Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.253
Filter
1.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031471

ABSTRACT

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Subject(s)
Cell Hypoxia , Tight Junction Proteins , Tight Junctions , Urothelium , Humans , Urothelium/metabolism , Urothelium/pathology , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Cell Line , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Occludin/metabolism , Occludin/genetics , Claudin-1/metabolism , Claudin-1/genetics , Electric Impedance , Gene Expression Regulation
2.
PLoS One ; 19(6): e0304686, 2024.
Article in English | MEDLINE | ID: mdl-38837998

ABSTRACT

Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1, Claudin-2, Claudin-15, and Occludin, in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Polystyrenes , Tight Junctions , Animals , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Polystyrenes/toxicity , Mice , Male , Female , Tight Junctions/drug effects , Tight Junctions/metabolism , RNA, Ribosomal, 16S/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Occludin/metabolism , Occludin/genetics , Claudins/genetics , Claudins/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics
3.
Appl Microbiol Biotechnol ; 108(1): 384, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896287

ABSTRACT

Bacteriocins have the potential to effectively improve food-borne infections or gastrointestinal diseases and hold promise as viable alternatives to antibiotics. This study aimed to explore the antibacterial activity of three bacteriocins (nisin, enterocin Gr17, and plantaricin RX-8) and their ability to attenuate intestinal barrier dysfunction and inflammatory responses induced by Listeria monocytogenes, respectively. Bacteriocins have shown excellent antibacterial activity against L. monocytogenes without causing any cytotoxicity. Bacteriocins inhibited the adhesion and invasion of L. monocytogenes on Caco-2 cells, lactate dehydrogenase (LDH), trans-epithelial electrical resistance (TEER), and cell migration showed that bacteriocin improved the permeability of Caco-2 cells. These results were attributed to the promotion of tight junction proteins (TJP) assembly, specifically zonula occludens-1 (ZO-1), occludin, and claudin-1. Furthermore, bacteriocins could alleviate inflammation by inhibiting the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways and reducing the secretion of interleukin-6 (IL-6), interleukin-1 ß (IL-1ß) and tumor necrosis factor α (TNF-α). Among three bacteriocins, plantaricin RX-8 showed the best antibacterial activity against L. monocytogenes and the most pronounced protective effect on the intestinal barrier due to its unique structure. Based on our findings, we hypothesized that bacteriocins may inhibit the adhesion and invasion of L. monocytogenes by competing adhesion sites. Moreover, they may further enhance intestinal barrier function by inhibiting the expression of L. monocytogenes virulence factors, increasing the expression of TJP and decreasing the secretion of inflammatory factors. Therefore, bacteriocins will hopefully be an effective alternative to antibiotics, and this study provides valuable insights into food safety concerns. KEY POINTS: • Bacteriocins show excellent antibacterial activity against L. monocytogenes • Bacteriocins improve intestinal barrier damage and inflammatory response • Plantaricin RX-8 has the best protective effect on Caco-2 cells damage.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Listeria monocytogenes , Listeria monocytogenes/drug effects , Bacteriocins/pharmacology , Humans , Caco-2 Cells , Anti-Bacterial Agents/pharmacology , Inflammation , NF-kappa B/metabolism , Bacterial Adhesion/drug effects , Tight Junction Proteins/metabolism , Cytokines/metabolism , Listeriosis/microbiology , Listeriosis/drug therapy , Cell Movement/drug effects
4.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891789

ABSTRACT

This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.


Subject(s)
Blood-Brain Barrier , Tight Junction Proteins , Tight Junctions , Blood-Brain Barrier/metabolism , Humans , Tight Junction Proteins/metabolism , Animals , Tight Junctions/metabolism , Central Nervous System Diseases/metabolism , Signal Transduction
5.
Biomolecules ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927069

ABSTRACT

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Subject(s)
Enterocytes , Hydrolyzable Tannins , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Caco-2 Cells , Enterocytes/drug effects , Enterocytes/metabolism , Humans , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/chemistry , Oxidative Stress/drug effects , Tight Junction Proteins/metabolism
6.
J Affect Disord ; 361: 434-444, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38897301

