Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.301
Filter
1.
J Environ Sci (China) ; 147: 561-570, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003071

ABSTRACT

In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.


Subject(s)
Fluorides , Oxidation-Reduction , Titanium , Toluene , Toluene/chemistry , Titanium/chemistry , Catalysis , Fluorides/chemistry , Photochemical Processes , Models, Chemical
2.
J Indian Prosthodont Soc ; 24(3): 240-244, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946506

ABSTRACT

AIM: The aim is to determine thermal conduction by heat-activated polymethylmethacrylate (PMMA) infiltrated with 1 weight% Titanium Dioxide (TiO2) and 1 weight% Zirconium Dioxide (ZrO2) nanoparticles and to compare with that of conventional PMMA. STUDY SETTING AND DESIGN: In vitro experimental study. MATERIALS AND METHODS: Eighteen disc shaped specimens with a thickness of 5 mm and diameter of 50 mm, were fabricated and grouped according to the material used: Group B1 (resin infiltrated with 1 weight% TiO2), Group B2 (resin infiltrated with 1 weight% ZrO2), and Control Group B3 (heat-activated conventional PMMA resin). Disc-shaped specimens were analyzed for thermal conductivity using "modified guarded hot plate apparatus" in the thermal lab of the Indian Space Research Organisation. STATISTICAL ANALYSIS USED: One-way ANOVA followed by Tukey's post hoc test was used to compare the arithmetic means of all three groups. RESULTS: A statistically significant difference was noted among all three groups. Group B2 had the maximum thermal conductivity, followed by Group B1. Thermal conductivity was the least for Group B3. A post hoc comparison revealed that the difference was significant between Group B2 and Group B3. CONCLUSION: Nano ZrO2 addition in PMMA increased its thermal conductivity. There is evidence that it improves its mechanical properties as well. Hence, Nano ZrO2 addition in PMMA is highly recommended. Nano TiO2 addition in PMMA did not provide any significant advantage in terms of thermal conductivity, but its addition in PMMA is justified because of its mechanical and antimicrobial properties.


Subject(s)
Hot Temperature , Nanoparticles , Polymethyl Methacrylate , Thermal Conductivity , Titanium , Zirconium , Titanium/chemistry , Zirconium/chemistry , Zirconium/pharmacology , Polymethyl Methacrylate/chemistry , Nanoparticles/chemistry , Denture Bases , Materials Testing , In Vitro Techniques
3.
J Biomed Mater Res B Appl Biomater ; 112(7): e35445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946669

ABSTRACT

In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two-diameter]), and a 20-60 V swept potential (49 nm [full-tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two-diameter) and 49 nm (full-tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two-diameter), 49 nm (full-tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two-diameter) and 49 nm (full-tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two-diameter) sample. Thus, 50 nm (two-diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two-diameter and full-tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.


Subject(s)
Nanotubes , Titanium , Titanium/chemistry , Nanotubes/chemistry , Drug Delivery Systems , Drug Liberation , Particle Size
4.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948935

ABSTRACT

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Subject(s)
Dendrimers , Glycoproteins , Phosphoproteins , Polyethyleneimine , Polymethacrylic Acids , Titanium , Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyethyleneimine/chemistry , Dendrimers/chemistry , Humans , Titanium/chemistry , Polymethacrylic Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Surface Properties , Animals , Particle Size , Adsorption , Cattle
5.
J Biomed Mater Res B Appl Biomater ; 112(7): e35443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968028

ABSTRACT

The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 µm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.


Subject(s)
Rats, Wistar , Titanium , Titanium/chemistry , Animals , Male , Rats , Metal Nanoparticles/chemistry , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Oxidative Stress/drug effects , Nanoparticles/chemistry , Liver/metabolism , Liver/pathology
6.
Sci Rep ; 14(1): 15339, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961115

ABSTRACT

Given the hierarchical nature of bone and bone interfaces, osseointegration, namely the formation of a direct bone-implant contact, is best evaluated using a multiscale approach. However, a trade-off exists between field of view and spatial resolution, making it challenging to image large volumes with high resolution. In this study, we combine established electron microscopy techniques to probe bone-implant interfaces at the microscale and nanoscale with plasma focused ion beam-scanning electron microscopy (PFIB-SEM) tomography to evaluate osseointegration at the mesoscale. This characterization workflow is demonstrated for bone response to an additively manufactured Ti-6Al-4V implant which combines engineered porosity to facilitate bone ingrowth and surface functionalization via genistein, a phytoestrogen, to counteract bone loss in osteoporosis. SEM demonstrated new bone formation at the implant site, including in the internal implant pores. At the nanoscale, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the gradual nature of the bone-implant interface. By leveraging mesoscale analysis with PFIB-SEM tomography that captures large volumes of bone-implant interface with nearly nanoscale resolution, the presence of mineral ellipsoids varying in size and orientation was revealed. In addition, a well-developed lacuno-canalicular network and mineralization fronts directed both towards the implant and away from it were highlighted.


Subject(s)
Genistein , Osseointegration , Titanium , Osseointegration/drug effects , Genistein/pharmacology , Genistein/chemistry , Titanium/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Bone-Implant Interface , Microscopy, Electron, Scanning , Prostheses and Implants , Porosity , Alloys/chemistry
7.
Biomed Microdevices ; 26(3): 31, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951313

ABSTRACT

Janus particles are popular in recent years due to their anisotropic physical and chemical properties. Even though there are several established synthesis methods for Janus particles, microfluidics-based methods are convenient and reliable due to low reagent consumption, monodispersity of the resultant particles and efficient control over reaction conditions. In this work a simple droplet-based microfluidic technique is utilized to synthesize magnetically anisotropic TiO2-Fe2O3 Janus microparticles. Two droplets containing reagents for Janus particle were merged by using an asymmetric device such that the resulting droplet contained the constituents within its two hemispheres distinct from each other. The synthesized Janus particles were observed under the optical microscope and the scanning electron microscope. Moreover, a detailed in vitro characterization of these particles was completed, and it was shown that these particles have a potential use for biomedical applications.


Subject(s)
Biocompatible Materials , Lab-On-A-Chip Devices , Titanium , Titanium/chemistry , Biocompatible Materials/chemistry , Ferric Compounds/chemistry , Equipment Design , Particle Size
8.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Article in English | MEDLINE | ID: mdl-38952675

ABSTRACT

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Osteogenesis , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Staphylococcus aureus/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Cell Differentiation/drug effects , Prostheses and Implants , Alloys/pharmacology , Alloys/chemistry , Rats , Titanium/chemistry , Titanium/pharmacology , Silver/chemistry , Silver/pharmacology , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Male , X-Ray Microtomography , Cell Line , Metal Nanoparticles/chemistry
9.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967690

ABSTRACT

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Subject(s)
Dental Implants , Osseointegration , Osteoblasts , Surface Properties , Osteoblasts/physiology , Osteoblasts/cytology , Humans , Cell Differentiation , Cell Proliferation , Titanium/chemistry , Osteogenesis/physiology
10.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970693

ABSTRACT

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Subject(s)
Copper , Electrochemical Techniques , Glucose , Limit of Detection , Titanium , Copper/chemistry , Humans , Titanium/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Sweat/chemistry , Electrodes , Oxidation-Reduction , Reproducibility of Results , Biosensing Techniques/methods , Nanocomposites/chemistry
11.
Clin Oral Investig ; 28(8): 417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972945

ABSTRACT

OBJECTIVES: The treatment of fractures prioritizes the restoration of functionality through the realignment of fractured segments. Conventional methods, such as titanium plates, have been employed for this purpose; however, certain limitations have been observed, leading to the development of patient-specific plates. Furthermore, recent advancements in digital technology in dentistry enable the creation of virtual models and simulations of surgical procedures. The aim was to assess the clinical effectiveness of patient-specific plates utilizing digital technology in treating mandibular fractures compared to conventional titanium plates. MATERIALS AND METHODS: Twenty patients diagnosed with mandibular fractures were included and randomly assigned to either the study or control groups. The surgical procedure comprised reduction and internal fixation utilizing patient-specific plates generated through virtual surgery planning with digital models for the study group, while the control group underwent the same procedure with conventional titanium plates. Assessment criteria included the presence of malunion, infection, sensory disturbance, subjective occlusal disturbance and occlusal force in functional maximum intercuspation (MICP). Statistical analysis involved using the Chi-square test and one-way repeated measures analysis of variance. RESULTS: All parameters showed no statistically significant differences between the study and control groups, except for the enhancement in occlusal force in functional MICP, where a statistically significant difference was observed (p = 0.000). CONCLUSION: Using patient-specific plates using digital technology has demonstrated clinical effectiveness in treating mandibular fractures, offering advantages of time efficiency and benefits for less experienced surgeons. CLINICAL RELEVANCE: Patient-specific plates combined with digital technology can be clinically effective in mandibular fracture treatment.


Subject(s)
Bone Plates , Fracture Fixation, Internal , Mandibular Fractures , Titanium , Humans , Mandibular Fractures/surgery , Titanium/chemistry , Male , Female , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Adult , Treatment Outcome , Middle Aged , Computer-Aided Design , Surgery, Computer-Assisted/methods
12.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000425

ABSTRACT

This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.


Subject(s)
Durapatite , Nanoparticles , Osseointegration , Surface Properties , Zirconium , Zirconium/chemistry , Animals , Durapatite/chemistry , Durapatite/pharmacology , Female , Rats , Nanoparticles/chemistry , Osseointegration/drug effects , Dental Implants , Titanium/chemistry , Tibia/drug effects , Tibia/surgery , Acid Etching, Dental
13.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000523

ABSTRACT

The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and ß1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.


Subject(s)
Amnion , Dental Implants , Surface Properties , Titanium , Humans , Titanium/chemistry , Amnion/cytology , Amnion/metabolism , Osteogenesis , Cell Differentiation , Cells, Cultured , Osseointegration , Stem Cells/cytology , Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Survival , Alkaline Phosphatase/metabolism
14.
Environ Sci Pollut Res Int ; 31(31): 44385-44400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954330

ABSTRACT

Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.


Subject(s)
Ammonia , Livestock , Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Animals , Ammonia/chemistry , Waste Disposal, Fluid/methods , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Titanium/chemistry
15.
Environ Sci Technol ; 58(28): 12719-12730, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959427

ABSTRACT

Chlorofluorocarbons (CFCs) exert a strong greenhouse effect and constitute the largest contributor to ozone depletion. Catalytic removal is considered an effective pathway for eliminating low-concentration CFCs under mild conditions. The key issue is the easy deactivation of the catalysts due to their surface fluorination. We herein report a comparative investigation on catalytic dichlorodifluoromethane (CFC-12) removal in the absence or presence of water over the sulfuric-acid-modified three-dimensionally ordered macroporous vanadia-titania-supported Ru (S-Ru/3DOM VTO) catalysts. The S-Ru/3DOM VTO catalyst exhibited high activity (T90% = 278 °C at space velocity = 40 000 mL g-1 h-1) and good stability within 60 h of on-stream reaction in the presence of 1800 ppm of water due to the improvements in acid site amount and redox ability that promoted the adsorption of CFC-12 and the activation of C-F bonds. Compared with the case under dry conditions, catalytic performance for CFC-12 removal was better over the S-Ru/3DOM VTO catalyst in the presence of water. Water introduction mitigated surface fluorination by the replenishment of hydroxyl groups, inhibited the formation of halogenated byproducts via the surface fluorine species cleaning effect, and promoted the reaction pathway of COX2 (X = Cl/F) → carboxylic acid → CO2.


Subject(s)
Oxidation-Reduction , Catalysis , Halogenation , Sulfuric Acids/chemistry , Titanium/chemistry , Ruthenium/chemistry
16.
Braz Oral Res ; 38: e064, 2024.
Article in English | MEDLINE | ID: mdl-39016370

ABSTRACT

The aim of this study was to evaluate the influence of implant macrodesign and surface hydrophilicity on osteoclast (OC) differentiation, activation, and survival in vitro. Titanium disks were produced with a sandblasted, dual acid-etched surface, with or without additional chemical modification for increasing hydrophilicity (SAE-HD and SAE, respectively) and different macrodesign comprising trapezoidal (HLX) or triangular threads (TMX). This study evaluated 7 groups in total, 4 of which were experimental: HLX/SAE-HD, HLX-SAE, TMX/SAE-HD, and TMX/SAE; and 3 control groups comprising OC differentiated on polystyrene plates (CCPC): a positive CCPC (+), a negative CCPC (-), and a lipopolysaccharide-stimulated assay positive control group, CCPC-LPS. Murine macrophage RAW264.7 cells were seeded on the disks, differentiated to OC (RAW-OC) by receptor activator of nuclear factor-κB ligand (RANKL) treatment and cultured for 5 days. Osteoclast differentiation and cell viability were respectively assessed by specific enzymatic Tartrate-Resistant Acid Phosphatase (TRAP) activity and MTT assays. Expression levels of various OC-related genes were measured at the mRNA level by quantitative polymerase chain reaction (qPCR). HLX/SAE-HD, TMX/SAE-HD, and HLX/SAE significantly suppressed OC differentiation when compared to CCPC (+). Cell viability was significantly increased in TMX/SAE and reduced in HLX/SAE-HD. In addition, the expression of Interleukin (IL)-6 and Tumour Necrosis Factor (TNF)-α was upregulated in TMX/SAE-HD compared to CCPC (+). Hydrophilic surfaces negatively modulate macrophage/osteoclast viability. Specifically, SAE-HD with double triangular threads increases the cellular pro-inflammatory status, while surface hydrophilicity and macrodesign do not seem to have a distinct impact on osteoclast differentiation, activation, or survival.


Subject(s)
Cell Differentiation , Cell Survival , Hydrophobic and Hydrophilic Interactions , Osteoclasts , Surface Properties , Titanium , Titanium/chemistry , Osteoclasts/drug effects , Cell Differentiation/drug effects , Animals , Cell Survival/drug effects , Mice , Time Factors , Acid Etching, Dental , Osteogenesis/drug effects , Osteogenesis/physiology , Materials Testing , Reproducibility of Results , Tartrate-Resistant Acid Phosphatase/analysis , Analysis of Variance , RANK Ligand/analysis , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Reference Values , Macrophages/drug effects
17.
Radiat Prot Dosimetry ; 200(11-12): 1173-1177, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016480

ABSTRACT

The effect of 60Co gamma irradiation on gallium oxide and titanium oxide (Ga2O3-TiO2) nanocomposites are investigated in the present study. The Ga2O3-TiO2 nanocomposite was synthesized by hydrothermal method at 120°C. The precursors for the synthesis consist of gallium nitrate anhydrous and titanium trichloride along with sodium hydroxide to achieve the pH of 9. The synthesized Ga2O3-TiO2 was subjected to 60Co gamma irradiation for different doses such as 25, 50 and 75 kGy. The morphological, optical and microstructural characteristics were studied using scanning electron microscopy, UV-Visible spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The results shows that the gamma irradiation induces significant changes in the Ga2O3-TiO2 microstructure and there is increase in the grain size and bandgap of the nanocomposites.


Subject(s)
Cobalt Radioisotopes , Gallium , Gamma Rays , Nanocomposites , Titanium , Titanium/chemistry , Nanocomposites/chemistry , Nanocomposites/radiation effects , Cobalt Radioisotopes/chemistry , Gallium/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning
18.
Arch Microbiol ; 206(8): 354, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017726

ABSTRACT

Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.


Subject(s)
Bacterial Adhesion , Biofilms , Dental Implants , Lipopeptides , Microbial Sensitivity Tests , Titanium , Titanium/pharmacology , Titanium/chemistry , Biofilms/drug effects , Biofilms/growth & development , Bacterial Adhesion/drug effects , Dental Implants/microbiology , Lipopeptides/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Bacillus subtilis/drug effects , Porphyromonas gingivalis/drug effects , Porphyromonas gingivalis/physiology , Porphyromonas gingivalis/growth & development , Aggregatibacter actinomycetemcomitans/drug effects , Surface Properties , Fibroblasts/drug effects , Fusobacterium nucleatum/drug effects , Cell Survival/drug effects , Osteoblasts/drug effects , Surface-Active Agents/pharmacology
19.
Environ Sci Pollut Res Int ; 31(32): 44983-44994, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955967

ABSTRACT

Elemental doping is a promising way for enhancing the electrocatalytic activity of metal oxides. Herein, we fabricate Ti/ Ti4O7-CB-Ce anode materials by the modification means of carbon black and cerium co-doped Ti4O7, and this shift effectively improves the interfacial charge transfer rate of Ti4O7 and •OH yield in the electrocatalytic process. Remarkably, the Ti4O7-CB-Ce anode exhibits excellent efficiency of minocycline (MNC) wastewater treatment (100% removal within 20 min), and the removal rate reduces from 100 to 98.5% after five cycles, which is comparable to BDD electrode. •OH and 1O2 are identified as the active species in the reaction. Meanwhile, it is discovered that Ti/ Ti4O7-CB-Ce anodes can effectively improve the biochemical properties of the non-biodegradable pharmaceutical wastewater (B/C values from 0.25 to 0.44) and significantly reduce the toxicity of the wastewater (luminescent bacteria inhibition rate from 100 to 26.6%). This work paves an effective strategy for designing superior metal oxides electrocatalysts.


Subject(s)
Anti-Bacterial Agents , Cerium , Oxidation-Reduction , Soot , Wastewater , Cerium/chemistry , Anti-Bacterial Agents/chemistry , Wastewater/chemistry , Catalysis , Soot/chemistry , Electrodes , Titanium/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry
20.
Environ Sci Pollut Res Int ; 31(32): 45383-45398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963620

ABSTRACT

To solve environmental-related issues (wastewater remediation, energy conservation and air purification) caused by rapid urbanization and industrialization, synthesis of novel and modified nanostructured photocatalyst has received increasing attention in recent years. We herein report the facile synthesis of in situ nitrogen-doped chemically anchored TiO2 with graphene through sol-gel method. The structural analysis using X-ray diffraction showed that the crystalline nitrogen-doped graphene-titanium dioxide (N-GT) nanocomposite is mainly composed of anatase with minor brookite phase. Raman spectroscopy revealed the graphene characteristic band presence at low intensity level in addition to the main bands of anatase TiO2. X-ray photoelectron spectroscopy analysis disclosed the chemical bonding of TiO2 with graphene via Ti-O-C linkage, also the substitution of nitrogen dopant in both TiO2 lattice and into the skeleton of graphene nanoflakes. UV-Vis absorption spectroscopy analysis established that the modified material can efficiently absorb the longer wavelength range photons due to its narrowed band gap. The N0.06-GT material showed the highest degradation efficiency over methylene blue (MB, ∼98%) under UV and sulfamethoxazole (SMX, ∼ 90.0%) under visible light irradiation. The increased activity of the composite is credited to the synergistic effect of high surface area via greater adsorption capacity, narrowed band gap via increased photon absorption, and reduced e-/h+ recombination via good electron acceptability of graphene nanoflakes and defect sites (Ti3+ and oxygen vacancy (Vo)). The ROS experiments further depict that primarily hydroxyl radicals (OH•) and superoxide anions (O2•-) are responsible for the pollutant degradation in the process redox reactions. In summary, our findings specify new insight into the fabrication of this new material whose efficiency can be further tested in applications like H2 production, CO2 conversion to value-added products, and in energy conservation and storage.


Subject(s)
Graphite , Nitrogen , Titanium , Graphite/chemistry , Titanium/chemistry , Nitrogen/chemistry , Catalysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...