Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.553
1.
Planta ; 260(1): 17, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834908

MAIN CONCLUSION: Wheat lines harboring wild-relative chromosomes can be karyotypically unstable during long-term maintenance. Tissue culture exacerbates chromosomal instability but appears inefficient to induce somatic homoeologous exchange between alien and wheat chromosomes. We assessed if long-term refrigerator storage with regular renewal via self-fertilization, a widely used practice for crop germplasm maintenance, would ensure genetic fidelity of alien addition lines, and explored the possibility of inducing somatic homoeologues exchange by tissue culture. We cytogenetically characterized sampled stock seeds of originally confirmed 12 distinct wheat-Thinopyrum intermedium alien addition lines (dubbed TAI lines), and subjected immature embryos of the TAI lines to tissue culture. We find eight of the 12 TAI lines were karyotypically departed from their original identity as bona fide disomic alien addition lines due to extensive loss of whole-chromosomes of both Th. intermedium and wheat origins during the ca. 3-decade storage. Rampant numerical chromosome variations (NCVs) involving both alien and wheat chromosomes were detected in regenerated plants of all 12 studied TAI lines, but at variable rates among the wheat sub-genomes and chromosomes. Compared with NCVs, structural chromosome variations (SCVs) occurred at substantially lower rates, and no SCV involving the added alien chromosomes was observed. The NCVs manifested only moderate effects on phenotypes of the regenerated plants under field conditions.


Chromosomal Instability , Chromosomes, Plant , Tissue Culture Techniques , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development , Poaceae/genetics , Poaceae/physiology , Karyotype , Karyotyping
2.
PLoS One ; 19(5): e0298299, 2024.
Article En | MEDLINE | ID: mdl-38722945

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Agrobacterium tumefaciens , Helianthus , Plants, Genetically Modified , Transformation, Genetic , Helianthus/genetics , Helianthus/microbiology , Helianthus/growth & development , Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Tissue Culture Techniques/methods , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Breeding/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development
3.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791362

In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.


Osseointegration , Tissue Culture Techniques , Titanium , Humans , Tissue Culture Techniques/methods , X-Ray Microtomography , Bone and Bones/cytology , Biocompatible Materials , Prostheses and Implants , Cancellous Bone/cytology
4.
Theriogenology ; 224: 58-67, 2024 Aug.
Article En | MEDLINE | ID: mdl-38749260

Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.


Melatonin , Ovarian Follicle , Oxidative Stress , Vitrification , Animals , Female , Cats , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovarian Follicle/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Ovary/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Tissue Culture Techniques/veterinary , Apoptosis/drug effects
5.
Theriogenology ; 225: 55-66, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38795511

This study aims to evaluate the effects of adding alpha lipoic acid (ALA) to the in vitro ovarian tissue culture medium, either fresh or after vitrification/warming. For this purpose, 10 ovaries from five adult sheep were used. Each pair of ovaries gave rise to 16 fragments and were randomly distributed into two groups: fresh (n = 8) and vitrified (n = 8). Two fresh fragments were fixed immediately and considered the control, while another six were cultured in vitro for 14 days in the absence; presence of a constant (100 µM/0-14 day) or dynamic (50 µM/day 0-7 and 100 µM/day 8-14) concentration of ALA. As for the vitrified fragments, two were fixed and the other six were cultured in vitro under the same conditions described for the fresh group. All the fragments were subjected to morphological evaluation, follicular development and stromal density (classical histology), DNA fragmentation (TUNEL), senescence (Sudan Black), fibrosis (Masson's Trichome), and endoplasmic reticulum stress (immunofluorescence). Measurements of the antioxidant capacity against the free radicals 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and estradiol (E2) levels in the culture medium was performed. The results showed that in the absence of ALA, in vitro culture of vitrified ovarian fragments showed a significant reduction (P < 0.05) in follicular morphology and increased the presence of senescence and tissue fibrosis (P < 0.05). Dynamic ALA maintained E2 levels unchanged (P > 0.05) until the end of vitrified ovarian tissue culture and controlled the levels of ABTS and DPPH radicals in fresh or vitrified cultures. Therefore, it is concluded that ALA should be added to the vitrified ovarian tissue in vitro culture medium to reduce the damage that leads to loss of ovarian function. To ensure steroidogenesis during in vitro culture, ALA should be added dynamically (different concentrations throughout culture).


Thioctic Acid , Tissue Culture Techniques , Animals , Female , Thioctic Acid/pharmacology , Sheep , Tissue Culture Techniques/veterinary , Ovary/drug effects , Ovarian Follicle/drug effects , Antioxidants/pharmacology , Vitrification , Cryopreservation/veterinary
6.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1309-1322, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38783799

In recent years, organoids have become a crucial model for studying the physiopathological processes in tissues and organs. The emergence of organoids has promoted the research on the mechanisms of the occurrence and clinical translation of diseases. Among these organoid models, colorectal organoid models are increasingly mature. Colorectal cancer is a common gastrointestinal malignant tumor worldwide, posing a serious threat to human health. Colorectal organoids provide a new model for studying the pathophysiology, drug sensitivity, and precision medicine of colorectal cancer. The conventional culture systems of colorectal organoids focus more on the role of biochemical factors, neglecting the fact that the gut is also influenced by biophysical signals in vivo. Therefore, in this review, we discuss the theories related to colorectal organoids and biomechanics and expound the effects of biomechanics on colorectal organoid culture.


Colorectal Neoplasms , Organoids , Organoids/cytology , Humans , Biomechanical Phenomena , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colon/cytology , Cell Culture Techniques/methods , Rectum/cytology , Tissue Culture Techniques/methods
7.
Methods Mol Biol ; 2803: 61-74, 2024.
Article En | MEDLINE | ID: mdl-38676885

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1 × 1 cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6 days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12 days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12 days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.


Myocardium , Myocytes, Cardiac , Tissue Culture Techniques , Humans , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Tissue Culture Techniques/methods , Animals , Heart/physiology , Electric Stimulation , Stress, Mechanical
8.
Physiol Plant ; 176(2): e14312, 2024.
Article En | MEDLINE | ID: mdl-38651242

In plant tissue culture, callus formation serves as a crucial mechanism for regenerating entire plants, enabling the differentiation of diverse tissues. Researchers have extensively studied the influence of media composition, particularly plant growth regulators, on callus behavior. However, the impact of the physical properties of the media, a well-established factor in mammalian cell studies, has received limited attention in the context of plant tissue culture. Previous research has highlighted the significance of gelling agents in affecting callus growth and differentiation, with Agar, Phytagel, and Gelrite being the most used options. Despite their widespread use, a comprehensive comparison of their physical properties and their subsequent effects on callus behavior remains lacking. Our study provides insights into optimizing plant tissue culture media by analyzing the physical properties of gelling agents and their impact on callus induction and differentiation. We compared the phenotypes of calli grown on media composed of these different gelling agents and correlated them to the physical properties of these media. We tested water retention, examined pore size using cryo-SEM, measured the media mechanical properties, and studied diffusion characteristics. We found that the mechanical properties of the media are the only quality correlated with callus phenotype.


Culture Media , Culture Media/chemistry , Gels , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Tissue Culture Techniques/methods , Agar/chemistry , Cell Differentiation/drug effects
9.
Stem Cells Dev ; 33(9-10): 239-248, 2024 May.
Article En | MEDLINE | ID: mdl-38573004

Replacement teeth develop from the successional dental lamina (SDL). Understanding how SDL transitions from quiescence to initiation is crucial for preserving dental lamina stem cells in the jawbone microenvironment and for complete tooth regeneration. Miniature pigs are good models for studying human tooth replacement because of their similarities to humans. However, the molecular mechanisms and cellular composition that initiate SDL development remain unclear. One possible reason for this is the limitations of the current methods for culturing SDL in vitro, such as the inability to directly observe tooth morphological changes during culture and low tissue viability. This study aimed to improve the in vitro culture method for SDL. Using a McIlwain Tissue Chopper, we obtained mandibular slices containing deciduous canine and SDL of permanent canine. The slices were approximately 500 µm thick and were cultured on a Transwell membrane supported with metal grids over medium. The SDL developed into the bud stage on the second day and entered the cap stage on the fifth day in vitro. The expression of proliferation markers, cell death markers, and key odontogenetic genes in vitro was similar to that observed in vivo. In conclusion, we successfully applied a slice culture system to the SDL of miniature pigs. This slice culture method allowed us to directly visualize SDL initiation and further elucidate the molecular mechanisms underlying the initiation of permanent tooth development.


Swine, Miniature , Animals , Swine , Odontogenesis , Tooth/cytology , Cell Proliferation , Tissue Culture Techniques/methods , Mandible/cytology , Stem Cells/cytology , Stem Cells/metabolism
10.
Plant Cell Rep ; 43(5): 128, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652306

KEY MESSAGE: GWAS identified six loci at 25 kb downstream of WAK2, a crucial gene for cell wall and callus formation, enabling development of a SNP marker for enhanced callus induction potential. Efficient callus induction is vital for successful oil palm tissue culture, yet identifying genomic loci and markers for early detection of genotypes with high potential of callus induction remains unclear. In this study, immature male inflorescences from 198 oil palm accessions (dura, tenera and pisifera) were used as explants for tissue culture. Callus induction rates were collected at one-, two- and three-months after inoculation (C1, C2 and C3) as phenotypes. Resequencing generated 11,475,258 high quality single nucleotide polymorphisms (SNPs) as genotypes. GWAS was then performed, and correlation analysis revealed a positive association of C1 with both C2 (R = 0.81) and C3 (R = 0.50), indicating that C1 could be used as the major phenotype for callus induction rate. Therefore, only significant SNPs (P ≤ 0.05) in C1 were identified to develop markers for screening individuals with high potential of callus induction. Among 21 significant SNPs in C1, LD block analysis revealed six SNPs on chromosome 12 (Chr12) potentially linked to callus formation. Subsequently, 13 SNP markers were identified from these loci and electrophoresis results showed that marker C-12 at locus Chr12_12704856 can be used effectively to distinguish the GG allele, which showed the highest probability (69%) of callus induction. Furthermore, a rapid SNP variant detection method without electrophoresis was established via qPCR-based melting curve analysis. Our findings facilitated marker-assisted selection for specific palms with high potential of callus induction using immature male inflorescence as explant, aiding ortet palm selection in oil palm tissue culture.


Arecaceae , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Arecaceae/genetics , Tissue Culture Techniques/methods , Phenotype , Genotype , Genetic Loci/genetics , Linkage Disequilibrium/genetics , Quantitative Trait Loci/genetics
11.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38194967

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Brain , Organoids , Humans , Brain/cytology , Brain/growth & development , Brain/metabolism , Central Nervous System/metabolism , Extracellular Matrix/metabolism , Pluripotent Stem Cells/metabolism , Prosencephalon/cytology , Tissue Culture Techniques , Stem Cells/metabolism , Morphogenesis
12.
Mutat Res ; 828: 111850, 2024.
Article En | MEDLINE | ID: mdl-38160536

In vitro mutation breeding in vegetatively propagated crops like banana offers a benefit in screening for beneficial variants in plant cells or cultured tissues. An attempt was made to induce mutants and determine the lethal dose, as it is the prerequisite to optimize the concentration and duration of the mutagen used to recover a larger population in mutation research. Shoot tip cultures were treated for 2 and 4 h at six different EMS concentrations ranging from 80 mM to 160 mM, whereas proliferating multiple shoots were exposed for 30 and 60 min at six different EMS concentrations ranging from 8 mM to 40 mM. Survival percentage, shoot length, and number of shoots reduced linearly and significantly as concentration and duration increased in both shoot tips and proliferating multiple buds. The probit curve-based analysis of mortality of treated explants revealed that the LD50 was 155.83 mM for 2 h and 113.72 mM for 4 h, respectively for shoot tip cultures, whereas for proliferating multiple buds, the LD50 value was adjusted to 39.11 mM for 30 min and 30.41 mM for 60 min. 160 mM EMS for 4 h resulted in a shorter shoot, a longer rooting duration, a lesser number of roots, and decreased root development. In proliferating multiple shoots, the smallest shoot, longest rooting duration, least number of roots, and shortest root were observed in 40 mM EMS for 60 min. Similar reductions in growth parameters were observed in proliferating multiple shoots at higher exposure to EMS for a longer duration.


Ethyl Methanesulfonate , Musa , Mutagens , Plant Shoots , Musa/genetics , Musa/growth & development , Musa/drug effects , Ethyl Methanesulfonate/toxicity , Ethyl Methanesulfonate/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/genetics , Mutagens/toxicity , Mutagens/pharmacology , Mutation , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Lethal Dose 50 , Dose-Response Relationship, Drug , Mutagenesis , Tissue Culture Techniques
13.
Mol Biol Rep ; 50(11): 9353-9366, 2023 Nov.
Article En | MEDLINE | ID: mdl-37819494

BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming. METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants. CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.


CRISPR-Cas Systems , Oryza , CRISPR-Cas Systems/genetics , Oryza/genetics , Oryza/metabolism , Cotyledon/genetics , Tissue Culture Techniques/methods , Plants, Genetically Modified/genetics , Agrobacterium tumefaciens/genetics
14.
Sci Rep ; 13(1): 11773, 2023 07 21.
Article En | MEDLINE | ID: mdl-37479791

In vitro ovarian cortical tissue culture, followed by culture of isolated secondary follicles, is a promising future option for production of mature oocytes. Although efforts have been made to improve the culture outcome by changing the medium composition, so far, most studies used static culture systems. Here we describe the outcome of 7 days cultures of bovine and human ovarian cortical tissue in a dynamic system using a novel perifusion bioreactor in comparison to static culture in conventional and/or gas permeable dishes. Findings show that dynamic culture significantly improves follicle quality and viability, percentage and health of secondary follicles, overall tissue health, and steroid secretion in both species. Model predictions suggest that such amelioration can be mediated by an enhanced oxygen availability and/or by fluid-mechanical shear stresses and solid compressive strains exerted on the tissue.


Ovarian Follicle , Ovary , Female , Humans , Animals , Cattle , Oogenesis , Oocytes , Tissue Culture Techniques
15.
Front Endocrinol (Lausanne) ; 14: 1193178, 2023.
Article En | MEDLINE | ID: mdl-37305049

Establishing and maintaining a newly set-up cryobank for ovarian tissue in a university setting requires at least 1 year's notice to start financial, spatial, lab equipment, and employee acquisition planning. Right before and after the start of the cryobank, the newly founded team should introduce itself to the hospitals and local and national health systems via mail, print flyers, and symposia in order to share the possibilities and the knowledge. Potential referrers should be provided with standard operating procedures and advice on getting used to the new system. Especially in the first year after the establishment, all procedures should be internally audited in order to avoid possible difficulties.


Cryopreservation , Freezing , Infertility, Female , Ovary , Tissue Culture Techniques , Ovary/cytology , Ovary/physiology , Humans , Female
16.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Article En | MEDLINE | ID: mdl-37172562

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Neural Tube Defects , Neurulation , Tissue Culture Techniques , Animals , Humans , Blastocyst , Embryo, Mammalian , Embryonic Development , Macaca fascicularis , Neural Tube Defects/genetics , Neural Tube Defects/pathology , Tissue Culture Techniques/methods
17.
Biomech Model Mechanobiol ; 22(3): 1035-1047, 2023 Jun.
Article En | MEDLINE | ID: mdl-36922420

To ensure the functional properties of an organ generated by the process of decellularization and recellularization, the initial density and distribution of seeding cells in the parenchymal space should be maximized. However, achieving a uniform distribution of cells across the entire organ is not straightforward because of vessel occlusion. This study assessed vessel occlusion during recellularization under different conditions. A combination of the electrical analog permeability (EPA) model, computational fluid dynamics (CFD), and discrete element method (DEM) was employed to describe the vessel occlusion phenomenon. In particular, realistic flow distributions in vascular trees of the decellularized organ were indicated by the EPA model. The cell suspension flow was modeled by a coupled CFD-DEM model, whereby living cells were presented as a discrete phase (solved by the DEM solver), and the culture medium was modeled as the fluid phase (solved by CFD solver). The cell suspension velocity was reduced up to 47% after decellularization, which directly affected cell movement. Simulation results also indicate that the occurrence of vessel occlusion was promoted by gravity direction in the asymmetric bifurcation and increased as the cell concentration increased. The assessment of vessel occlusion under different conditions was quantitatively investigated. The model provides insights into the dynamics of cells in the vessel compartment, allowing for the selection of optimum seeding parameters for the recellularization process.


Computer Simulation , Tissue Culture Techniques , Vascular Diseases
18.
Adv Mater ; 35(2): e2207397, 2023 Jan.
Article En | MEDLINE | ID: mdl-36271729

Cultivating meat from muscle stem cells in vitro requires 3D edible scaffolds as the supporting matrix. Electrohydrodynamic (EHD) printing is an emerging 3D-printing technology for fabricating ultrafine fibrous scaffolds with high precision microstructures for biomedical applications. However, edible EHD-printed scaffolds remain scarce in cultured meat (CM) production partly due to special requirements with regard to the printability of ink. Here, hordein or secalin is mixed, which are cereal prolamins extracted from barley or rye, with zein to produce pure prolamin-based inks, which exhibit favorable printability similar to common polycaprolactone ink. Zein/hordein and zein/secalin scaffolds with highly ordered tessellated structures are successfully fabricated after optimizing printing conditions. The prolamin scaffolds demonstrated good water stability and in vitro degradability due to the porous fiber surface, which is spontaneously generated by culturing muscle cells for 1 week. Moreover, mouse skeletal myoblasts (C2C12) and porcine skeletal muscle satellite cells (PSCs) can adhere and proliferate on the fibrous matrix, and a CM slice is produced by culturing PSCs on prolamin scaffolds with high tissue similarity. The upregulation of myogenic proteins shows that the differentiation process is triggered in the 3D culture, demonstrating the great potential of prolamin scaffolds in CM production.


Meat , Printing, Three-Dimensional , Tissue Culture Techniques , Tissue Scaffolds , Zein , Animals , Mice , Glutens , Prolamins , Swine , Tissue Engineering , Tissue Scaffolds/chemistry , Food Handling
20.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article En | MEDLINE | ID: mdl-36499274

The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.


Meibomian Gland Dysfunction , Meibomian Glands , Animals , Mice , Lipids , Meibomian Gland Dysfunction/metabolism , Meibomian Glands/metabolism , Melanocortins/metabolism , Tears/metabolism , Tissue Culture Techniques , Microphysiological Systems
...