ABSTRACT

BACKGROUND: Bipolar disorders (BD) are chronic, debilitating disorders. The blood-brain barrier (BBB) has been increasingly investigated in BD. This systematic review aimed to assess the available evidence on the relationship between BD and markers of BBB dysfunction. METHODS: A systematic search in PubMed, Embase, PsycINFO, CINAHL and Web of Science was run where the primary outcomes were BBB markers such as S100B, albumin ratio, matrix metalloproteinase (MMP), cell adhesion molecule (CAM), and tight junction proteins. Techniques included blood, cerebrospinal fluid (CSF), post-mortem, genetic and imaging methods in BD compared to healthy controls. RESULTS: 55 studies were identified, 38 of which found an association between BD and markers of BBB dysfunction. 16/29 studies found increased blood/CSF albumin ratio, S100B, CAMs or MMP levels in BD participants compared to controls. 5/19 post-mortem studies found increased levels of chondroitin sulphate proteoglycans, intercellular CAM, neurexin or claudin-5 mRNA in distinct locations throughout the brain in BD compared to controls. One imaging study identified extensive BBB leakage in 30 % of BD participants, compared to 0 % in controls. LIMITATIONS: The diversity in methodologies used in the included studies makes direct comparison of results challenging. Furthermore, imaging methods are the gold standard, but only one study used them. Other markers are only indicative of BBB permeability. CONCLUSIONS: This review suggests an association between BD and BBB dysfunction. Further research is needed to provide definite answers considering the existing literature's limitations, and to clarify whether this association provides a pathogenic mechanism, or is an epiphenomenon of BD.


Subject(s)
Bipolar Disorder , Blood-Brain Barrier , S100 Calcium Binding Protein beta Subunit , Humans , Biomarkers/blood , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/metabolism , Bipolar Disorder/blood , Cell Adhesion Molecules/genetics , Matrix Metalloproteinases/metabolism , S100 Calcium Binding Protein beta Subunit/blood , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , Tight Junction Proteins/metabolism
7.
Hear Res ; 450: 109048, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852535

ABSTRACT

The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.


Subject(s)
Blood-Brain Barrier , Ear, Inner , Symporters , Tight Junctions , Transcytosis , Animals , Tight Junctions/metabolism , Blood-Brain Barrier/metabolism , Ear, Inner/metabolism , Symporters/metabolism , Symporters/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Cochlea/metabolism , Mice, Inbred C57BL , Capillary Permeability , MARVEL Domain Containing 2 Protein/metabolism , MARVEL Domain Containing 2 Protein/genetics , Mice, Knockout , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Gene Expression Regulation, Developmental , Mice , Permeability
8.
J Vet Intern Med ; 38(4): 2237-2248, 2024.
Article in English | MEDLINE | ID: mdl-38842297

ABSTRACT

BACKGROUND: Epilepsy in dogs and humans is associated with blood-brain barrier (BBB) dysfunction (BBBD), which may involve dysfunction of tight junction (TJ) proteins, matrix metalloproteases, and astrocytes. Imaging techniques to assess BBB integrity, to identify potential treatment strategies, have not yet been evaluated in veterinary medicine. HYPOTHESIS: Some dogs with idiopathic epilepsy (IE) will exhibit BBBD. Identifying BBBD may improve antiepileptic treatment in the future. ANIMALS: Twenty-seven dogs with IE and 10 healthy controls. METHODS: Retrospective, prospective cohort study. Blood-brain barrier permeability (BBBP) scores were calculated for the whole brain and piriform lobe of all dogs by using dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) and subtraction enhancement analysis (SEA). Matrix metalloproteinase-9 (MMP9) activity in serum and cerebrospinal fluid (CSF) was measured and its expression in the piriform lobe was examined using immunofluorescent staining. Gene expression of TJ proteins and astrocytic transporters was analyzed in the piriform lobe. RESULTS: The DCE-MRI analysis of the piriform lobe identified higher BBBP score in the IE group when compared with controls (34.5% vs 26.5%; P = .02). Activity and expression of MMP9 were increased in the serum, CSF, and piriform lobe of IE dogs as compared with controls. Gene expression of Kir4.1 and claudin-5 in the piriform lobe of IE dogs was significantly lower than in control dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: Our findings demonstrate BBBD in dogs with IE and were supported by increased MMP9 activity and downregulation of astrocytic potassium channels and some TJ proteins. Blood brain barrier dysfunction may be a novel antiepileptic therapy target.


Subject(s)
Blood-Brain Barrier , Dog Diseases , Epilepsy , Magnetic Resonance Imaging , Matrix Metalloproteinase 9 , Tight Junction Proteins , Animals , Dogs , Blood-Brain Barrier/metabolism , Dog Diseases/metabolism , Epilepsy/veterinary , Epilepsy/metabolism , Female , Male , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Magnetic Resonance Imaging/veterinary , Retrospective Studies , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Prospective Studies , Case-Control Studies , Cohort Studies
9.
Poult Sci ; 103(8): 103852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861843

ABSTRACT

The objective of this study was to determine the effects of dietary crude protein (CP) levels on intestinal antioxidant status, tight junction proteins expression, and amino acids transporters levels in squabs. A total of 180 pairs of White King parent pigeons approximately 10 mo old were randomly assigned to 5 groups with 6 replications of 6 pairs of parental pigeons each, and were fed with 14, 15, 16, 17, and 18% CP diets for 46 d, respectively. Dietary increasing CP levels increased final body weight (linear and quadratic, P < 0.05), serum urea nitrogen (linear, P<0.05) and triglyceride levels (quadratic, P < 0.05), and reduced kidney relative weight (quadratic, P < 0.05) in squabs. Final body weight of squabs in the 18% CP diet group was higher than that of the 14, 15, and 16% CP diet groups (P < 0.05) but was similar to that of the 17% CP diet group (P > 0.05). Increasing dietary CP levels reduced intestinal malondialdehyde contents (linear and quadratic, P < 0.05) and jejunal total superoxide dismutase (T-SOD) activity (linear, P < 0.05), and enhanced (linear and quadratic, P<0.05) ileal catalase and T-SOD activities in squabs, and these effects were more prominent in the 17% CP diet group. Graded CP levels up-regulated the mRNA expression of intestinal zonula occludens 1 (linear, P < 0.05), solute carrier family 7 members 9 (linear, P < 0.05) and claudin 1 (CLDN1, linear and quadratic, P < 0.05), ileal CLDN3 and solute carrier family 6 members 14 (linear, P < 0.05) but lowered jejunal solute carrier family 6 member 14 (quadratic, P<0.05) mRNA expression in squabs. The effects of dietary CP levels on intestinal tight junction proteins expression were more apparent when its supplemental levels were 18%. These results suggested that increasing parental dietary CP levels ranged from 14 to 18% during breeding period improved growth and intestinal function of squabs, with its recommended level being 17%.


Subject(s)
Animal Feed , Columbidae , Diet , Dietary Proteins , Animals , Columbidae/physiology , Diet/veterinary , Animal Feed/analysis , Dietary Proteins/administration & dosage , Random Allocation , Male , Intestines/drug effects , Intestines/physiology , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Animal Nutritional Physiological Phenomena , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Intestinal Mucosa/metabolism
10.
Tissue Cell ; 89: 102441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878656

ABSTRACT

Transmembrane proteins play key roles in the development of lung cancer. The family with sequence similarity 189 member A2 (FAM189A2) gene encodes a transmembrane structural protein, yet its involvement in lung adenocarcinoma remains largely unexplored. This study elucidated its role in lung adenocarcinoma and its possible molecular mechanism. Our findings revealed diminished expression levels of FAM189A2 in LUAD tissues. Additionally, the activity of LUAD cells was significantly inhibited by overexpression of FAM189A2. Following FAM189A2 overexpression, the expression of OCLN and TJP2 was upregulated in LUAD cells, while CXCR4 expression experiences a notable decrease. Moreover, the coimmunoprecipitation experiment confirmed the direct interaction between FAM189A2 and CXCR4. The infiltration levels of T cells (CD4+ memory resting, CD8+, regulatory), NK cells, B memory cells, endothelial cells and cancer-associated fibroblasts were significantly correlated with FAM189A2 expression. These results indicate FAM189A2 may act as a tumour suppressor in LUAD through tight junction protein (TJP) and CXCR4 regulation. Moreover, FAM189A2 is significantly correlated with the immune microenvironment of LUAD, which may be involved in prognosis and immunotherapeutic efficacy.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Receptors, CXCR4 , Tight Junction Proteins , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Apoptosis/genetics , Tight Junction Proteins/metabolism , Cell Line, Tumor , Female , Male , Tumor Microenvironment , Middle Aged , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Genes, Tumor Suppressor
11.
J Pharmacol Exp Ther ; 390(1): 116-124, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38816229

ABSTRACT

Ulcerative colitis (UC) is an immune-mediated inflammatory disease that can lead to persistent damage and even cancer without any intervention. Conventional treatments can alleviate UC symptoms but are costly and cause various side effects. Tauroursodeoxycholic acid (TUDCA), a secondary bile acid derivative, possesses anti-inflammatory and cytoprotective properties for various diseases, but its potential therapeutic benefits in UC have not been fully explored. Mice were subjected to colitis induction using 3% dextran sulfate sodium (DSS). The therapeutic effect of TUDCA was evaluated by body weight loss, disease activity index (DAI), colon length, and spleen weight ratio. Tissue pathology was assessed using H&E staining, while the levels of pro-inflammatory and anti-inflammatory cytokines in colonic tissue were quantified via ELISA. Tight junction proteins were detected by immunoblotting and intestinal permeability was assessed using fluorescein isothiocyanate (FITC)-dextran. Moreover, the gut microbiota was profiled using high-throughput sequencing of the 16S rDNA gene. TUDCA alleviated the colitis in mice, involving reduced DAI, attenuated colon and spleen enlargement, ameliorated histopathological lesions, and normalized levels of pro-inflammatory and anti-inflammatory cytokines. Furthermore, TUDCA treatment inhibited the downregulation of intestinal barrier proteins, including zonula occludens-1 and occludin, thus reducing intestinal permeability. The analysis of gut microbiota suggested that TUDCA modulated the dysbiosis in mice with colitis, especially for the remarkable rise in Akkermansia TUDCA exerted a therapeutic efficacy in DSS-induced colitis by reducing intestinal inflammation, protecting intestinal barrier integrity, and restoring gut microbiota balance. SIGNIFICANCE STATEMENT: This study demonstrates the potential therapeutic benefits of Tauroursodeoxycholic acid (TUDCA) in ulcerative colitis. TUDCA effectively alleviated colitis symptoms in mice, including reducing inflammation, restoring intestinal barrier integrity and the dysbiosis of gut microbiota. This work highlights the promising role of TUDCA as a potentially alternative treatment, offering new insights into managing this debilitating condition.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Intestinal Mucosa , Taurochenodeoxycholic Acid , Animals , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Mice , Gastrointestinal Microbiome/drug effects , Male , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Colitis/metabolism , Colitis/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Permeability/drug effects , Colon/drug effects , Colon/metabolism , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Tight Junction Proteins/metabolism
12.
Sci Rep ; 14(1): 11885, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789563

ABSTRACT

This study investigated the effects of supplemental nucleotides, autolyzed yeast (Saccharomyces cerevisiae), and sodium butyrate in diets for nursery pigs on growth performance, diarrhea incidence, blood profile, intestinal morphology, mRNA expression of nutrient transporters, inflammatory markers, antioxidant profile, and tight junction proteins in the small intestine. One hundred eighty 21-day-old pigs (5.17 ± 0.57 kg) were assigned in a randomized block design to 1 of 4 dietary treatments: (1) CON: control, basal diet, (2) NUC: CON + nucleotides, (3) YSC: CON + lysed yeast S. cerevisiae, (4) ASB: CON + acidifier sodium butyrate. Pigs were fed for 24 days, phase 1 (21-32 days) and 2 (32-45 days). During phase 1, YSC and ASB improved average daily gain (ADG) and feed conversion (FC) compared with CON. At the overall period, ASB improved ADG and YSC improved FC compared with CON. The NUC diet did not affect growth performance. The ASB increased ileal villus height compared to CON. The YSC and ASB reduced the number of Peyer's patches in the ileum compared with CON. The YSC increased mRNA expression of nutrient transporters (SMCT2, MCT1, and PepT1), tight junction proteins (OCL and ZO-1), antioxidants (GPX), and IL1-ß in the jejunum compared with CON. The ASB increased mRNA expression of nutrient transporters (SGLT1 and MCT1), tight junction proteins (OCL and ZO-1), and antioxidants (GPX and SOD) compared with CON. In conclusion, autolyzed yeast and sodium butyrate promoted growth performance by improving the integrity of the intestinal barrier, the mRNA expression of nutrient transporters, and antioxidant enzymes in the jejunum of nursery pigs whereas supplementation of nucleotides did not show such effects.


Subject(s)
Animal Feed , Butyric Acid , Dietary Supplements , Saccharomyces cerevisiae , Weaning , Animals , Swine/growth & development , Butyric Acid/pharmacology , Butyric Acid/administration & dosage , Saccharomyces cerevisiae/metabolism , Animal Feed/analysis , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Antioxidants/metabolism , Intestines/drug effects
13.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794703

ABSTRACT

Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Hypoxia , Lactobacillus delbrueckii , Oxidative Stress , Probiotics , Animals , Mice , Hypoxia/complications , Probiotics/pharmacology , Male , Altitude Sickness/microbiology , Altitude Sickness/complications , Tight Junction Proteins/metabolism
14.
Food Funct ; 15(12): 6274-6288, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38787733

ABSTRACT

Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.


Subject(s)
Intestinal Absorption , Oligopeptides , Tight Junctions , Oligopeptides/metabolism , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Humans , Tight Junctions/metabolism , Animals , Biological Transport , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism
15.
Food Funct ; 15(12): 6359-6373, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38787699

ABSTRACT

The aim of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on lipopolysaccharide (LPS)-induced intestinal barrier injury in mice. Our results demonstrated that the oral administration of Fx (50 and 200 mg per kg body weight per day) for consecutive 7 days significantly alleviated the severity of LPS-induced intestinal barrier injury in mice, as evidenced by attenuating body weight loss, improving intestinal permeability, and ameliorating intestinal morphological damage such as reduction in the ratio of the villus length to the crypt depth (V/C), intestinal epithelium distortion, goblet cell depletion, and low mucin 2 (MUC2) expression. Fx also significantly mitigated LPS-induced excessive apoptosis of intestinal epithelial cells (IECs) and curbed the decrease of tight junction proteins including claudin-1, occludin, and zonula occludens-1 in the ileum and colon. Additionally, Fx effectively alleviated LPS-induced extensive infiltration of macrophages and neutrophils into the intestinal mucosa, the overproduction of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1beta (IL-1ß) and IL-6, and gasdermin D (GSDMD)-mediated pyroptosis of IECs. The underlying mechanisms might be associated with inhibiting the activation of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathways. Moreover, Fx also notably restrained intestinal reactive oxygen species (ROS), malondialdehyde and protein carbonylation levels in LPS-treated mice, and it might be mediated by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Overall, these findings indicated that Fx might be developed as a potential effective dietary supplement to prevent intestinal barrier injury.


Subject(s)
Intestinal Mucosa , Lipopolysaccharides , Xanthophylls , Animals , Mice , Xanthophylls/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lipopolysaccharides/adverse effects , Male , Apoptosis/drug effects , NF-kappa B/metabolism , Permeability , Mice, Inbred C57BL , Tight Junction Proteins/metabolism , Cytokines/metabolism
16.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
17.
Phytomedicine ; 130: 155730, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759313

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a prolonged inflammatory disease of the gastrointestinal tract. Current therapeutic options remain limited, underscoring the imperative to explore novel therapeutic strategies. Narirutin (NR), a flavonoid naturally present in citrus fruits, exhibits excellent anti-inflammatory effects in vitro, yet its in vivo efficacy, especially in UC, remains underexplored. OBJECTIVE: This work examined the effect of NR on dextrose sodium sulfate (DSS)-induced UC in mice in vivo, with a specific focus on the role of gut flora in it. METHODS: The effects of NR (10, 20, and 40 mg/kg) on DSS-induced UC in mice were investigated by monitoring changes in body weight, disease activity index (DAI) scores, colon length, and histological damage. Colonic levels of pro-inflammatory mediators, tight junction (TJ) proteins, and inflammation-related signaling pathway proteins were analyzed via enzyme-linked immunosorbent assay, western blot, and immunofluorescence. The role of gut microbiota in NR against colitis was analyzed through 16S rRNA sequencing, flora clearance assays, and fecal microbiota transplantation (FMT) assays. RESULTS: NR administration suppressed DSS-induced colitis as reflected in a decrease in body weight loss, DAI score, colon length shortening, and histological score. Furthermore, NR administration preserved the integrity of the DSS-induced intestinal barrier by inhibiting the reduction of TJ proteins (claudin3, occludin, and zonula occludens-1). Moreover, NR administration markedly repressed the activation of the toll-like receptor 4-mitogen-activated protein kinase/nuclear factor-κB pathway and reduced the amount of pro-inflammatory mediators in the colon. Importantly, the results of 16S rRNA sequencing showed that the intestinal flora of mice with colitis exhibited richer microbial diversity following NR administration, with elevated abundance of Lactobacillaceae (Lactobacillus) and decreased abundance of Bacteroidaceae (Bacteroides) and Shigella. In addition, the anti-colitis effect of NR almost disappeared after gut flora clearance. Further FMT assay also validated this gut flora-dependent protective mechanism of NR. CONCLUSION: Our findings suggest that NR is a prospective natural compound for the management of UC by modulating intestinal flora.


Subject(s)
Colon , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Colon/drug effects , Colon/pathology , Glucose/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate , Flavanones/pharmacology , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , NF-kappa B/metabolism , Fecal Microbiota Transplantation , Colitis/chemically induced , Colitis/drug therapy , Citrus/chemistry , Tight Junction Proteins/metabolism , Sulfates/pharmacology
18.
AIDS ; 38(9): 1292-1303, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38704619

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorders (HAND) still affects persons with HIV (PWH) and their pathogenesis is not completely understood. We aimed to explore the association between plasma and cerebrospinal fluid (CSF) markers of blood-brain barrier (BBB) impairment and HAND in untreated PWH. DESIGN: Cross-sectional study. METHODS: We enrolled untreated PWH, who underwent blood examinations and lumbar puncture to measure inflammation (IL-15, TNF-α), BBB damage (zonulin and tight junction proteins, tight junction proteins: occludin, claudin-5) and endothelial adhesion molecules (VCAM-1, ICAM-1). A comprehensive neurocognitive battery was used to diagnose HAND (Frascati criteria). RESULTS: Twenty-one patients (21/78, 26.9%) patients presented HAND (100% ANI). HAND patients displayed more frequently non-CNS AIDS-defining conditions, lower nadir CD4 + T cells and increased CD4 + T-cell exhaustion (lower CD4 + CD127 + and CD4 + CD45RA + T-cell percentages), in comparison to individuals without cognitive impairment. Furthermore, HAND was characterized by higher plasma inflammation (IL-15) but lower CSF levels of biomarkers of BBB impairment (zonulin and occludin). The association between BBB damage with HAND was confirmed by fitting a multivariable logistic regression. CSF/plasma endothelial adhesion molecules were not associated with HAND but with a poor performance in different cognitive domains. CONCLUSION: By showing heightened inflammation and BBB impairment, our study suggests loss of BBB integrity as a possible factor contributing to the development of HAND in untreated PWH.


Subject(s)
Blood-Brain Barrier , HIV Infections , Tight Junction Proteins , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Tight Junction Proteins/metabolism , HIV Infections/complications , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Cognitive Dysfunction/etiology
19.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731882

ABSTRACT

In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).


Subject(s)
Chronic Inducible Urticaria , Sweat Glands , Sweat , Tight Junctions , Sweat/chemistry , Tight Junctions/metabolism , Sweat Glands/metabolism , Ergometry , Tight Junction Proteins/metabolism , Chronic Inducible Urticaria/metabolism , Chronic Inducible Urticaria/pathology , Humans , Male , Female , Adult , Receptor, Muscarinic M3/metabolism , Biopsy, Needle
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732086

ABSTRACT

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Subject(s)
Granulocytes , Immune System , Macrophages , Receptors, Lipoprotein , Tight Junction Proteins , Transcription Factors , Tight Junction Proteins/metabolism , Humans , Colon , Organoids , HT29 Cells , Granulocytes/metabolism , Macrophages/metabolism , Immune System/metabolism , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL