anaplasma platys (groEL gene - 22%), Bartonella spp. (16SrRNA - 18.8%), Mycoplasma haemocanis (16SrRNA - 9.4%) and Hepatozoon canis (18SrRNA gene - 1.2%), respectively. All samples were negative for Ehrlichia canis and Anaplasma phagocytophylum. Co-infection was detected in 31.4% of the samples (107/341) of which, A. platys/Bartonella spp. (34/94,10%), Rickettsia spp./B. vogeli (19/94, 5.6%), and M. haemocanis/B. vogeli (19/94, 5.6%) were recorded as the three most frequent two species of co-infection types. Statistical analysis revealed a significant correlation between TBP infection and several host variables regarding age, breed, and living area in the current study. The recent findings reported herein, for the first time in Vietnam, are essential for local veterinarians when considering the appropriate approaches for diagnosing these diseases. Furthermore, this data can be used to establish control measures for future surveillance and prevention strategies against canine TBPs in Vietnam.


Subject(s)
Anaplasma , Babesia , Dog Diseases , Phylogeny , Tick-Borne Diseases , Animals , Dogs , Vietnam/epidemiology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Risk Factors , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Anaplasma/genetics , Anaplasma/isolation & purification , Babesia/genetics , Babesia/isolation & purification , Male , Female , Rickettsia/genetics , Rickettsia/isolation & purification , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Mycoplasma/genetics , Mycoplasma/isolation & purification , Mycoplasma/classification , Coinfection/veterinary , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/microbiology
7.
Acta Trop ; 257: 107306, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944407

ABSTRACT

Colpodella species are close relatives of Apicomplexan protozoa. Although most species of this genus are free-living organisms that feed on other protists and algae, reports indicate their occurence in ticks and human patients, including an individual with a history of tick bite manifesting neurological symptoms. During an investigation of tick-borne pathogens (TBPs) in blood samples of cattle, goats, and in ticks collected on them, Colpodella sp. DNA was detected in a Rhipicephalus bursa tick collected from cattle, while of Theileria sergenti/buffeli/orientalis, Babesia bigemina, Sarcocystis cruzi, Babesia spp., and Rickettsia spp. were molecularly detected in cattle, goats, and ticks in southern Italy. Data herein reported highlight the unprecedented presence of Colpodella sp. in ticks in Italy, raising concern due to the potential pathogenic role of this less known protozoan. This finding advocates for performing routine epidemiological surveys to monitor potential emerging vector-borne pathogens.


Subject(s)
Goats , Animals , Italy/epidemiology , Goats/parasitology , Cattle , DNA, Protozoan/genetics , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/veterinary , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Rhipicephalus/microbiology , Rhipicephalus/parasitology , Theileria/genetics , Theileria/isolation & purification , Theileria/classification , Sequence Analysis, DNA , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Eucoccidiida/genetics , Eucoccidiida/isolation & purification , Eucoccidiida/classification , Molecular Sequence Data , Ticks/microbiology , Ticks/parasitology , Phylogeny
8.
PLoS Negl Trop Dis ; 18(6): e0012185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837987

ABSTRACT

BACKGROUND: The Middle East and North Africa (MENA) offer optimal climatic conditions for tick reproduction and dispersal. Research on tick-borne pathogens in this region is scarce. Despite recent advances in the characterization and taxonomic explanation of various tick-borne illnesses affecting animals in Egypt, no comprehensive examination of TBP (tick-borne pathogen) statuses has been performed. Therefore, the present study aims to detect the prevalence of pathogens harbored by ticks in Egypt. METHODOLOGY/PRINCIPAL FINDINGS: A four-year PCR-based study was conducted to detect a wide range of tick-borne pathogens (TBPs) harbored by three economically important tick species in Egypt. Approximately 86.7% (902/1,040) of the investigated Hyalomma dromedarii ticks from camels were found positive with Candidatus Anaplasma camelii (18.8%), Ehrlichia ruminantium (16.5%), Rickettsia africae (12.6%), Theileria annulata (11.9%), Mycoplasma arginini (9.9%), Borrelia burgdorferi (7.7%), Spiroplasma-like endosymbiont (4.0%), Hepatozoon canis (2.4%), Coxiella burnetii (1.6%) and Leishmania infantum (1.3%). Double co-infections were recorded in 3.0% (27/902) of Hy. dromedarii ticks, triple co-infections (simultaneous infection of the tick by three pathogen species) were found in 9.6% (87/902) of Hy. dromedarii ticks, whereas multiple co-infections (simultaneous infection of the tick by ≥ four pathogen species) comprised 12% (108/902). Out of 1,435 investigated Rhipicephalus rutilus ticks collected from dogs and sheep, 816 (56.9%) ticks harbored Babesia canis vogeli (17.1%), Rickettsia conorii (16.2%), Ehrlichia canis (15.4%), H. canis (13.6%), Bo. burgdorferi (9.7%), L. infantum (8.4%), C. burnetii (7.3%) and Trypanosoma evansi (6.6%) in dogs, and 242 (16.9%) ticks harbored Theileria lestoquardi (21.6%), Theileria ovis (20.0%) and Eh. ruminantium (0.3%) in sheep. Double, triple, and multiple co-infections represented 11% (90/816), 7.6% (62/816), and 10.3% (84/816), respectively in Rh. rutilus from dogs, whereas double and triple co-infections represented 30.2% (73/242) and 2.1% (5/242), respectively in Rh. rutilus from sheep. Approximately 92.5% (1,355/1,465) of Rhipicephalus annulatus ticks of cattle carried a burden of Anaplasma marginale (21.3%), Babesia bigemina (18.2%), Babesia bovis (14.0%), Borrelia theleri (12.8%), R. africae (12.4%), Th. annulata (8.7%), Bo. burgdorferi (2.7%), and Eh. ruminantium (2.5%). Double, triple, and multiple co-infections represented 1.8% (25/1,355), 11.5% (156/1,355), and 12.9% (175/1,355), respectively. The detected pathogens' sequences had 98.76-100% similarity to the available database with genetic divergence ranged between 0.0001 to 0.0009% to closest sequences from other African, Asian, and European countries. Phylogenetic analysis revealed close similarities between the detected pathogens and other isolates mostly from African and Asian countries. CONCLUSIONS/SIGNIFICANCE: Continuous PCR-detection of pathogens transmitted by ticks is necessary to overcome the consequences of these infection to the hosts. More restrictions should be applied from the Egyptian authorities on animal importations to limit the emergence and re-emergence of tick-borne pathogens in the country. This is the first in-depth investigation of TBPs in Egypt.


Subject(s)
Camelus , Dog Diseases , Genetic Variation , Ixodidae , Tick-Borne Diseases , Animals , Egypt/epidemiology , Dogs , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Dog Diseases/parasitology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Ixodidae/microbiology , Ixodidae/parasitology , Camelus/parasitology , Camelus/microbiology , Sheep , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Ticks/microbiology , Ticks/parasitology , Livestock/parasitology , Livestock/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Female , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/classification , Male , Prevalence
9.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 154-158, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38857958

ABSTRACT

OBJECTIVE: To investigate the prevalence of tick-borne rickettsial infections in selected areas of Liupanshui City, Guizhou Province, 2023, so as to provide insights into the management of tick-borne rickettsioses in the city. METHODS: Ticks were captured from the body surface of bovines and sheep in Gaoxing Village, Dashan Township, Liupanshui City, Guizhou Province during the period between April and June, 2023, and tick species were identified using morphological and molecular biological techniques. In addition, tick-borne Rickettsia was identified using a nested PCR assay, including spotted fever group rickettsiae (SFGR), Coxiella spp., Anaplasma spp., Ehrlichia spp., and Orientia spp., and positive amplified fragments were sequenced and aligned with known sequences accessed in the GenBank database. RESULTS: A total of 200 ticks were collected and all tick species were identified as Rhipicephalus microplus. Nestle PCR assay combined with sequencing identified ticks carrying Candidatus Rickettsia jingxinensis (40.50%), Coxiella burnetii (1.50%), and Coxiella-like endosymbionts (27.00%), and Anaplasma spp., Ehrlichia spp. or Orientsia spp. was not detected. CONCLUSIONS: R. microplus carried Candidatus R. jingxinensis, C. burnetii, and Coxiella-like endosymbionts in selected areas of Liupanshui City, Guizhou Province. Intensified monitoring of tickborne rickettsial infections is needed in livestock and humans to reduce the damages caused by rickettsioses.


Subject(s)
Rickettsia , Animals , Rickettsia/isolation & purification , Rickettsia/genetics , China/epidemiology , Sheep , Cattle , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Ticks/microbiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology
10.
Acta Trop ; 256: 107244, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762942

ABSTRACT

Questing ticks carry various tick-borne pathogens (TBPs) that are responsible for causing tick-borne diseases (TBDs) in humans and animals around the globe, especially in the tropics and sub-tropics. Information on the distribution of ticks and TBPs in a specific geography is crucial for the formulation of mitigation measures against TBDs. Therefore, this study aimed to survey the TBPs in the questing tick population in Bangladesh. A total of 2748 questing hard ticks were collected from the pastures in Sylhet, Bandarban, Sirajganj, Dhaka, and Mymensingh districts through the flagging method. After morphological identification, the ticks were grouped into 142 pools based on their species, sexes, life stages, and collection sites. The genomic DNA extracted from tick specimens was screened for 14 pathogens, namely Babesia bigemina (AMA-1), Babesia bovis (RAP-1), Babesia naoakii (AMA-1), Babesia ovis (18S rRNA), Theileria luwenshuni (18S rRNA), Theileria annulata (Tams-1), Theileria orientalis (MPSP), Anaplasma marginale (groEL), Anaplasma phagocytophilum (16S rRNA), Anaplasma bovis (16S rRNA), Anaplasma platys (16S rRNA), Ehrlichia spp. (16S rRNA), Rickettsia spp. (gltA), and Borrelia (Bo.) spp. (flagellin B) using genus and species-specific polymerase chain reaction (PCR) assays. The prevalence of the detected pathogens was calculated using the maximum likelihood method (MLE) with 95 % confidence interval (CI). Among 2748 ixodid ticks, 2332 (84.86 %) and 416 (15.14 %) were identified as Haemaphysalis bispinosa and Rhipicephalus microplus, respectively. Haemaphysalis bispinosa was found to carry all the seven detected pathogens, while larvae of R. microplus were found to carry only Bo. theileri. Among the TBPs, the highest detection rate was observed in A. bovis (20/142 pools, 0.81 %, CI: 0.51-1.20), followed by T. orientalis (19/142 pools, 0.72 %, CI: 0.44-1.09), T. luwenshuni (9/142 pools, 0.34 %, CI: 0.16-0.62), B. ovis (4/142 pools, 0.15 %, CI: 0.05 - 0.34) and Bo. theileri (4/142 pools, 0.15 %, CI: 0.05-0.34), Ehrlichia ewingii (3/142 pools, 0.11 %, CI: 0.03-0.29), and Babesia bigemina (1/142, 0.04 %, CI: 0.00 - 0.16). This study reports the existence of T. luwenshuni, E. ewingii, and Bo. theileri in Bangladesh for the first time. The novel findings of this study are the foremost documentation of transovarian transmission of B. bigemina and E. ewingii in H. bispinosa and also provide primary molecular evidence on the presence of E. ewingii and Bo. theileri in H. bispinosa. Therefore, this study may shed light on the circulating TBPs in ticks in the natural environment and thereby advocate awareness among physicians and veterinarians to control and prevent TBDs in Bangladesh.


Subject(s)
Babesia , Tick-Borne Diseases , Animals , Bangladesh/epidemiology , Babesia/isolation & purification , Babesia/genetics , Female , Male , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Ixodidae/microbiology , Ixodidae/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , DNA, Bacterial/genetics , Humans
11.
Trop Med Int Health ; 29(7): 541-583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38813598

ABSTRACT

Rickettsia africae is a tick-borne bacteria known to cause African tick bite fever (ATBF). While the disease was first described more than 100 years ago, knowledge of transmission risk factors and disease burden remain poorly described. To better understand the burden of R. africae, this article reviewed and summarized the published literature related to ATBF epidemiology and clinical management. Using a systematic approach, consistent with the PRISMA guidelines, we identified more than 100 eligible articles, including 65 epidemiological studies and 41 case reports. Most reports described R. africae in ticks and livestock, while human studies were less common. Human disease case reports were exclusively among returning travellers from non-endemic areas, which limits our disease knowledge among at-risk populations: people living in endemic regions. Substantial efforts to elucidate the ATBF risk factors and clinical manifestations among local populations are needed to develop effective preventative strategies and facilitate appropriate and timely diagnosis.


Subject(s)
Rickettsia Infections , Rickettsia , Animals , Humans , Africa South of the Sahara/epidemiology , Rickettsia/isolation & purification , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Risk Factors , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Ticks/microbiology
12.
Vet Parasitol Reg Stud Reports ; 51: 101027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772643

ABSTRACT

Canine tick-borne diseases, such as babesiosis, rangeliosis, hepatozoonosis, anaplasmosis and ehrlichiosis, are of veterinarian relevance, causing mild or severe clinical cases that can lead to the death of the dog. The aim of this study was detecting tick-borne protozoan and rickettsial infections in dogs with anemia and/or thrombocytopenia in Uruguay. A total of 803 domestic dogs were evaluated, and 10% were found positive (detected by PCR) at least for one hemoparasite. Sequence analysis confirmed the presence of four hemoprotozoan species: Rangelia vitalii, Babesia vogeli, Hepatozoon canis and Hepatozoon americanum, and the rickettsial Anaplasma platys. The most detected hemoparasite was R. vitalii, followed by H. canis and A. platys. This is the first report of B. vogeli in Uruguay and the second report of H. americanum in dogs from South America. The results highlight the importance for veterinarians to include hemoparasitic diseases in their differential diagnosis of agents causing anemia and thrombocytopenia.


Subject(s)
Anemia , Dog Diseases , Piroplasmida , Thrombocytopenia , Animals , Uruguay , Dogs , Dog Diseases/parasitology , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Thrombocytopenia/veterinary , Thrombocytopenia/parasitology , Anemia/veterinary , Anemia/parasitology , Piroplasmida/isolation & purification , Piroplasmida/genetics , Female , Anaplasmataceae/isolation & purification , Anaplasmataceae/genetics , Male , Anaplasmataceae Infections/veterinary , Anaplasmataceae Infections/epidemiology , Anaplasma/isolation & purification , Anaplasma/genetics , Babesiosis/parasitology , Babesiosis/diagnosis , Coccidiosis/veterinary , Coccidiosis/parasitology , Eucoccidiida/isolation & purification , Eucoccidiida/genetics , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Babesia/isolation & purification , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Polymerase Chain Reaction/veterinary
13.
Vet Parasitol Reg Stud Reports ; 51: 101033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772649

ABSTRACT

The Garrano is a semi-feral horse breed native to several mountains in the northern Iberian Peninsula. Despite being endangered, this unique breed of pony has managed to survive in the wild and continues to be selectively bred, highlighting their remarkable resilience and adaptability to harsh environments. Wildlife plays a critical role in the survival of tick vectors in their natural habitats and the transfer of tick-borne pathogens, as they can serve as reservoir hosts for many agents and amplifiers for these vectors. The semi-feral lifestyle of the Garrano horses makes them particularly vulnerable to exposure to numerous tick species throughout the year. Therefore, the aim of this study was to investigate the occurrence of Anaplasma, Ehrlichia, Babesia, Theileria, and spotted fever rickettsiae in the Garrano horse ticks to obtain a knowledge of circulating agents in this host population. The collected ticks (n = 455) were identified as Rhipicephalus bursa. DNA specimens were organized in pools of 5 ticks, for molecular screening. Pools PCR results confirmed the presence of Candidatus Rickettsia barbariae (n = 12 for the ompB gene, n = 11 for the ompA gene and n = 6 for the gltA gene), Babesia bigemina (n = 1), Babesia caballi (n = 3), Theileria equi (n = 15) and Theileria haneyi (n = 1).These results confirm the circulation of an emerging rickettsial spotted fever group member, Candidatus R. barbariae, in R. bursa ticks. Our findings demonstrated that Candidatus R. barbariae co-circulates with B. bigemina and T. equi, which are vectored by R. bursa. We are reporting for the first time, the detection of T. haneyi among R. bursa ticks feeding in the Garrano horses in Portugal. Surveillance studies for tick-borne infections are essential to provide information that can facilitate the implementation of preventive and control strategies.


Subject(s)
Babesia , Horse Diseases , Rhipicephalus , Theileria , Animals , Horses/parasitology , Portugal/epidemiology , Rhipicephalus/microbiology , Rhipicephalus/parasitology , Horse Diseases/parasitology , Horse Diseases/epidemiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Female , Anaplasma/isolation & purification , Anaplasma/genetics , Theileriasis/epidemiology , Theileriasis/parasitology , Rickettsia/isolation & purification , Rickettsia/genetics , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Ehrlichia/isolation & purification , Ehrlichia/genetics , Babesiosis/epidemiology , Babesiosis/parasitology
14.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article in English | MEDLINE | ID: mdl-38698904

ABSTRACT

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Subject(s)
Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
15.
Sci Rep ; 14(1): 12336, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811622

ABSTRACT

Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.


Subject(s)
Rickettsia , Animals , Republic of Korea/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ticks/microbiology , Ticks/virology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Prevalence , Borrelia/isolation & purification , Borrelia/genetics , Anaplasma phagocytophilum/isolation & purification , Ehrlichia/isolation & purification , Ehrlichia/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Phlebovirus/isolation & purification , Phlebovirus/genetics
16.
Eur J Clin Microbiol Infect Dis ; 43(7): 1261-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676855

ABSTRACT

BACKGROUND: Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS: Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS: By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.


Subject(s)
Public Health , Tick-Borne Diseases , Ticks , Humans , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/transmission , Europe/epidemiology , Animals , Ticks/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Bacterial Infections/microbiology
17.
Ticks Tick Borne Dis ; 15(4): 102343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615554

ABSTRACT

The burden of tick-borne diseases continues to increase in the United States. Tick surveillance has been implemented to monitor changes in the distribution and prevalence of human disease-causing pathogens in ticks that frequently bite humans. Such efforts require accurate identification of ticks to species and highly sensitive and specific assays that can detect and differentiate pathogens from genetically similar microbes in ticks that have not been demonstrated to be pathogenic in humans. We describe a modification to a next generation sequencing pathogen detection assay that includes a target that accurately identifies Ixodes ticks to species. We show that the replacement of internal control primers used to ensure assay performance with primers that also act as an internal control and can additionally differentiate tick species, retains high sensitivity and specificity, improves efficiency, and reduces costs by eliminating the need to run separate assays to screen for pathogens and for tick identification.


Subject(s)
High-Throughput Nucleotide Sequencing , Ixodes , Ixodes/microbiology , Animals , United States , High-Throughput Nucleotide Sequencing/methods , Tick-Borne Diseases/microbiology , Epidemiological Monitoring , Sensitivity and Specificity
18.
Vet Parasitol Reg Stud Reports ; 50: 101007, 2024 05.
Article in English | MEDLINE | ID: mdl-38644036

ABSTRACT

The brown dog tick, Rhipicephalus sanguineus is a complex of tick species with an unsettled species concept. In Europe, R. sanguineus is considered mainly a Mediterranean tick with sporadic findings in central and northern Europe. R. sanguineus is known as a vector of a range of pathogens of medical and veterinary importance, most of which not yet reported as autochthonous in Hungary. A total of 1839 ticks collected by veterinarians from dogs and cats were obtained in Hungary. The study aims at precise determination of ticks identified as R. sanguineus and detection of pathogens in collected ticks. All ticks were morphologically determined and 169 individuals were identified as R. sanguineus. A subset of 15 ticks was selected for molecular analysis (16S rDNA, 12S rDNA, COI). Phylogenetic analyses invariably placed sequences of all three markers into a single haplotype identified as R. sanguineus sensu stricto. All 169 brown dog ticks were tested for the presence of A. platys, E. canis, R. conorii, B. vogeli and H. canis. None of the investigated ticks was positive for the screened pathogens, though A. phagocytophilum sequence was detected in a single tick.


Subject(s)
Anaplasma , Dog Diseases , Phylogeny , RNA, Ribosomal , Rhipicephalus sanguineus , Tick Infestations , Animals , Dogs , Hungary , Rhipicephalus sanguineus/microbiology , Dog Diseases/parasitology , Dog Diseases/diagnosis , Tick Infestations/veterinary , Tick Infestations/parasitology , Female , Male , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Rickettsia conorii/isolation & purification , Rickettsia conorii/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Cats/parasitology , Ehrlichia canis/isolation & purification , Ehrlichia canis/genetics
19.
Parasit Vectors ; 17(1): 196, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685096

ABSTRACT

BACKGROUND: Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS: Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS: Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS: This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.


Subject(s)
Ixodes , Rickettsia , Animals , Ixodes/microbiology , Italy/epidemiology , Algeria/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Prevalence , Borrelia/genetics , Borrelia/isolation & purification , Borrelia/classification , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/classification , Female , Hybridization, Genetic , Male , RNA, Ribosomal, 16S/genetics , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/classification
20.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566227

ABSTRACT

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Subject(s)
Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Tick-Borne Diseases/microbiology , Rickettsia/genetics , Ixodidae/microbiology , Ehrlichia , Anaplasma , China
SELECTION OF CITATIONS
SEARCH DETAIL