Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.827
Filter
1.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095895

ABSTRACT

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Subject(s)
Ovarian Follicle , Polyesters , Tissue Engineering , Tissue Scaffolds , Female , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Tissue Scaffolds/chemistry , Animals , Polyesters/chemistry , Tissue Engineering/methods , Sheep , Ovary/growth & development , Ovary/cytology , Oogenesis/physiology , Oogenesis/drug effects , Bioengineering/methods , Reproductive Techniques, Assisted , Fertilization in Vitro/methods
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000200

ABSTRACT

The field of regenerative medicine is increasingly in need of effective and biocompatible materials for tissue engineering. Human acellular dermal matrix (hADM)-derived collagen matrices stand out as a particularly promising candidate. Their ability to preserve structural integrity, coupled with exceptional biocompatibility, positions them as a viable choice for tissue replacement. However, their clinical application has been largely confined to serving as scaffolds. This study aims to expand the horizon of clinical uses for collagen sheets by exploring the diverse cutting-edge clinical demands. This review illustrates the clinical utilizations of collagen sheets beyond traditional roles, such as covering skin defects or acting solely as scaffolds. In particular, the potential of Epiflex®, a commercially available and immediately clinically usable allogeneic membrane, will be evaluated. Collagen sheets have demonstrated efficacy in bone reconstruction, where they can substitute the induced Masquelet membrane in a single-stage procedure, proving to be clinically effective and safe. The application of these membranes allow the reconstruction of substantial tissue defects, without requiring extensive plastic reconstructive surgery. Additionally, they are found to be apt for addressing osteochondritis dissecans lesions and for ligament reconstruction in the carpus. The compelling clinical examples showcased in this study affirm that the applications of human ADM extend significantly beyond its initial use for skin defect treatments. hADM has proven to be highly successful and well-tolerated in managing various etiologies of bone and soft tissue defects, enhancing patient care outcomes. In particular, the application from the shelf reduces the need for additional surgery or donor site defects.


Subject(s)
Acellular Dermis , Collagen , Tissue Engineering , Tissue Scaffolds , Humans , Collagen/chemistry , Tissue Engineering/methods , Acellular Dermis/metabolism , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Regenerative Medicine/methods
3.
Biointerphases ; 19(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39051723

ABSTRACT

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.


Subject(s)
Cell Differentiation , Fibroblast Growth Factor 2 , Nanofibers , Stem Cells , Tissue Scaffolds , Transforming Growth Factor beta1 , Animals , Fibroblast Growth Factor 2/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Mice , Nanofibers/chemistry , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/physiology , Chondrogenesis/drug effects , Cartilage/drug effects , Cartilage/cytology , Cartilage/physiology , Adipose Tissue/cytology , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/physiology , Cells, Cultured , Tissue Engineering/methods
4.
Biomed Mater ; 19(5)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986475

ABSTRACT

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Subject(s)
Biocompatible Materials , Bone Regeneration , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osteoblasts , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Zinc Oxide , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Polyesters/chemistry , Bone Regeneration/drug effects , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing , Bone and Bones , Guided Tissue Regeneration/methods , Humans , Animals , Alkaline Phosphatase/metabolism , Elastic Modulus , Porosity , Surface Properties
5.
Biofabrication ; 16(4)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39008993

ABSTRACT

Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.


Subject(s)
Gelatin , Ink , Poloxamer , Printing, Three-Dimensional , Tissue Scaffolds , Anisotropy , Gelatin/chemistry , Poloxamer/chemistry , Humans , Tissue Scaffolds/chemistry , Tissue Engineering , Polyethylene Glycols/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Methacrylates/chemistry , Mice
6.
ACS Appl Mater Interfaces ; 16(29): 37707-37721, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39001812

ABSTRACT

The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.


Subject(s)
Anti-Bacterial Agents , Durapatite , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Rats , Durapatite/chemistry , Durapatite/pharmacology , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Roxithromycin/chemistry , Roxithromycin/pharmacology , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Bone and Bones/drug effects , Cell Proliferation/drug effects , Mice
7.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39008994

ABSTRACT

3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and replicating complex patterns that surpass human capabilities. However, the integration of AI in tissue engineering is often hampered by the lack of comprehensive and reliable data. This study addresses these challenges by providing one of the most extensive datasets on 3D-printed scaffolds. It provides the most comprehensive open-source dataset and employs various AI techniques, from unsupervised to supervised learning. This dataset includes detailed information on 1171 scaffolds, featuring a variety of biomaterials and concentrations-including 60 biomaterials such as natural and synthesized biomaterials, crosslinkers, enzymes, etc.-along with 49 cell lines, cell densities, and different printing conditions. We used over 40 machine learning and deep learning algorithms, tuning their hyperparameters to reveal hidden patterns and predict cell response, printability, and scaffold quality. The clustering analysis using KMeans identified five distinct ones. In classification tasks, algorithms such as XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, and LightGBM demonstrated superior performance, achieving higher accuracy and F1 scores. A fully connected neural network with six hidden layers from scratch was developed, precisely tuning its hyperparameters for accurate predictions. The developed dataset and the associated code are publicly available onhttps://github.com/saeedrafieyan/MLATEto promote future research.


Subject(s)
Machine Learning , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering , Bioprinting/methods , Biocompatible Materials/chemistry , Algorithms , Neural Networks, Computer , Cell Line
8.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39019062

ABSTRACT

Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.


Subject(s)
Cell Culture Techniques, Three Dimensional , Spheroids, Cellular , Spheroids, Cellular/cytology , Cell Culture Techniques, Three Dimensional/methods , Humans , Tissue Engineering/methods , Organoids/cytology , Hair Follicle/cytology , Animals , Cell Line, Tumor , Tissue Scaffolds/chemistry , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation
9.
Biomed Mater ; 19(5)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39025109

ABSTRACT

Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.


Subject(s)
Bone and Bones , Cryogels , Gelatin , Simvastatin , Tissue Engineering , Tissue Scaffolds , Simvastatin/chemistry , Simvastatin/pharmacology , Tissue Engineering/methods , Gelatin/chemistry , Cryogels/chemistry , Tissue Scaffolds/chemistry , Porosity , Materials Testing , Bone Regeneration/drug effects , Biocompatible Materials/chemistry , Humans , Cross-Linking Reagents/chemistry
10.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031923

ABSTRACT

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Subject(s)
Bone Regeneration , Indoles , Nanoparticles , Osteogenesis , Polymers , Reactive Oxygen Species , Tissue Scaffolds , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Polymers/chemistry , Polymers/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Nanofibers/chemistry , Hydrogen Peroxide/chemistry , Aging/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Cell Differentiation/drug effects , Cell Line , Osteoblasts/metabolism
11.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38949689

ABSTRACT

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanofibers , Nanofibers/chemistry , Animals , Mice , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/methods , Cell Line, Tumor , Melanins , Biomarkers/analysis , Tissue Scaffolds/chemistry , Exocytosis , Melanoma, Experimental/pathology , Melanoma, Experimental/diagnosis
12.
Biotechnol J ; 19(7): e2300751, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987220

ABSTRACT

The compatibility of bone graft substitutes (BGS) with mesenchymal stem cells (MSCs) is an important parameter to consider for their use in repairing bone defects as it eventually affects the clinical outcome. In the present study, a few commercially available BGS - ß-tricalcium phosphate (ß-TCP), calcium sulfate, gelatin sponge, and different forms of hydroxyapatite (HAP) were screened for their interactions with MSCs from adipose tissue (ADSCs). It was demonstrated that HAP block favorably supported ADSC viability, morphology, migration, and differentiation compared to other scaffolds. The results strongly suggest the importance of preclinical evaluation of bone scaffolds for their cellular compatibility. Furthermore, the bone regenerative potential of HAP block with ADSCs was evaluated in an ex vivo bone defect model developed using patient derived trabecular bone explants. The explants were cultured for 45 days in vitro and bone formation was assessed by expression of osteogenic genes, ALP secretion, and high resolution computed tomography. Our findings confirmed active bone repair process in ex vivo settings. Addition of ADSCs significantly accelerated the repair process and improved bone microarchitecture. This ex vivo bone defect model can emerge as a viable alternative to animal experimentation and also as a potent tool to evaluate patient specific bone therapeutics under controlled conditions.


Subject(s)
Adipose Tissue , Bone Regeneration , Cell Differentiation , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Humans , Adipose Tissue/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Femur Head , Osteogenesis , Cells, Cultured , Bone Substitutes/chemistry , Durapatite/chemistry , Calcium Phosphates/chemistry
13.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953207

ABSTRACT

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Serum Albumin, Human/chemistry , Glycine/chemistry , Glycine/pharmacology , Glycine/analogs & derivatives , Fibroblasts/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Proliferation/drug effects , Amyloid/chemistry , Amyloid/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Temperature , Isoquinolines
14.
Nanoscale ; 16(28): 13230-13246, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38953604

ABSTRACT

Given the creation of materials based on nanoscale science, nanotechnology must be combined with other disciplines. This role is played by the new concept of nanoarchitectonics, the process of constructing functional materials from nanocomponents. Nanoarchitectonics may be highly compatible with applications in biological systems. Conversely, it would be meaningful to consider nanoarchitectonics research oriented toward biological applications with a focus on materials systems. Perhaps, hydrogels are promising as a model medium to realize nanoarchitectonics in biofunctional materials science. In this review, we will provide an overview of some of the defined targets, especially for tissue engineering. Specifically, we will discuss (i) hydrogel bio-inks for 3D bioprinting, (ii) dynamic hydrogels as an artificial extracellular matrix (ECM), and (iii) topographical hydrogels for tissue organization. Based on these backgrounds and conceptual evolution, the construction strategies and functions of bio-gel nanoarchitectonics in medical applications and tissue engineering will be discussed.


Subject(s)
Bioprinting , Extracellular Matrix , Hydrogels , Tissue Engineering , Hydrogels/chemistry , Humans , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Animals , Biocompatible Materials/chemistry , Nanostructures/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Nanotechnology
15.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958205

ABSTRACT

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Subject(s)
Chondroitin Sulfates , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Rats , Heart Valve Prosthesis , Tissue Engineering , Heart Valves/drug effects , Heart Valves/chemistry , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Materials Testing , Humans , Cross-Linking Reagents/chemistry , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Swine
16.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968558

ABSTRACT

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Subject(s)
Bone Regeneration , Starch , Tissue Scaffolds , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats , Starch/chemistry , Humidity , Humans , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Diphosphates/chemistry , Diphosphates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Calcium Pyrophosphate/chemistry , Calcium Pyrophosphate/pharmacology , Schwann Cells/drug effects , Schwann Cells/cytology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Skull/drug effects
17.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005189

ABSTRACT

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Subject(s)
Biocompatible Materials , Materials Testing , Regeneration , Tendons , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tendons/cytology , Animals , Swine , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering , Cell Proliferation/drug effects , Particle Size , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Polyesters/chemistry
18.
Theranostics ; 14(10): 4014-4057, 2024.
Article in English | MEDLINE | ID: mdl-38994032

ABSTRACT

Background: The comprehensive management of diabetic bone defects remains a substantial clinical challenge due to the hostile regenerative microenvironment characterized by aggravated inflammation, excessive reactive oxygen species (ROS), bacterial infection, impaired angiogenesis, and unbalanced bone homeostasis. Thus, an advanced multifunctional therapeutic platform capable of simultaneously achieving immune regulation, bacterial elimination, and tissue regeneration is urgently designed for augmented bone regeneration under diabetic pathological milieu. Methods and Results: Herein, a photoactivated soft-hard combined scaffold system (PGCZ) was engineered by introducing polydopamine-modified zeolitic imidazolate framework-8-loaded double-network hydrogel (soft matrix component) into 3D-printed poly(ε-caprolactone) (PCL) scaffold (hard matrix component). The versatile PGCZ scaffold based on double-network hydrogel and 3D-printed PCL was thus prepared and features highly extracellular matrix-mimicking microstructure, suitable biodegradability and mechanical properties, and excellent photothermal performance, allowing long-term structural stability and mechanical support for bone regeneration. Under periodic near-infrared (NIR) irradiation, the localized photothermal effect of PGCZ triggers the on-demand release of Zn2+, which, together with repeated mild hyperthermia, collectively accelerates the proliferation and osteogenic differentiation of preosteoblasts and potently inhibits bacterial growth and biofilm formation. Additionally, the photoactivated PGCZ system also presents outstanding immunomodulatory and ROS scavenging capacities, which regulate M2 polarization of macrophages and drive functional cytokine secretion, thus leading to a pro-regenerative microenvironment in situ with enhanced vascularization. In vivo experiments further demonstrated that the PGCZ platform in conjunction with mild photothermal therapeutic activity remarkably attenuated the local inflammatory cascade, initiated endogenous stem cell recruitment and neovascularization, and orchestrated the osteoblast/osteoclast balance, ultimately accelerating diabetic bone regeneration. Conclusions: This work highlights the potential application of a photoactivated soft-hard combined system that provides long-term biophysical (mild photothermal stimulation) and biochemical (on-demand ion delivery) cues for accelerated healing of diabetic bone defects.


Subject(s)
Bone Regeneration , Hydrogels , Photothermal Therapy , Tissue Scaffolds , Animals , Mice , Bone Regeneration/drug effects , Photothermal Therapy/methods , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Indoles/chemistry , Indoles/pharmacology , Neovascularization, Physiologic/drug effects , Printing, Three-Dimensional , Osteogenesis/drug effects , Polyesters/chemistry , Diabetes Mellitus, Experimental/therapy , Male , Rats , Polymers/chemistry , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Angiogenesis
19.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994934

ABSTRACT

The luminal surface of the intestinal epithelium is protected by a vital mucus layer, which is essential for lubrication, hydration, and fostering symbiotic bacterial relationships. Replicating and studying this complex mucus structure in vitro presents considerable challenges. To address this, we developed a hydrogel-integrated millifluidic tissue chamber capable of applying precise apical shear stress to intestinal models cultured on flat or 3D structured hydrogel scaffolds with adjustable stiffness. The chamber is designed to accommodate nine hydrogel scaffolds, 3D-printed as flat disks with a storage modulus matching the physiological range of intestinal tissue stiffness (~3.7 kPa) from bioactive decellularized and methacrylated small intestinal submucosa (dSIS-MA). Computational fluid dynamics simulations were conducted to confirm a laminar flow profile for both flat and 3D villi-comprising scaffolds in the physiologically relevant regime. The system was initially validated with HT29-MTX seeded hydrogel scaffolds, demonstrating accelerated differentiation, increased mucus production, and enhanced 3D organization under shear stress. These characteristic intestinal tissue features are essential for advanced in vitro models as they critically contribute to a functional barrier. Subsequently, the chamber was challenged with human intestinal stem cells (ISCs) from the terminal ileum. Our findings indicate that biomimicking hydrogel scaffolds, in combination with physiological shear stress, promote multi-lineage differentiation, as evidenced by a gene and protein expression analysis of basic markers and the 3D structural organization of ISCs in the absence of chemical differentiation triggers. The quantitative analysis of the alkaline phosphatase (ALP) activity and secreted mucus demonstrates the functional differentiation of the cells into enterocyte and goblet cell lineages. The millifluidic system, which has been developed and optimized for performance and cost efficiency, enables the creation and modulation of advanced intestinal models under biomimicking conditions, including tunable matrix stiffness and varying fluid shear stresses. Moreover, the readily accessible and scalable mucus-producing cellular tissue models permit comprehensive mucus analysis and the investigation of pathogen interactions and penetration, thereby offering the potential to advance our understanding of intestinal mucus in health and disease.


Subject(s)
Hydrogels , Mucus , Humans , Mucus/metabolism , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/metabolism , HT29 Cells , Models, Biological , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/drug effects , Printing, Three-Dimensional , Tissue Engineering/methods
20.
Tissue Eng Part C Methods ; 30(7): 314-322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946581

ABSTRACT

Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.


Subject(s)
Chondrocytes , Ear Cartilage , Elastic Cartilage , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Engineering/methods , Chondrocytes/cytology , Chondrocytes/metabolism , Swine , Ear Cartilage/cytology , Ear Cartilage/physiology , Elastic Cartilage/cytology , Tissue Scaffolds/chemistry , Swine, Miniature , Elastic Modulus , Cells, Cultured , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL